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Methods

Abstract

Mortality risk is a critical and complex component of individual fitness and individual-based 
ecology, especially when risk-avoidance behaviors are considered. Organisms are subject 
to multiple kinds of risk that can vary with habitat, time, individual state, individual activity 
and behavior, and population status. Yet risk is often represented very simply in models 
and there is little literature on practical ways to model its variation. In our experience, 
desirable characteristics of risk models include: (a) survival probability can vary with mul-
tiple variables of individuals, habitat, and other entities; (b) relations between survival and 
specific variables can be added or removed or modified without re-fitting the entire model; 
(c) relations between variables and survival can take different forms, including continuous 
and nonlinear functions and discrete values; (d) relations between variables and survival 
are easy to understand and fit to many kinds of data or assumptions; and (e) they can be 
calibrated by adjusting only one parameter. We review the terminology and conventions 
that ecologists often use to model risk, and provide a mathematical framework for mod-
eling risk. For complex risks, we describe and illustrate a method with “survival increase 
functions” that each relate survival probability to one variable. These functions can have a 
different form for each variable and can each be based on different information. The multi-
ple functions are combined into a single survival probability value that is easily calibrated. 
We discuss methods for evaluating survival increase functions, ranging from general field 
observations to controlled field experiments, knowledge and data on mechanisms driving 
survival, and even conceptual models of those mechanisms. This approach has proven 
practical for representing complex effects of multiple variables on survival probability in 
models that represent how individual behavior and fitness depend on risk.
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Introduction

Importance of risk to individual-based ecology

One of the greatest promises of individual-based ecology is the ability to incor-
porate more realistic mechanisms in our models, thereby making them more 
general and more capable. Mortality is, of course, an extremely important mech-
anism in ecology. Mortality is important not only because it is a fundamen-
tal driver of population dynamics but also because, as ecologists now wide-
ly acknowledge (e.g., Peacor and Werner 2001; Preisser et al. 2005; Verdolin 
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2006), it is a strong driver of behaviors that trade off risk and other elements of 
individual fitness such as growth and reproduction. The most general and non-
controversial “first-principles” assumptions on which we can base models in-
clude that individual traits, including inherent behaviors, have evolved because 
they convey fitness, and that survival to reproduction is critical to fitness.

Representing how mortality risks vary (over space or time, or among individu-
als) is important for at least two kinds of model. First are models of the effects of 
changes that strongly affect risk; examples include land use changes and reintro-
duction of predators (both illustrated by Ganz et al. 2024). Second are models that 
include risk-avoidance behavior. If we want models to implement the assumption 
that behavior acts to increase fitness by avoiding mortality, the models must rep-
resent variation in mortality risk: model individuals cannot reduce risk if risk is the 
same in all places and at all times. Further, risk needs to vary at spatial and tem-
poral scales relevant to behavior. If we model how animals select among habitat 
patches and how habitat selection varies seasonally, with patch selection depen-
dent in part on predation risk, then we need to represent how risk varies among 
patch types and over seasons. If we want to model how animal behavior changes 
diurnally, then we need to represent how risk varies over the daily light cycle.

To address such purposes, individual-based ecology has the challenge of 
developing methods for quantifying how risk varies and for representing that 
variation in our models.

Conventional approaches to variation in risk

How individual-based models (IBMs) can represent behavior as fitness-seek-
ing tradeoffs among risk, growth, and other elements of fitness has been ad-
dressed to some extent (e.g., chapter 5 of Grimm and Railsback 2005; Railsback 
and Harvey 2020), but there is little existing literature on general, mechanistic 
models of how risk varies with characteristics of habitat, time, and the indi-
viduals at risk. To get a general idea of how IBMs typically represent risk, we 
reviewed the IBMs in three recent volumes (499–501) of the journal Ecological 
Modelling, including the older models (published before 2009) described in the 
supplemental materials of Grimm et al. (2025). Of the 15 IBMs that included 
mortality, almost all represented multiple causes of mortality, e.g., unspecified 
“background” mortality and starvation when growth was low. However, only one 
(Anders et al. 2025) represented one cause of mortality that depended on multi-
ple drivers: tree death from stress related to multiple climate variables, modeled 
via logistic regression on field data. We conclude that many IBMs represent 
mortality as multiple risks that each vary with a single variable, but few models 
explicitly represent how a risk such as predation depends on multiple variables.

While little of it addresses general, mechanistic modeling, there is extensive 
empirical literature on spatial and temporal variation in predation mortality and 
risk, especially in wildlife and livestock subject to predation by large carnivores (re-
viewed, e.g., by Prugh et al. 2019). Much of this literature uses statistical methods 
such as logistic regression on habitat variables observed where predation did and 
did not occur, to model how the probability of mortality varies (reviewed by Miller 
2015). Other observational approaches are to (a) use tracking data on prey individ-
uals and estimates of when they were killed to estimate predation risk in different 
habitat types (Ganz et al. 2024), (b) track the predators and observe predation 
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events (Gervasi et al. 2013), and (c) develop resource selection functions for both 
predators and prey to estimate how the probability of predators encountering prey 
varies with habitat (Hebblewhite et al. 2005; Hebblewhite and Merrill 2007).

Such observational study methods and literature have limited value for the 
individual-based modeler. Studies that examine only mortality events cannot 
distinguish risk (as we define it below) from the confounding effect of prey expo-
sure (the number of prey killed by predators is a function of both risk and number 
of prey). The literature and methods are generally limited to large terrestrial pred-
ators and prey, which are particularly easy to observe. Because these studies 
are purely empirical, their results are of questionable value for modeling other 
systems or novel future conditions. Observational studies also tend to have lim-
ited temporal resolution because it is generally difficult to determine precisely 
(e.g., between day, night, or twilight) when a predation event occurred. And these 
studies are of course expensive and time-consuming. However, observational 
studies provide valuable clues about general mechanisms (e.g., differences be-
tween wolves and cougars in predation success in dense vs. open habitat, and in 
willingness to hunt near humans; Atwood et al. 2009; Ganz et al. 2024).

Objectives and scope

Our objectives are to review concepts and mathematical methods that can 
be used to model how mortality risks vary over multiple dimensions in IBMs 
and other mechanistic ecological models. We specifically address models that 
treat one or more risks as explicit functions of multiple characteristics of habi-
tat, individuals, or time. However, we do not address models in which mortality 
emerges from direct interactions among individuals, e.g., by representing adap-
tive predators or contagious disease spread.

We also discuss ways in which such methods can be supported by multiple 
kinds of information, from natural history knowledge, mechanistic understand-
ing, and empirical experiments of several kinds. Our methods are especially 
applicable to systems and species for which reliable empirical information on 
risks is difficult to obtain, and for models that benefit from being more mecha-
nistic and general because those characteristics make them useful for predict-
ing responses to novel conditions under which strictly empirical representation 
of risk would be unreliable.

We focus, but not exclusively, on predation risk to mobile animals that use 
risk avoidance behaviors such as selecting when and where to feed. Our experi-
ence is primarily with modeling salmonid fish, specifically the “InSTREAM” fam-
ily of IBMs for predicting effects of river management on trout and salmon pop-
ulations (e.g., Railsback and Harvey 2002; Railsback et al. 2023). These models 
represent multiple kinds of mortality that are affected by managed variables 
such as flow and temperature. Simulated risks include two kinds of predation, 
starvation and disease, and extreme temperatures. Reliably modeling how such 
risks vary with habitat and among individuals is essential for understanding 
how management affects individual behavior and fitness and, therefore, popu-
lation dynamics. InSTREAM assumes individual fish select when and where to 
feed (or hide) as an adaptive tradeoff between risk and growth (Railsback et al. 
2020). However, the methods we present are also applicable to other kinds of 
risk such as disease, human harvest, and extreme weather or habitat conditions. 
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The methods also seem useful for modeling such risks to plants as herbivory, 
lack of resources (water, light, nutrients), pest infestation, and disease.

Concepts

We begin by reviewing concepts we find important for understanding and mod-
eling risk.

Terminology and mathematical conventions

Traditional equation-based ecological models (e.g., the Lotka-Volterra equa-
tions) represent mortality via a rate parameter d, the fraction of a population 
that dies within a specified unit of time (Haefner 2012). However, in an IBM 
mortality is not a population-level rate but an individual-level event: every time 
step, each individual either survives or dies. A very simple way to model mortal-
ity as an event is using the variable “risk” R as a probability of mortality within 
a specific time period. We can set the value of R by assuming it equal to an 
observed mortality rate, but it is important to remember that when we model 
mortality of individuals in this way, R is a probability, not a rate.

(Here, we generally assume 1 day as the time period. We also use “risk” as a 
general term for mechanisms that could cause mortality, e.g., the risk of heart 
attack. The context should make it clear when “risk” is used in this general 
sense or specifically as a probability of death, R.)

The term “mortality” also has general meanings—the phenomenon or rate of 
death among individuals—and a specific meaning, the death of an individual. 
Mortality of an individual is typically represented in IBMs as an event that oc-
curs randomly with probability R of occurring within one time period.

Studies and models that explicitly represent both predators and prey often 
follow the convention (e.g., Holling 1959) of decomposing R into separate prob-
abilities of (a) a prey individual encountering a predator and (b) the predator 
successfully killing the prey when an encounter occurs. Similar decomposition 
can be applicable to other kinds of mortality; disease, for example, is often rep-
resented via separate probabilities of exposure to, infection by, and succumbing 
to a pathogen. While such decomposition is helpful for understanding and quan-
tifying some risks, here we do not include it when discussing predation because 
it is unnecessary when predators are not represented as explicit individuals.

Models can be simpler to describe and implement when mortality is repre-
sented via survival S, the probability of surviving a specific time period, so S = 
1.0 – R. Under the very common (yet often unstated) assumption that mortality 
risk in any time period is independent of risk in adjacent periods, the probability 
of surviving any t time periods is simply St, which is especially convenient for 
models with time steps of variable lengths. Our trout model simulates four time 
steps representing the light phases of each day (Railsback et al. 2021); the 
length t (fraction of 1 day) of each phase varies with date. On each time step 
we model survival of each kind of mortality as a daily probability SX, and then 
determine mortality each time step using SX

t as the probability of surviving.
Modeling risk as a survival probability is also convenient because the probabil-

ity of surviving multiple, independent, kinds of mortality (discussed below) is cal-
culated simply as the product of the survival probabilities for each mortality type.
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The importance of time in understanding risk

Even though we typically evaluate risk and survival as daily probabilities, un-
derstanding and making good modeling decisions requires thinking about risk 
over longer time periods. Seemingly minor differences in daily survival result in 
large differences over meaningful future periods.

The widespread misuse of the so-called “µ/f rule” (or “µ/g”) provides a 
good example of the importance of time for understanding risk. Gilliam and 
Fraser (1987) derived, for a highly simplified system, that long-term fitness 
for an individual is maximized by selecting the behavior that minimizes the 
ratio of risk to food intake. Presumably because of its simplicity, this “rule” 
has been used to represent tradeoff decisions in a variety of models. When 
we think of daily probabilities and rates, the “rule” may seem reasonable—a 
small increase in risk, say 10%, is the price for a corresponding increase in 
food intake. However, when we think about future survival this tradeoff seems 
less reasonable. If risk is low, e.g., daily S is 0.998 so the probability of surviv-
ing for 30 days is 94%, a 10% increase in daily risk reduces the probability of 
surviving for a year by only 7%. But if risk is already high, e.g., S = 0.98, a 10% 
increase in risk reduces the probability of surviving for a year by 50%. The 
tradeoff of 10% gain in food for 10% increase in risk is a bad one when risk is 
already high and behavior should instead emphasize reducing risk. Looking 
at the long-term consequences of changes in risk makes it clear that the “µ/f 
rule” cannot provide good tradeoff decisions across wide ranges of risk.

When estimating survival parameters for models, it helps to think about sur-
vival over a meaningful time period and then calculate the corresponding daily 
probabilities. For example, we might estimate that an animal in a particularly 
risky habitat has a 20% chance of surviving for a month. The corresponding dai-
ly survival is: . Another approach is to estimate a median 
survival time (tm) and calculate daily survival probability from it: .

Perceived vs. unperceived risks

In some models it is important to distinguish among risks that individuals 
do vs. do not perceive and respond to. Human harvest, vehicle collisions, 
disease, natural toxins, pollutants, and introduced predators are example 
risks that a modeler might assume animals are naïve about and do not avoid 
via behavior. Such risks can be represented by modeling them exactly as 
the other risks while assuming that the individuals do not consider them in 
risk-driven behaviors. For example, Ayllón et al. (2018) added angler harvest 
to a trout IBM in which individual trout select habitat to trade off growth and 
predation risk. The risk of mortality via angling was assumed to vary with 
trout size, season, and angling regulations, but that variation was not con-
sidered by model trout in their behavior.

Axes of variation in risk

Here we list some of the “dimensions” in which mortality risks can vary, ending 
with a summary of those dimensions in our salmonid models. These dimen-
sions are variables or groups of variables that risks often vary over.
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Type of risk

Risk types can include predation (including multiple types of predator, as con-
sidered below), disease, extreme weather or other habitat conditions, starva-
tion or dehydration, and human-induced risks such as harvest.

Habitat

Many risks are affected by habitat conditions at various scales. For example, 
risk of wolf and cougar predation on ungulates can differ between open and 
forested areas (Atwood et al. 2009; Gervasi et al. 2013), and the availability of 
escape and concealment cover is important for many prey species. Some risks, 
such as extreme temperature, can be driven entirely by habitat variables.

Time

Some risks vary over time cycles from daily to seasonal and even multi-year. 
Temporal variation in risks is generally driven by lower-level mechanisms such 
as predator physiology and life cycles, and daily and seasonal light cycles, but 
it can be convenient to model such variation as time-driven.

Individual state

Risks commonly vary dramatically with characteristics of the model individu-
als. If classical ecological models address variation in risk, they typically do so 
by assuming predation risk decreases as prey size increases. In many real sys-
tems, however, the kinds of predators and risk change as prey proceed through 
their life cycles, and the relations between size and risk may not be simple. 
Often, different life stages are subject to quite different risks, in which case life 
stage can be the individual state variable with the most effect on risk.

Individual activity or behavior

Models that represent risk-avoidance behavior must represent the effects of 
behavior on risk. For example, a model that represents how individuals choose 
between feeding during day vs. night as an adaptive tradeoff between risk and 
food intake must represent how risk differs between feeding and alternative 
activities, during both day and night. (Ellsworth et al. 2024 provides an example 
empirical study of activity effects, showing that deer survival varied with the 
percentage of time devoted to vigilance behavior.)

Population status

Some risks can be subject to direct feedbacks from the local or global popula-
tion status. Mechanisms of such feedbacks include (1) competition for preda-
tor avoidance habitat (hiding places), (2) attraction or prey switching by preda-
tors, and (3) cannibalism.

We illustrate these axes of variation in risk via Table 1, which lists the types 
of risk represented in our trout model for its two distinct life stages: eggs, and 
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swimming juvenile and adult trout. We list the dimensions that each type of risk 
varies across and the variables used to represent that variation. The abundant 
literature on stream salmonid ecology provides empirical evidence for how 
each risk varies with each variable.

A mathematical framework for modeling risk variation

In this section we present one general framework for modeling variation in risk. 
It includes the steps of (1) identifying types of risk; (2) for each type, represent-
ing how survival depends on each of multiple variables; and (3) combining the 
effects of multiple variables into one survival probability value.

This framework differs from conventional approaches by letting us develop 
models of risk that are realistically complex, general instead of specific to a site 
or time, and supported by multiple kinds of information.

Step 1: Select types of risk

The first step is determining which types of risk to model separately. We assume 
that the modeler has carefully determined what risks need to be in a model to 
meet its intended purpose. “Pattern-oriented modeling” is a powerful strategy 
for doing so, thoroughly illustrated by Grimm and Railsback (2005, 2012). As 
Table 1 illustrates, we need to model risks separately if they are driven by differ-
ent variables (e.g., thermal stress is driven by temperature while starvation and 

Table 1. Axes of risk variation in the trout model of Railsback et al. (2023). For each of 
the model’s two life stages, the types of risk simulated and the variables causing varia-
tion in risk are identified.

Life stage Type of risk Risk dimensions and variables

Eggs Thermal stress and disease Habitat: temperature

Dewatering Habitat: water depth

Scour Habitat: river flow

Superimposition (displacement 
by another spawning female)

Habitat: area of spawning habitat

Population status: number of spawners

Juvenile 
and adult 
trout

Thermal stress Habitat: temperature

Stranding Habitat: water depth

Starvation and disease Individual state: length, weight

Predation by terrestrial animals Habitat: depth, velocity, light intensitya, distance to 
escape cover

Time: light intensitya

Individual state: length

Individual activity: feeding vs. hiding

Population status: availability of hiding cover

Predation by fish Habitat: depth, temperature, light intensitya

Time: light intensitya

Individual state: length

Individual activity: feeding vs. hiding

Population status: density of piscivorous adult trout

aLight intensity depends on time of day (dawn, day, dusk, night) and water depth.
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disease are driven by an individual’s weight relative to its length), or if they are 
driven by the same variables but in different directions (e.g., increasing depth 
makes a small trout less vulnerable to terrestrial predators but more vulnerable 
to fish predators). Another reason to separate risks into different types is to 
allow model results to indicate how much mortality was caused by each risk: if 
we want to observe how many simulated elk are killed by wolves vs. cougars, 
then we need to model these two predators separately.

There are of course costs of using more types of risk: more assumptions 
and parameters, and more computations. While traditional modelers associate 
more parameters with higher uncertainty, a more-resolved representation of 
risk could reduce uncertainty by supporting more realistic behavior and results 
and by making more empirical evidence useful for representing risk.

Step 2: Model survival of each risk

Next, for each type of risk we need to model how survival probability S varies 
with one or more selected variables. Selecting the variables that drive each 
risk is similar and related to the process of selecting types of risk: variables 
should be included if they are considered essential to the model’s purpose 
or—via pattern-oriented modeling—essential for establishing the model’s 
credibility. But a variable might be considered essential for a model only be-
cause it is a critical driver of risk.

We discuss four ways to model how S depends on selected variables, but 
focus on the third and fourth, which we find most useful and novel.

Statistical models

Above (Conventional approaches to variation in risk) we identify examples of 
studies that modeled risk statistically, from several kinds of data, and discuss lim-
itations of such approaches. Logistic regression is an appealing analysis frame-
work because it estimates how the probability of an event—mortality—depends 
on multiple variables. However, modelers must be aware of differences between 
observed mortality rates and the survival probability variables in their models, es-
pecially for models containing risk-avoidance behavior. A model parameter rep-
resenting S in the absence of risk avoidance behavior might be poorly estimated 
by data on actual mortality events, because actual mortality rates depend on prey 
abundance and behavior as well as the underlying survival probability.

Estimated S for risk categories

If there are few types of risk and they vary over few variables that can all be 
treated categorically, variation in S can be modeled as a matrix (Table 2). The 
matrix simply contains values of S for each combination of risk and variable 
value. Those values are essentially model parameters that must be evaluated 
by the modeler. In cases where sufficient observations are available, values for 
such survival parameters can be estimated via calibration. For example, the pa-
rameters in Table 2 could be calibrated by running an elk IBM iteratively to find 
the values that cause the model to best reproduce observed rates of predation 
by wolves and cougars in the two habitat types.
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Continuous univariate models of S

Risks assumed to depend on only one variable can be modeled as continuous 
functions that are either estimated from observations (as in Option 1) or de-
signed by considering a variety of information. Such univariate functions could 
have any shape as long as they produce values between 0.0 and 1.0. We find 
two forms especially useful.

Logistic curves are useful for representing nonlinear effects of a variable on 
survival (Fig. 1), for several reasons. First, they produce S values (the Y axis) 
ranging from 0.0 to 1.0 as the driving variable (X axis) varies over its entire 
range. They are also good at representing variables that produce high and low 
survival over wide ranges but sharp changes in survival between those ranges, 
which are quite common. Finally, when the right kind of observations are avail-
able, logistic curves are readily fit to data via logistic regression.

The equation for a logistic function is:

	 Eq. 1

where Z is a function of the X value:

.	 Eq. 2

We find it convenient to define A and B, and therefore the shape of the lo-
gistic curve, via two model parameters, X0.1 and X0.9, which are the X values 
that produce Y values of 0.1 and 0.9 (Fig. 1): B = -4.3944 / (X0.1 – X0.9) and A = 
-2.1972 – (B × X0.1).

Because of the exp functions in equations 1 and 2, logistic functions are 
particularly vulnerable to variable overflow/underflow errors, which occur when 
the computer tries to produce a floating-point number larger or smaller than 
it can handle. The ranges of values causing errors depend on the software 
platform and sometimes the hardware. These errors can be avoided while 
providing the ability to evaluate logistic functions over wide ranges by adding 
code that sets Y to 1.0 when Z is greater than (e.g.) 35 (corresponding to Y = 
0.999999999999999 in 64-bit Excel) and to 0.0 when Z is less than -200 (corre-
sponding to Y = 1.4E-87).

Linear models of survival can be useful for chronic risks that persist over 
long times and cannot be alleviated rapidly. We use a linear model of how sur-
vival of starvation and disease depends on an individual’s energy reserves, in 
models in which energy reserves can change relatively little in one time step. If 
we define an individual variable energy-deficit as the fraction by which energy 
reserves are below those of a healthy individual (so, e.g., energy-deficit = 0.2 
means the individual’s energy is 20% below a healthy value), we can model the 

Table 2. Example survival probability matrix. This simple example contains values of S 
for two kinds of risk (two predators) for prey (e.g., elk) in two habitat categories.

Predator \ Habitat Forest Meadow

Wolf SW×F = 0.98 SW×M = 0.985

Cougar SC×F = 0.99 SC×M = 0.95
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daily probability of not starving SS as linear: SS = 1.0 – (PS×energy-deficit) where 
PS is a parameter. Higher values of PS cause survival to decrease more rapidly 
as energy decreases.

This kind of linear model produces a gradually decreasing probability of sur-
viving prolonged periods of risk, e.g., when energy-deficit is constantly positive 
or increasing steadily due to constant weight loss (Fig. 2).

Univariate models can be fit to data, including data from multiple sources, 
or even to a set of assumed values. Both linear and logistic functions can be fit 
via regression when suitable data are available, and via other techniques when 
data are not suitable for regression. For example, the logistic parameters X0.1 
and X0.9 illustrated in Fig. 1 were fit to the three observed survival rates by using 
Excel’s Solver to minimize the sum of squared differences between observed 
and logistic-curve values.
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Multivariate models using “survival increase functions”

None of the previous three methods for modeling S have all of the following 
characteristics that we find essential for modeling some kinds of risk, especial-
ly predation:

•	 S can be modeled as a function of multiple variables (e.g., how a fish’s sur-
vival of predation by birds varies with fish size, depth, and light intensity);

•	 Variables can be added to the model, or the relation between one variable 
and S can be modified, without having to re-fit or re-calibrate the entire 
model of S;

•	 The relations between variables and S can take different forms, including 
continuous and discrete relations (e.g., the effects of fish size and depth 
on predation risk are continuous functions but the effect of light intensity 
is represented as discrete values for day, night, and twilight);

•	 The value of S (i.e., the overall intensity of predation) can be calibrated 
easily by changing one parameter; and

•	 The relations between each variable and S are easy to see, understand, 
and fit to data or assumptions.

Simply fitting a multivariate equation for S would not provide these charac-
teristics, so we developed the following method for modeling complex survival 
probabilities. It uses separate functions to represent the effect of each variable, 
with those effects then combined into a survival probability. As we discuss be-
low, this approach assumes that variables driving S have independent effects.

First, we identify a minimum survival probability Smin, which is a model pa-
rameter. The value of Smin represents survival under the least-safe conditions.

Second, we estimate “survival increase functions” (SIFs) for each variable (of 
model individuals, their habitat, or anything else) that affects survival. The SIFs 
produce “survival increase” values that range from 0.0 to 1.0 and represent the 
degree to which the variable increases survival probability: a SIF value of 0.0 
provides no increase in survival and a value of 1.0 makes the individual com-
pletely safe (S = 1.0). However, SIFs have no other limitations on their form or or-
igin: each can be a different function type developed from different information.

The function types described above as univariate models of S are also useful 
as SIFs. Most of the SIFs we use are logistic curves, but we also use discrete 
functions to represent the effects of boolean (true-false) or categorical vari-
ables. For example, a SIF for use of hiding behavior can simply be: survival in-
crease is 0.8 if the individual is hiding and 0.0 if not. A SIF for the effect of light 
on risk could simply be: survival increase is 0.0 in daytime, 0.6 during twilight, 
and 0.9 at night.

A SIF can also be modified so that its value never reaches 1.0—no values 
of its variable make individuals completely safe. For example, a model of pre-
dation survival could include a variable representing vegetation density, and 
assume that survival probability is higher when vegetation is denser but some 
predators can be successful in even the densest vegetation. We can model 
that effect with a SIF that uses a logistic curve limited to values less than 1.0; 
such a curve only requires one additional parameter for the maximum survival 
increase, which all logistic curve values are multiplied by.
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Example SIFs (for the risk of terrestrial predators on trout) are illustrated in 
Fig. 3. The function for depth (panel A) is a logistic curve with X0.1 and X0.9 equal 
to 20 and 150 cm and a maximum value of 0.8: even trout in the deepest water 
are still vulnerable to diving predators such as otters and mergansers. Panel B 
is the length function, a logistic curve with X0.1 and X0.9 equal to 6 and 3 cm: very 
small trout are less visible and less valuable to predators, and the largest trout 
are still vulnerable to many predators. The light function is also a logistic curve, 
with X0.1 and X0.9 equal to 50 and -10 W/m2: only light levels at or below those 
characteristic of twilight reduce risk. The SIF for use of hiding cover (Panel D) 
is a discrete function: the survival increase value is 0.8 if a trout is hiding in 
concealment cover, and otherwise 0.0.

The third step is to combine the SIFs into a value of S, using a method (Rails-
back et al. 2023) in which each SIF contributes to reducing risk, so survival 
depends on all such variables. We model the interaction among SIF values (Fi 
where i indicates the functions, e.g., panels A–D in Fig. 3) by treating each Fi as 
a probability and calculating the joint probability of surviving all of them:

.	 Eq. 3
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Figure 3. Example survival increase functions, for variables affecting terrestrial predation risk to trout in Table 1. The 
round symbols indicate survival increase values at (A) depth = 100 cm (survival increase = 0.5), (B) length = 6 cm (0.1), 
and (C) light intensity = 20 W/m2 (0.5). Survival increase for fish hiding in concealment cover (D) is 0.8.
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Using the example survival increase values of Fig. 3, the product term in Eq. 
3 is: (1–0.5)(1–0.1)(1–0.5)(1–0.8) = 0.045. If Smin is 0.9, then S = 0.9955. Using 
this method, all the SIFs affect S but S is most sensitive to those with highest 
values (Fig. 4).

One limitation of this method is that it does not represent interactions among 
the ecological factors affecting risk, e.g., the relation between depth and S de-
pending on the value of light intensity. Such interactions could of course be 
added to a model, if the benefits of additional realism appear to outweigh the 
costs of substantial additional model complexity.

The final step in using this method is to estimate a value for Smin. We typically 
do this via calibration of the full model, searching for Smin values that produce 
reasonable model results. In many models, values of such survival parameters 
are found by fitting results to observed or assumed values of abundance or 
survival rate. However, models with tradeoff behaviors that relate (e.g.) growth 
to risk may also produce growth and size results that also respond strongly to 
Smin. For such models, it may be necessary to calibrate Smin simultaneously with 
parameters that drive growth.

If a model includes more than one type of risk that uses this method for S 
(e.g., predation by terrestrial animals and fish, in Table 1), it may be possible 
to estimate each value of Smin relatively independently, if the two types of risks 
mainly affect different life stages or sizes of individuals. In our trout model, only 
juvenile trout are vulnerable to predation by other fish, so we can estimate Smin 
for that risk using observed juvenile survival rates, and then estimate Smin for 
terrestrial predators using overall population abundance.

Figure 4. Example values of S from Eq. 3 when it includes the depth and light SIFs of Fig. 
3. Smin is equal to 0.9. When light intensity is low, S is most sensitive to light; otherwise, 
S is most sensitive to depth.
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Informing survival increase functions

The main advantages of the SIF approach is that it allows models of survival 
to make use of many kinds of data and mechanistic understanding. Each SIF 
can be based on the best information available for the relation it represents, 
whether that information is from field observations, controlled field or labo-
ratory experiments, or only conceptual models. Observations of realized pre-
dation, such as those we reference in the Introduction, can inform estimates 
of habitat effects on predation risk after confounding factors are taken into 
account. However, here we focus on (a) field experiments designed to eval-
uate how risk varies along specific gradients and (b) use of information on 
mechanisms driving risk.

Field observations that contrast survival across relevant gradients in hab-
itat or in the characteristics of individuals—on spatial and temporal scales 
relevant to the model in use—provide ideal information for building survival 
increase functions. Such observations are not common in the scientific lit-
erature, although the most feasible spatial and temporal scales for field ex-
periments (e.g., a few square meters with trials of one day or less) are likely 
to align with the scales of many individual-based models. However, animals 
generally do not voluntarily occupy high-risk habitat, so enclosures or teth-
ering (e.g., Harvey and Nakamoto 2013; Michel et al. 2020) may be neces-
sary to obtain habitat-specific observations, and these methods should be 
applied with caution. For example, enclosures can affect relative risk across 
habitat gradients if they attract predators, while tethering experiments may 
better quantify predator encounter rates rather than risk per se, and also 
confound the effects of habitat or individual characteristics of prey (Baker 
and Waltham 2020).

An alternative to directly measuring risk is to quantify the prey’s perception 
of risk or antipredator behavior. For a variety of reasons, the perception of, and 
responses to, predation risk by prey may not match actual risk (Gaynor et al. 
2019). However, for individual-based modeling, the perception of risk may be 
as, or more, important information than actual risk by virtue of its influence on 
tradeoff behaviors (especially, habitat selection), while any mismatches be-
tween prey perception and reality may be negligible in the context of other un-
certainties in model formulation. Prey responses to perceived predation risk 
are often complicated by trade-offs between risk and the need to obtain food. 
However, measurement of giving-up food densities (Brown 1988) exploits the 
risk:food trade-off to quantify the perception of risk. The general study design 
for this method is to create situations in various habitat types where a prey an-
imal’s food availability—and therefore, inversely, the risk incurred to feed—can 
be controlled, and determining the food density at which the prey “gives up” 
because further feeding is not worth the perceived risk. This method has been 
widely applied in some taxa, but its application faces a variety of challenges 
(discussed, e.g., by Bedoya-Perez et al. 2013 and Menezes et al. 2014) and it 
is not applicable to all taxa and settings. Measurement of giving up densities 
may be particularly challenging on the spatial and temporal scales relevant 
to many individual-based models. Use of apparatus to directly measure giv-
ing-up harvest rate may work better at smaller spatial and temporal scales 
(e.g., Harvey and White 2017).
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In addition to direct measures of relative survival or the perception of risk 
by prey, we can use basic life history information and fundamental principles 
of physiology and ecology to identify specific mechanisms through which vari-
ables affect risk and then to evaluate SIFs that represent those mechanisms. 
This approach is highly dependent on the system being modeled; we illustrate it 
with examples from the trout predation relations identified in Table 1. Railsback 
et al. (2023) based the SIF for temperature effect on fish predation in part on 
laboratory data on how metabolic rates of predator fish (and, presumably, their 
food intake) vary with temperature. The SIF for prey size effect on fish preda-
tion was based on the “gape limitation” concept because fish swallow their 
prey whole. The SIF for effect of light intensity on fish predation was based in 
part on literature on how fish vision varies with light intensity but also the un-
derstanding that bigger fish have bigger eyes and better night vision, perhaps 
putting them at an advantage over prey fish in low light.

Conclusions

Survival is clearly a key ecological mechanism, not only because it direct-
ly affects abundance but also because risk-avoidance behaviors can have 
strong indirect effects on individual fitness. IBMs and other mechanistic 
models designed to address problems driven in part by survival therefore are 
likely to need realistic representations of how mortality risks vary. This need 
is especially strong for models that represent behaviors that trade off risk 
and other elements of fitness. We previously (Railsback and Harvey 2020) 
addressed modeling such tradeoff behaviors but did not explicitly address 
how to model variation in risk.

Understanding and modeling risk and its effects are challenging because 
animals (and plants) are subject to a variety of risks, and each kind of risk 
can vary with characteristics of the individuals, their habitat, their behavior, 
and interactions such as competition and cooperation. Risk is also challeng-
ing to model because observed mortality rates are not necessarily directly 
related to intrinsic predation risk. Observed mortality is instead often a com-
plex outcome of intrinsic risk (e.g., predator density), risk reduction behav-
ior, and population status. Disease mortality rates, for example, could be a 
function of pathogen distributions (the intrinsic risk), the energy available 
to individuals to fight infection, and the frequency of infectious interactions 
among individuals. Predation mortality rates can be a function of predator 
densities, predator avoidance behavior, and prey densities. Consequently, 
observed mortality rates—even if we know the cause of mortality—do not 
necessarily provide the information we need to model risk.

In our experience, the criteria for a useful multivariate model of survival prob-
ability listed above (Multivariate models using “survival increase functions”) 
are very important: to produce IBMs mechanistic enough to be reliable under 
diverse and novel conditions, without undue effort, we need approaches that let 
us model the effects of multiple variables, using different information and func-
tion forms for each variable, while the effect of each variable is easy to see and 
understand. The survival increase function method we propose meets those 
criteria and we expect it to be generally useful in a variety of models. However, 
we also expect that other modelers will develop useful alternatives.
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