Dissecting the illegal pangolin trade in China:
An insight from seizures data reports

James Kehinde Omifolaji¹², Alice C. Hughes³⁴, Abubakar Sadiq Ibrahim⁵, Jinfeng Zhou³, Siyuan Zhang³, Emmanuel Tersea Ikyaagba⁶, Xiaofeng Luan¹

¹ School of Ecology and Nature Conservation, Beijing Forestry University, Beijing, China
² Department of Forestry and Wildlife Management, Federal University Dutse, Jigawa, Jigawa State, Nigeria
³ China Biodiversity Conservation and Green Development Foundation, Beijing, China
⁴ Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, Yunnan, China
⁵ School of Economics and Management, Beijing Institute of Technology, Beijing, China
⁶ Department of Environmental and Social Forestry, Federal University of Agriculture, Makurdi, Nigeria

Corresponding authors: Xiaofeng Luan (luanxiaofeng@bjfu.edu.edu.cn), Alice C. Hughes (ach_conservation2@hotmail.com)

Academic editor: Mark Auliya | Received 25 August 2020 | Accepted 16 September 2021 | Published 14 January 2022

http://zoobank.org/131FE520-6556-4C6D-AA01-982C80F85087

Abstract
Wildlife trafficking poses a major threat to global biodiversity. Species such as pangolins are particularly vulnerable and trade continues almost unabated despite numerous interventions aimed at eradicating illegal wildlife trade. Despite restrictions on the pangolin trade, thousands of pangolins continue to be intercepted annually. We focused on China because of the recent delisting of pangolins from the Chinese pharmacopoeia, and their removal from healthcare insurance, despite deeply ingrained traditions of having pangolins for ethno-medicinal use. We collated pangolin interception data from public online media seizure reports to characterize the pangolin trade within China, and found that a total of 326 independent seizures equivalent to 143,130 pangolins (31,676 individuals and 222,908 kg of scale) were reported in 26 provinces. Pangolin domestic seizures are greatest in the southern cities of Dehong, Fangchenggang, and Guangzhou. Also, we found 17 countries within the global pangolins range which were the major source of the pangolin shipments to China. The number of arrests and convictions was much lower than the number of pangolin incidents reported. Our results show a significant increase in the volume of scales and number of live pangolin seizures after amended endangered species law came into effect in 2018, and recorded the highest number of individual pangolin interceptions. China has shown increasing wildlife seizures over time, owing partly to emergent trends in the international wildlife trade as well as increasing
global demand for ethnomedicine. The future eradication of illegal wildlife trade in China is dependent not only on stringent border control and offender prosecution but also the; removal of other threatened species from the pharmacopeia and healthcare insurance which includes wildlife derivatives. Furthermore, our work highlights importance of current policy intervention to combat the pangolin trade within China, and the need for further interventions both within China and in export countries.

Keywords
Conservation, ethnomedicine, exploitation, insurance cover, interception, wildlife crime

Introduction

The illegal wildlife trade is a multibillion-dollar enterprise, the fourth-largest illegal trade, exceeded only by narcotics, human trafficking, and arms smuggling. The illegal wildlife trade involves thousands of wild animals and their products within pharmaceutical products (medicine), foods, pets, clothing, trophies, bracelets, religious amulets, and traditional chieftaincy regalia (Underwood et al. 2013; Nellemann et al. 2014; Patel et al. 2015; Aisher 2016). International wildlife trafficking is a major factor driving the extinction of many species, through both unsustainable harvest and unmonitored killing of non-target species, and has resulted in the global growth of organized crime syndicates (Wittemyer et al. 2014; Bennett 2015; Ripple et al. 2016). The complexity of the illegal harvest of wildlife for commercial trade means that understanding the patterns is very challenging (Gao et al. 2016).

Pangolin species of the family “Manidae” and order “Pholidota” have become one of the world’s most trafficked terrestrial vertebrate (Challender et al. 2014). Eight extant pangolin species in three genera have been described (Gaubert and Antunes 2015), geographically distributed in two continents (Wilson and Reeder 2005; Gaudin et al. 2009; Ingram et al. 2019b) including four species from Afro-tropical regions: Giant ground pangolin (Smutsia gigantea), white-bellied pangolin (Phataginus tetradactyla), black-bellied pangolin (Phataginus tricuspis), Temminck’s ground pangolin (Smutsia temminckii) are collectively distributed throughout sub-Sahara Africa; west and central Africa (Pietersen et al. 2019a, 2019b), as well as the east and south of Southern Africa; and also four species from Asia: the Chinese pangolin (Manis pentadactyla), Sunda pangolin (M. javanica), Philippine pangolin (M. culionensis) and Indian pangolin (M. crassicaudata), (Gaubert and Antunes 2005; Challender et al. 2014a, 2019a, 2019b; Mahmood et al. 2019; Nixon et al. 2019; Schoppe et al. 2019). Their range extends from Pakistan eastward through Southern China, south from the Himalayas in Nepal and entire Indian sub-continent including Sri Lanka as well much of Mainland and Island Southeast Asia including Palawan in the Philippines (Challender et al. 2014b). All eight pangolin species are threatened and listed in Appendix I of the Convention on International Trade in Endangered Species of Wild Fauna and Flora (CITES), due to continued demand for their meat and body parts (scales) in ethnomedicine use (CITES 2016; UNODC 2016). This provides pangolins with the highest protection
through CITES and prohibits international trade in wild-caught pangolins for commercial purposes worldwide (CITES 2016). However, pangolins remain one of the most trafficked mammals globally, with estimates of over 2.7 million animals taken from the wild between 2000–2019 (Harrington et al. 2018; UNODC 2020). China and the United States of America (USA) were identified as the most common destinations for international pangolin (scale and body parts) trafficking (Heinrich et al. 2017; Shairp et al. 2016).

Recent estimates suggest that billions of wild animals and their products are involved in illegal transactions worldwide (Wittemyer et al. 2014). Due to the cryptic nature of transactions, advances in wildlife detection technology and methodological approaches are providing new insights into illegal wildlife trade (Hernandez-Castro and Roberts 2015), but are part of a constant arms-race between criminals and authorities. However, the majority of studies in the last century have been biased towards “charismatic” species (Underwood et al. 2013; Wittemyer et al. 2014; Patel et al. 2015; Gao et al. 2016; Haas and Ferreira 2016). Despite recent advances in wildlife detection technology and general descriptive work on the illegal pangolin trade importance and its impact on the population of ecologically valuable species, it is still difficult to quantify and monitor (Rosen and Smith 2010).

Illegal killing, quantitative trade estimate, and impacts are difficult to estimate using traditional data collection methods and analysis, as data on illegal wildlife trade are inherently incomplete (Rosen and Smith 2010; Phelps et al. 2016). Trade records such as those in CITES, and LEMIS databases are the primary source of information on many species in trade, though some species such as elephants have specialist portals (ETIS) (Gomez et al. 2016). Data is sometimes obtainable through law enforcement offices, Bureaus of Statistics, governmental agencies, non-government organizations (e.g., EIA, WWF, TRAFFIC), or designated databases system for high profile species (e.g., Elephant Trade Information System (ETIS) (Underwood et al. 2013; Haas and Ferreira 2016). Utilizing the CITES and TRAFFIC seizure data is also limited due to the time between occurrence and trade reporting, the dependence on each country reporting rates (Siriwat and Nijman 2018b), lack of information on local trade; as well as lack of interest in non-CITES listed species (Foley 2013; Wood et al. 2014).

In the last decade, other monitoring methods for data collection have been increasingly adopted to fill data gaps. Examples of this are the use of public online data and news articles: rhinos (Gao et al. 2016; Haas and Ferreira 2016), ivory (Foley 2013; Underwood et al. 2013; Vira et al. 2014; Wittemyer et al. 2014; Bennett 2015; Hernandez-Castro and Roberts 2015), rosewood (Siriwat and Nijman 2018b), pets (Spee et al. 2019; Bamrah and Girdhar 2020; Marshall et al. 2020), parrots (Martin et al. 2018; Ye et al. 2020; Yin et al. 2020), primates (Ni et al. 2018), leopards (Henschel et al. 2011; Li and Lu 2014), otters (Siriwat and Nijman 2018a; Harrington et al. 2019) and turtles (Liu et al. 2020; Ye et al. 2020).

Here, we searched public online media reports to investigate and characterize the pangolin trade in China. We analyzed patterns in the geographical distribution of the illegal pangolin trade and enforcement with data from China to evaluate open-source
data's effectiveness to explain the current effort to halt the illegal international pangolin trade. We also aimed to assess whether available data were sufficient to provide accurate estimates of the magnitude, scope, and detectability of illegal pangolin trafficking across China over-time. To do this, we compiled records of illegal trade from various media reports that varied in quality and quantity of information. We used data from China because it has recently delisted pangolin from the Chinese pharmacopeia and has a tradition of using pangolins for ethnomedicine (Anonymous 1938; NPC 2020). This study provides critical information to appraise the current temporal changes after enacting a total ban on the pangolin trade.

Methods

Data collection

We conducted online searches of pangolin seizures from June 2018 to December 2019 and limited the period from September 7, 2008 to December 31, 2019, in both Chinese and English language using the world's largest search engine; Google.com, and two of China's most popular search engines: Bing.com and Baidu.com, the latter being the largest and most popular Chinese online search engine, fulfilling a similar role to Google. We used the words ‘新闻’ (news) category to search and select news articles. The news articles related to seizure events were filtered using keywords in Chinese 穿山甲 (pangolin), 穿山甲贸易 (pangolin trade), 获救的穿山甲 (pangolin rescue) or 抓获 (seize), 穿山甲鳞/没收 (pangolin scale seize/confiscate), 穿山甲 被捕/穿山甲肉 (pangolin arrest/pangolin meat). A comprehensive search was conducted for each year until there were no result pages left. For each web seizures report observed in web media; the month/year of the seizures, the quantity/number or volume (kg) seized, location (province, prefecture, county, and township), trade sources, destination, pangolins/pangolin products, number of arrest and conviction recorded, arresting agency involved and form of transportation were recorded. The Public Security Bureau of Forest online web news page, General Administration of Custom online news section on the web was checked by searching on pangolin seizures, rescue, rehabilitation, arrests, and prosecutions. Each report was treated as an independent case and extensively cross-checked for duplication and accuracy. We combined and included all the seizure reports in public media for the period, and we excluded all repeated news articles based on date, source, and sites.

Data analysis

The individual seizures were treated as one unit of analysis regardless of the quantity and the number of pangolin/meat/scales seized. The quantities seized per incident were converted into whole pangolins using the estimate to obtain the minimum and maximum average number of pangolins per incident. As most reports documented the
number of pangolin and quantities seized, we standardized pangolin scale quantity into
the individual estimate using a minimum of 0.5 kg and a maximum of 3.5 kg per pan-
golin using the conversion rate for individual pangolins. This ratio varies by species and
water content but ranges from 0.36 to 0.57 kg (Zhou et al. 2014; Zhang et al. 2015).

Data collected were curated and divided into 3-year periods to analyze temporal
trends and broken down to the provincial level for spatial analysis. To calculate the
provincial changes of the total number of pangolin incidents and the number of sei-
zures, the shortest distance in kilometers was used to calculate the overland distance
from one province to another, using the city with the largest number of seizures as
the center point and provincial population size. Also, data collected were curated and
separated into the number of individual pangolins (live or dead) and pangolin scale in
a kilogram. We also analyzed seizure data between 2017 and 2019 to test if there is any
significant difference after the ban on pangolin trade was introduced.

All data were log-transformed prior to analysis and was conducted using R Ver-
sion 3.3.2 (R Core Team 2018); using linear regression model in R environment, the
significance level was accepted as p < 0.05 in a two-tailed test.

We also employed social network analysis to visualize the pangolin trade flows us-
ing Circos Software 0.69-9 version Circos Team 2019 (Krzywinski et al. 2009). We
produced a circular graph for networks of two regimes: Origin country with imported
cities and provinces/cities within China. In each regime, both trade flow (incident
number) between cities and gravity of pangolin trade equivalents quantities were visu-
alized based on web-seizure reports.

Results

Overall volume of pangolin seizure

In China between 2008 and 2019, n = 326 pangolin seizures containing 222,908 kg of
scale, and 31,676 pangolins from 26 of the 34 provinces, equivalent 143,130 individu-
al pangolins. Based on comprehensive information on seizures, 87.57% were exclusive-
ly pangolin scale. A total of 96% (313/326) of seizures have information on pangolin
scale seized, totaling 244,054 tons, suggesting that the total pangolins seizures would
have been higher than the reported seizures. Intercepted pangolins were either whole
(meat or live) or in scale reported into categories based on the type of product (75
seizures were only scales, 267 as individual pangolins both live and meat). Data wise
estimation indicates that 22% seizures had information to species level identification.

Information related species interception

Since data is not perfect, and given that is illegal, it is also hard to quantify or even estimate
the volume of undetected illegal trade; this analysis only represents patterns reflected in
available data. Approximately 72/326 (22%) of seizure reports had information to species
identification level, all the extant eight pangolin species were recorded. The incident reports related to species identification indicates that 43 Sunda pangolin (Manis javanica), 22 Chinese pangolins (Manis pentadactyla), 3 Indian pangolins (Manis crassicaudata), 2 White-bellied Pangolin (Phataginus tricuspis) incidents; 1 Giant Ground pangolin (Smutsia gigantea); and 1 Black-Bellied pangolin (Phataginus tetradactyla) were intercepted and recorded; and 254 seizures lacked detailed information related to individual species.

Geographical distribution of pangolin seizure

At least 17 countries, mainly from pangolin range-countries (ten in Asia, seven in Africa) were a source or transit route for pangolins intercepted in China. Most of the pangolin seizures were from West and Central Africa region (3.5% Cameroon, 8% Democratic Republic of Congo (DRC), 6.5% Equatorial Guinea, and 16% Nigeria). Live pangolins interception was predominantly concentrated in Guangxi, Hunan, and Yunnan provinces in the southwest China, and the borders of Vietnam, Myanmar, and Laos. Fangchenggang, Dehong, Guangzhou recorded the highest number of pangolin incidents (Fig. 2). The intercepted pangolins per city and provinces indicated a significant relationship with the distance to the nearest airport and land border (Linear regression: $r^2_{1,35} = 20.90, p < .05$) and with the GPP per Capita (Linear regression: $r^2_{1,15} = 6.63, p < .05$). Population size, market closeness and pangolins demand showed a positive significant relationship with pangolins seizures rate (Linear regression: $r^2_{1,28} = 13.45; r^2_{1,31} = 18.33, p < .05$ respectively).

Temporal trends of pangolin interceptions

Over time the number of pangolin interception records increased in quantity and incidence, however, 2019 showed a decline in pangolin interception (Fig. 1). Yet, between 2017 and 2018, there was a significant increase in pangolin scale interception, and an increase in live pangolin seizures, and pangolins caught in the wild (Linear regression; pangolin scale: t-test $1,22 = 4.75$, $p \leq .05$; whole (live) pangolin t-test $1,61 = 12.10 \geq .05$; wild caught: t-test $1,21 = 4.59 \geq .05$).

Guangzhou (Guangdong), Fangchenggang (Guangxi), Dehong, Kunming (Yunnan), Nanning were the major hub cities and supply routes to the hinterland. The disruption can effectively lead to the collapse of more than sixty-five percent of the illegal pangolin trade networks. Fangchenggang and Dehong serve as the major cities for pangolin trade, and Guangzhou as a key distribution network to the hinterland (Fig. 3).

Arrests and transports related information

Pangolin interception indicates that six agencies were involved in the illegal pangolin trade crackdown. The Bureau of Public Security, Forestry Police and Customs Services recorded 94% of all interceptions, with other agencies only registering around 6% (Fig. 4). For 66 incidents, 264 suspects were arrested, 65 detained, and 28 people were found
guilty and convicted accordingly. The imprisonment ranges from 2.5–15 years, and the option of a fine which varied from 500RMB–200,000RMB for illegal possession of an animal under State protection. The records indicate 25.46% of the enforcement made had no information on the arresting agency and the number of suspects arrested (Fig. 5).
Private car 30%, Cargo 28%, and luggage 12% were the most common form of pangolins’ trafficking and represent 84% of interceptions. Pangolin scale shipment in cargo and containers made up the highest volume of seizures (21185 kg) per annum. Recent evidence suggests private cars remained the primary method of live pangolins trafficking, and mail delivery is evolving as a new mode of pangolins scale shipment (Fig. 6).

Discussion

Overall volume of pangolin seizure

Our analysis of 326 seizures of pangolins showed that a large number of incidents as well as a high volume of pangolin was illegally trafficked to, from or via China during the studied period. The reported illegal trade involved pangolins (live, scales, meat)
Figure 3. Circular graph visualization of intercities social network interaction of pangolins seizure incident reports.

Figure 4. Agencies involved in Arresting of Pangolins traffickers and offenders.
Figure 5. Proportion of arrest made with criminal suspects and convicted cases reported for pangolin confiscation.

Figure 6. Proportion of pangolin seizure incidents from a different form of transportation.
with 7 species in 326 seizures from 26 of the 34 provinces. Seven of the 8 eight pangolins listed on CITES Appendix I were intercepted by the authority. Among the species, 6 were illegally trafficked and imported from another country within the pangolin distribution range, particularly Asia and Africa. All the four pangolin species (White-bellied pangolin (*Phataginus tricuspis*); Giant-ground pangolin (*Smutsia gigantea*); and Black-Bellied pangolin (*Phataginus tetradactyla*)) found in Africa were illegally sourced and imported from different countries in West and Central African Regions. Overall, the seizures resulted in the confiscation of > 143,130 pangolins including live (n = 925), scales (n = 22,2908 kg) and dead/specimen (n = 31,676).

The detection and interception of pangolins has continued to increase in China, with the embargo placed on the pangolin trade. Our findings are in accordance with the research of (Cheng et al. 2017; Zhang et al. 2017; Ingram et al. 2019a), who have similarly shown that the rate of pangolin interception in China from Africa and Southeast Asia is not decreasing overtime. First, increasing level of international trade may provide an opportunity for laundering. Second, the rapidly changing nature and migration of the online illegal wildlife trade means that alternative transaction platforms become increasingly desirable, increasing international trade in wildlife (Lavorgna 2014; Cheng et al. 2017; Harrington et al. 2018; Ingram et al. 2018). Lastly, potential increases in search efforts, law enforcement synergy and reporting overtime by government agencies and non-government organizations have led to a high frequency of wildlife interception including pangolins over the last three years in China. There was an increasing trend for live pangolin species mainly from the southwest area of China to be associated with private car transport rather than scale consignment interceptions through border surveillance post, which has important implications for Chinese biosecurity and public health issues in the near future. The country (Vietnam 32.52%, Myanmar 21.14%; Nigeria 4.07%, DRC 3.25% and Cameroon 1.63%) of origin data was reliably determined from incidents originating from airports, mail, cargo shipments, and private pangolin interceptions reports published and obtained from the agencies press release in public media, while shipping cargoes constituted the bulk of pangolin scale interception. The gradual increase in annual pangolins scale from areas proximal to ports or from mail delivery during arrival or tip-off inspections. Similarly, new incidents of pangolin trafficking in the near future are likely to involve smuggling via means not currently familiar to law enforcement agents (Alacs and Georges 2008; Challender and MacMillan 2014; Heinrich et al. 2019).

An analysis of law enforcement agencies interception, and the arrest of offenders involved in the trade of pangolins trade records shows a bias in security agency status participation and detection categories. The law enforcement agencies known to be widely involved in cracking down on the trade of pangolins in China, through pre and post border interceptions those involved in over 68% of all confiscations are the Public Security Bureau, Custom Services and Forestry Police Bureau. This highlights the significance of law enforcement synergy in effectively dismantling pangolin trafficking in China, given their prominence and participation in curbing wildlife trade criminal
activity. Annual smuggling incidents remained high even after the introduction of pangolin trade embargo. However, the pangolin trade network is well dispersed throughout the Subtropical monsoon forest zone and coastal areas in China. In general, China serves as a destination and transit route for intercepted pangolin scales. Live pangolin seizures were largely intercepted in the western provinces of Yunnan and Guangxi.

Pangolin smuggling routes and hotspots

Seizure data suggest that countries and area predominantly from West and Central Africa Region (Angola; Cameroon, Democratic Republic of Congo (DRC), Equatorial Guinea, and Nigeria) and Asia (Vietnam, Myanmar, Indonesia, Pakistan) were involved in the illegal pangolin importation and trafficking to China. The majority of the pangolin scale confiscations originate in Africa and the majority of confiscations of live pangolins originates in Southeast Asian countries. Vietnam and Hong Kong are the most prominent entrance points for pangolin trafficked by land and sea from Southeast Asia and Africa into China. The terrestrial pangolin routes include Guangzhou (Guangdong), Fangchenggang (Guangxi), Dehong, Kunming (Yunnan), Nanning (Cheng et al. 2017; Zhang et al. 2017). Also, the coastal areas include Mekong River serves as the pangolin routes and other related illicit trade and sold to the local markets, TCM shops, and restaurants in Guangzhou, Guangdong province (Zhang et al. 2017; Wong 2019; van Uhm and Wong 2019), according to confession statements of offenders during interrogation. Previous studies reported increased evidence of pangolin trafficking for meat and body parts used in traditional medicine (TM), TRAFFIC, LEMIS, and regional, national-level case studies (Luczon et al. 2016; Wong 2019). The large-scale pangolin interceptions during cargo screening have served to increase the detection rate of illegal consignments of pangolins concealed either as logs of wood and iron scraps which are passed off as legitimate products. Smugglers often employed different methods to smuggle pangolins to evade detection from law enforcement, disguising the pangolins with plant materials and using overnight transportation (Mwale et al. 2017; Heinrich et al. 2019; Omifolaji et al. 2020).

The major factor influencing pangolin demand is a culture steeped in traditional ethnomedicine use; high return for profit, high global demand for TCM, and decreases of Chinese pangolin populations (Anonymous 1938; Wu and Ma 2007; van Uhm 2016; Lv et al. 2020). The limited stocks and quota set by the authority which fall below the required stock to meet the TCM manufacturer and local demands has resulted in the proliferation of the illegal pangolin trade (Yin et al. 2015; van Uhm 2016; Wong 2019; van Uhm and Wong 2019). Another motive driving pangolin demand is the financial rewards for all the actors (transporter, middlemen, and vendors) involved in the illegal wildlife trade network, to augment alternative income from low paying jobs in rural areas (Katuwal et al. 2015; Nash et al. 2016; Trageser et al. 2017; D’Cruze et al. 2020; Xinhuanet 2021)). Trade is partly operated by criminal gangs, and organized from the village level up to the point of, and beyond, export (Katuwal et al. 2015). Recent evidence suggests that low involvement of the Traditional Chinese
Medicine (TCM) community and informal stakeholders’ participation in pangolin conservation advocacy are the key factors facilitating the illegal trade. Also, poverty and lack of public awareness of wildlife trade among the locals has been highlighted as a driver of the illegal wildlife trade (Zhang and Yin 2014; Yin et al. 2015; Wong 2019; van Uhm and Wong 2019). However, although many illegal pangolins scale seizure reports coming into China originated from Africa, cross-border seizure reports of live pangolins and frozen pangolin meat are predominantly from Southeast Asia. Pangolin species in China are thought to have become commercially extinct by c. 1995 (Wu et al. 2002, 2004, 2005; Chaber et al. 2010), Chinese demand for pangolin products subsequently being met through imports, mainly from Southeast Asia (Newton et al. 2008), and most recently Africa (Mambeya et al. 2018; Omifolaji et al. 2020). Over the last decade the number and volume of pangolin interceptions has increased, especially in China and Vietnam (Heinrich et al. 2016; Harrington et al. 2018; Omifolaji et al. 2020). This has triggered a more than 90% decline in the Chinese pangolin population (Wu et al. 2002, 2004; Challender et al. 2015). Overexploitation for commercial trade and ethnomedicine use across Southeast Asia drives pangolin trafficking across their ranges. Since the late 20th century, with the enactment of animal protection law that prohibited use, or trade without permission; by the appropriate authority has contributed to neighboring countries demands and caused neighbors to act as transit routes for pangolin trade (Xiao et al. 2017).

The advantage of seizure data

Web-seizure reports are a useful alternative to traditional methods (such as interviews, questionnaires, market visits, etc.) given the careful and systematic data collection; with a degree of flexibility in exploring and conducting studies in different languages with few geographical barriers (Challender et al. 2015; Harrington et al. 2018; Esmail et al. 2019; Omifolaji et al. 2020). However, online news outlets are dependent on reporting rates in the same way as official seizure data are given out via press conference by the reporting agency (Zhou et al. 2010, 2014, 2016; Zhang et al. 2015; Harrington et al. 2018; Ingram et al. 2019a; D’Cruze et al. 2020). Multiple agencies’ reports are used to evaluate seizure data, which enhances our understanding of the trade patterns (Harrington et al. 2018).

China’s decision to ban the trade and consumption of terrestrial live wild animals, and stakeholders’ involvement in pangolin awareness campaigns, have helped to sensitize public ecological consciousness and protect pangolins. Despite the current alarming rate of pangolin seizure, evidence suggests heightened policy intervention and awareness campaigns. Greater awareness among conservation practitioners and stakeholders is necessary to eradicate the pangolin trade. It is also possible that, increased seizures could also relate to increased rates of detection. Moreover, the development of a centralized real-time online seizure database platform will help to cross-check official reports for export and import database similar to Elephant Trade Information system (ETIS) (Underwood et al. 2013), HealthMap wildlife trade database (Patel et
al. 2015) and consumption of illegal wildlife using social media tools like WhatsApp, QQ, Weibo, WeChat, could also produce a comprehensive data for future analyses of market trends and corresponding future interventions. Another idea is for non-governmental organizations to develop a wildlife database to complement existing databases through citizen science data and regular market surveys, or even the development of easy reporting apps.

Legislation and policy intervention to protect pangolin

The recent removal of pangolin scales from health insurance cover from National Healthcare Security Administration and the Ministry of Human Resources and Social Security (2019), indicates that pangolin-based medicine is no longer covered under national health insurance. Both the manufacturer and practitioners must consider alternatives to reduce patients’ medical expenses and treatment dependence on pangolin scale-based medication. In June 2020, China upgraded all Asia pangolin species (*Manis* spp.) from Class II to Class I National-level protection, following the upgrade of all the extant eight pangolin species from CITES Appendix II to Appendix I (UNODC 2016). Following these changes pangolin scales were subsequently removed from the official database of Chinese Pharmacopoeia due to the risk of extinction and status of pangolin populations (NPC 2020). This nation-wide policy change indicates that pangolin scale should no longer be dispensed and regarded as an authorized medication. Pangolin scales as an ingredient are still used in some of the patented drugs included in the Pharmacopoeia. Yet, the TCM community could also play a crucial role in regulating legal trade and eradicating illegal trade in pangolin scale. However, conservation interventions have neglected the TCM community involvement directed at pangolin scale trade in China. TCM practitioner and public awareness is very poor (Soewu and Adekanola 2011; Boakye et al. 2015; Wang et al. 2020; Xing et al. 2020) and there is still disagreement on the use of pangolin scale products in medicines.

It is essential to note that targeted education programs and public awareness campaigns focusing on regulations and current market status are critical to moving towards the path of sustainable substitute usage. Conservationists should liaise with TCM practitioners as they are currently underrepresented in pangolin conservation efforts and are seen by the Chinese society (Song et al. 2013; Burges et al. 2020) and authorities in the traditional healthcare system as playing an important role in the illegal pangolin trade campaign, to guide public demand towards a sustainable lifestyle and transition through sustainable alternatives.

Since the removal of the pangolin scale from Chinese pharmacopeia and healthcare insurance (NPC 2020), media organizations and NGO campaigns have bolstered the government announcement with major media outlets (e.g., People’s Daily), eCommerce platforms (Alibaba, Taobao, etc.), and celebrities lend credibility to media campaigns to help conserve and protect pangolin. Also, the COVID-19 pandemic has placed a spotlight on the illegal trade in pangolins as some scientists have found a similar coronavirus in Sunda pangolins, suggesting they have the potential
to serve as an intermediate host in the transmission from bats to humans. Yet, this remains a matter of ongoing scientific debate (Cui et al. 2020; Volpato et al. 2020; Yang et al. 2020).

Conclusion

This study contributes to the global growing knowledge of illegal pangolin trade research that has identified and prioritized the patterns of illegal pangolin interceptions in the last decade. Our findings show that the illegal pangolins trade is disproportionately (pangolin scales and meats) domiciled in Guangdong, Guangxi and Yunnan provinces. These interceptions are mostly likely a reflection of the policy change priority on wildlife trade ban and law enforcement synergy to eradicate illicit demand and opportunities to smuggle pangolins within Chinese territory. Overall, regarding the illegal trade in pangolins, there has been an increased in the quantity intercepted but a decrease in the number of incidents analyzed over time, and it is fair to assume that smugglers are changing the mode of their illicit trade. Future plans to tackle wildlife (pangolins) trafficking in China are dependent not only on measures already achieved such as stringent border controls, the prosecution of offenders, the removal from Chinese pharmacopeia, and healthcare insurance cover. They also hinge on effective participation and engagement of TCM practitioners in public awareness campaigns at grassroots level. The adoption of alternatives will in no small measure contribute to eradicating pangolin trade and help lend credence to pangolin conservation efforts. Our work provides an important insight into the ongoing policy patterns and interventions on the pangolin trade and the effectiveness of current efforts at eradicating illegal trade within China. We recommend the involvement of a community-based solutions approach to eradicate the illegal pangolin trade. These could also serve as alternative interventions to top-down enforcement-led responses at the regional and national level.

Acknowledgements

We thank the CBCGDF pangolin research staff for providing materials on pangolin seizures and Mark Auliya, and Chris Shepherd for their useful suggestions and comments towards improving an earlier version of this manuscript.

References

Pangolin interceptions in China

