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Abstract: Red-light Running increases the risk of collisions and traffic accidents. When a car
runs a red light, it can cause a collision with other vehicles moving along the main road, causing
serious accidents and even leading to casualties. In Vietnam, many traffic accidents are caused by
red-light running. This research paper presents a novel approach for detecting red-light running
violations for Vietnamese intersections by leveraging object detection techniques and the YOLO
(You Only Look Once) algorithm, a deep neural learning model that uses convolutional neural
network architecture (CNNs) for object detection in real-time. The proposed system utilizes CCTV
video footage to capture video frames, which are then processed through a trained YOLOv8 model
to identify red-light violators. The system’s performance is evaluated based on detection accuracy
and processing speed and validated against a custom build dataset extracted from CCTV footages of
Vietnamese streets. The experimental results demonstrate high accuracy and processing efficiency
up to 93.4% mAP50, 89.2% precision and 92.6% recall, indicating that the proposed approach
is suitable for deployment in the context of Vietnamese traffic conditions. The proposed system
has significant potential to enhance road safety and mitigate the incidence of red-light running
violations in Vietnam.
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1 Introduction

With the progressive urbanization and increasing population numbers in Vietnam, the
frequency of vehicular traffic has grown tremendously. The rapid increase in traffic has
raised significant safety concerns among both authorities and citizens. A contributing
factor to the increase of road dangers is the frequently observed flagrant violation of
red-light traffic signals, known as red light running, mostly by motorists. This behavior
is not only life-threatening but also leads to a rising rate of pedestrian, cyclist, and driver
accidents, consequently causing fatalities. Vietnamese streets have a distinctive traffic
environment that makes it difficult to enforce traffic laws efficiently due to a variety
of road users, fluctuating vehicle speeds, and complex intersections [Le, H. L. et al.
(2010)] . Due to the sheer number of cars and the complexity of urban traffic, traditional
techniques of monitoring and enforcement were not able to keep up. Although existing
traffic monitoring technologies are available and have already been put in use, their
installation costs can reach as high as $70,000 [Aleksandar, S. (2020)]. For that reason, an
economical and sophisticated Red Light Running Detection System designed specifically
for Vietnamese roadways is required to address this problem and improve road safety.

The main motivation behind developing a Red-Light Running Detection System using
CCTV camera footage stems from the potential to leverage technology in addressing the
challenges associated with red light violations on Vietnamese streets. The convergence
of computer vision offers a cost-effective, accurate, and real-time solution for red light
running, aiming to improve road safety and reduce accidents. Utilizing CCTV footage
and image processing algorithms, this system can identify instances of vehicles passing
through red lights, detecting and recording violations in real-time.

2 Related Works

The detection and prevention of red-light violations, speeding, and other traffic-related
incidents are critical concerns in modern transportation systems. Several research papers
have addressed these issues using various approaches.

One common method is the use of computer vision techniques, such as object detec-
tion algorithms, to analyze video data captured by cameras at intersections. [De Goma,
J. C. et al.(2020)] proposed a method which achieves high accuracy rates, up to 100%
for detecting red-light runners and 92.1% for speeding violations; however, it may be
limited by issues such as lighting conditions, camera angles, and video quality..

Another approach is the use of machine learning algorithms, such as co-training-
based methods [Momin, Bashirahamad F. et al. (2015)]. The primary feature selected for
detection is “haar.” A haar-training classifier is trained, and Adaboost is used to create
a strong classifier for vehicle detection. This research enhances video surveillance and
traffic monitoring by enabling efficient vehicle detection and attribute-based vehicle
search. It provides a method for efficient vehicle management and criminal investigations,
enhancing the efficiency of traffic management and traffic monitoring. After detecting
vehicles, the next step is to search for specific vehicles based on attributes such as color,
date and time, speed, and direction of travel. This research contributes to the field of video
surveillance and traffic monitoring by providing a method for efficient vehicle detection
and attribute-based vehicle search, which has applications in traffic management and
criminal investigations.

In 2017, [Brasil, R. H., & Machado, A. M. C. (2017)] proposed a red-light runner
detection system consisting of a camera and a computer embedded in vehicles. An
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algorithm was used to processes recorded videos, and a prototype was developed for
monitoring work vehicles without interfering with driving, acting as an educational tool.
Tests were conducted using street videos and a benchmark video. The video processing
time is less than one-tenth of the video duration and achieves an impressive accuracy of
approximately 95.8%.

Some research papers have focused on developing novel algorithms for detecting
red-light runners, such as the“dilemma zone” approach [Zaheri, D., & Abbas, M.(2015)]
or the use of vehicle speed and trajectory data [Luo, D., Huang, X., & Qin, L. (2008)].
The system first identifies the red traffic signal and then analyzes the movement of the
vehicle within the detection zone. The approach uses cubic splines interpolation to fit
vehicle tracks and detects red light violations, and Hough transform to detect stop lines
in X-Y space, eliminating false positives and enhancing road safety by deterring red light
running. This method can achieve high accuracy rates, up to 96%, but may be limited by
specific scenarios or conditions.

In addition, some studies have explored using probabilistic models, such as Bayesian
networks [Chen, X., Zhou, L., & Li, L. (2019)]. The paper suggested a solution for the
critical issue of red-light-running (RLR) at signalized intersections through a unique
method. The authors propose a probabilistic stop-or-go prediction model based on
Bayesian networks (BN) using continuous vehicle trajectory data obtained from radar
sensors. This model aims to improve RLR prediction accuracy and interpretability
compared to traditional methods using embedded traffic sensors. The study’s findings
reveal that the BN model outperforms other machine learning models and the inductive
loop detection (ILD) model, offering a promising approach for enhancing traffic safety
at signalized intersections through probabilistic RLR prediction based on continuous
trajectories.

In [Li, M., Chen, X., Lin, X., Xu, D., & Wang, Y. (2018)], the research addresses the
critical safety concern of red light running (RLR) at signalized intersections by analyzing
nine months of RLR events extracted from high-resolution traffic data collected by loop
detectors at three intersections. This paper identifies key factors that significantly impact
RLR behaviors, including occupancy time, time gap, used yellow time, time left to yellow
start, the behavior of preceding vehicles during yellow, and the presence of vehicles in
adjacent lanes. To predict RLR in real time, a modified rare events logistic regression
model is proposed, which outperforms standard logistic regression models. This research
leverages readily available loop detector data and also offers a great potential for practical
applications in intersection safety improvement.

In [Redmon, J., Divvala, S., Girshick, R., & Farhadi, A. (2016)], the paper proposes
a methodology that combines high-resolution signal controller data with conventional
stop bar loop detection to identify vehicles that enter the intersection after the start of the
red signal, a critical moment for RLR crashes. The methodology was validated through
on-site video collection at several locations and refined to reduce false RLR indications.
A case study demonstrated that increasing the green signal time on the side street by
4% led to a significant 34% reduction in daily RLR counts and 1.7 times decrease in
the likelihood of RLR incidents, offering a cost-effective safety improvement. Law
enforcement and transportation agencies can utilize this technique to efficiently manage
and deploy safety resources, especially in cases with limited crash histories or infrequent
incidents at intersections.

Some of the studies have also applied deep learning methods, including CNN, for
object detection or classification applications such as pothole detection. Examples include
the works of [Xiong N., He J., Park J.H., Cooley & D., Li Y.(2009)] and the detection of
vehicles in various lanes and traveling directions, for instance, [Lim Kuoy Suong, and
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Kwon Jangwoo, (2017)]. These methods have been shown to attain high accuracy levels
but perhaps with high demands in volumes of training data and computational power.

In [Hongyu Huang et al. (2012)], the authors research a method to extract a mobility
model for META using data from the GPS of taxis in the city. The proposed system
collected data from 4000 taxis equipped with GPS and map-matched them to the road
map using heuristic algorithms. A prototype system could estimate the travel patterns
and characteristics of taxi movement.

Specifically, it appears that the authors of these papers have applied different method-
ologies to handle issues such as traffic red-light-running incidents, detection of potholes,
and classification of vehicles. After testing the proposed systems and methods, there
is promising accuracy and efficiency for application in real-world road situations to
enhance safety and traffic management. Building upon these promising results, the next
phase of research explores more advanced methodologies to tackle similar traffic-related
challenges. In particular, we propose the integration of YOLOVS, a state-of-the-art ob-
ject detection model, in combination with DeepSORT, a robust multi-object tracking
algorithm.

3 Methodology

The red-light running detection system in this paper was built using YOLOvVS and the
Deep SORT algorithm. It also includes collecting traffic images at intersections to ensure
that the YOLOv8 model is compatible and can adapt to the environment for vehicle and
red-light classification and detection. When the dataset is ready, the model is trained,
validated, and tested. The integrated DeepSORT algorithm and YOLOvV8 models form a
cohesive red-light running detection and tracking system. The system operating process

is shown in Figure 1.
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Figure 1: The System Operating Process

Firstly, the overview of YOLOvVS model used in the red light detection problem will
be presented.

3.1 YOLOVS8 Overview

YOLO, which is short for “You Only Look Once ”, is an algorithm and architecture used
extensively in computer vision tasks to detect objects in real time. What makes YOLO
different from other object detection methods is because of its speed and efficiency.
YOLO can quickly and accurately identify objects in images or video frames. Unlike
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two-stage detection models like R-CNN, YOLO tackles object detection as a single
regression problem. It directly predicts bounding boxes and class probabilities for the
image at once using a single convolutional network, eliminating the need for region
detection and classification steps [Ultralytics. (2023)].

1. Resize image.
2. Run convolutional netwark.
3. Mon-max suppression.

Figure 2: The YOLO Detection System

YOLOVS, the latest integration of YOLO, was chosen due to its reputation for
delivering high accuracy detection and shorter inference times when from the older
YOLO versions. Compared to its predecessor YOLOv5, YOLOvVS introduces two key
changes. First, it shifts from Anchor Boxes to Anchor-Free Detection, departing from
predefined templates for object localization and classification [Krishnakumar, M. (2023)].
This change addresses issues of rigidity and struggles with irregular object shapes. Second,
YOLOVS employs Mosaic Data Augmentation during training, combining four distinct
images to help the model learn to detect objects in various positions and partial occlusion,
although this augmentation is only used for the final 10 training epochs due to its potential
impact on performance [Krishnakumar, M. (2023)].

Despite being labeled as the latest state-of-the-art [Krizhevsky, A., Sutskever, L.,
& Hinton, G. E. (2012)], YOLOVS still remains in the developmental phase and is
susceptible to modifications in the future, so there is currently no available official paper
or documentation regarding the performance of this architecture. However, the Roboflow
Team had performed several tests to help verify the legitimacy of this new architecture
using their RF100 dataset, the research was then published on their website which yielded
promising results. Particularly in real-world applications where YOLOVS displays its
superiority over its predecessor. Anyhow, this highly advanced ability of YOLOVS in
detection is very much dependent upon high-quality and correctly labeled data for correct
detection and tracking in challenging traffic scenarios. Therefore, data collection is the
important step for training a model and will be presented in the following section.

3.2 Data collection

Collecting high-quality datasets is the most essential part for training machine learning
models effectively. Initially, the dataset collection involved locating appropriate locations
for capturing traffic images. Therefore, around 2 hours’ worth of Vietnamese intersection
CCTV footages was collected. After that, those footages were imported into Photoshop
to be sliced up frame by frame at around ten frame per second (FPS). The final dataset
consists of around 3135 images, containing a total of 8 different classes (5 vehicle classes
and 3 traffic light classes), with 3035 images used for training, 368 images for validation,
and 121 images for testing.

In the final dataset, the class with the most annotations were “motorbike,” followed
by “car,” “red-light,” “green-light,” “bike,” “truck,” “yellow-light,” and “bus.”
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Figure 3: YOLOs average mAP@.50 against RF100 categories [Roboflow (2022)]
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Figure 4: An annotated frame

After the data is collected in sufficient quantity and quality with the necessary
characteristics, the red light detection model will be trained and evaluated for feasibility
and effectiveness.

3.3 Model Training and Evaluation

Once the dataset is prepared, the training process can be initiated. Since YOLO is built
upon the foundation of Convolutional Neural Networks (CNNs), it is commonly trained
using supervised learning. The training process begins with gathering the necessary
images, which will then be annotated. The annotated images will form a dataset which
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Figure 5: The number of annotations for each class

can be used for training models. In order to train the model, we used the Google Colab
template provided by Roboflow [Jacob, S., Francesco. (2023)]. YOLOvS8m, the third
variant of the YOLOvV8 model series, was selected for the training stage due to its
capability to produce relatively high-accuracy detections compared to YOLOv8n and
YOLOVS8x, while also delivering faster inference times when compared to YOLOvSL
and YOLOvS8X [Figure 3].
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Figure 6: Comparison between YOLOVS to others YOLO models [Jacob, S., Francesco.
(2023)]

Each model generation underwent hyperparameter tuning with an image size config-
ured to 640 pixels with around 120 epoch iterations. Once the training phase is finished the
model undergoes validation and testing procedures to calculate metrics such as precision,
recall, and mAP. If the model doesn’t meet performance expectations, modifications will
be made to the dataset to improve the results in the next training session. This iterative
process continues until the model with a satisfactory level of performance is created. The
model training process is presented in [Figure 7].

Tracking in deep learning is the task of predicting the positions of objects throughout
avideo. This task is typically done by getting the initial set of detections, assigning unique
IDs, and tracking them throughout frames of the video feed while maintaining the given
IDs. DeepSORT (Deep Learning-based SORT) is an advanced object-tracking framework
that combines deep learning techniques with the traditional SORT (Simple Online and
Realtime Tracking) algorithm to provide robust and accurate tracking of objects in
video sequences. While SORT tracking algorithm shows strong performance in terms of
tracking accuracy and precision, it still has limitations in scenarios involving occlusion,
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Figure 7: Model training process

this often leads to the creation of high ID numbers [Chen, X., Zhou, L., & Li, L. (2019)].
DeepSORT, on the other hand, employs deep learning to create appearance embeddings
— compact numerical representations of an object’s visual characteristics. This means that
even when objects are occluded and their motion features are undetectable, DeepSORT
can still recognize objects based on their unique appearances which allow it to maintain
tracking continuity and correctly associate an object with its original track, even when it
becomes temporarily invisible due to occlusion [Chen, X., Zhou, L., & Li, L. (2019)].

For object tracking, the authors use the DeepSORT technique which will be presented
in the following content.

3.4 DeepSORT Tracking Algorithm Overview

Deep SORT
Difference
Detector
Mahalanobis
distance
Kalman Hungarian
» YOLOv4 —> Detection Predict Deep Assignment
Appearance
Descriptor

Input Video Sequence

Figure 8: DeepSORT architecture [Chen, X., Zhou, L., & Li, L. (2019)]

DeepSORT (Deep Simple Online and Realtime Tracker) extends the SORT algorithm
by incorporating deep learning-based appearance features to improve object tracking. It
utilizes YOLOv4 for object detection, a Kalman Filter for motion prediction, and a Deep
Appearance Descriptor for object re-identification. The Mahalanobis distance metric and
the Hungarian Assignment algorithm enhance data association, significantly reducing
identity switches. Figure 8 illustrates the detailed architecture of DeepSORT.

In vehicle tracking, DeepSORT is widely used in traffic monitoring, autonomous
driving, and intelligent transportation systems. It enables robust multi-object tracking,
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handling occlusions and varying speeds, ensuring accurate vehicle movement analysis
and traffic flow optimization.

3.5 Implementation

To implement the system, we will need to download the Ultralytics library, which comes
bundled with the YOLOv8 models [Roboflow (2022)]. Additionally, since we will
be using a NVIDIA GPUs to run YOLO, it is important to install CUDA, a parallel
computing platform and API created by NVIDIA. It utilizes the computational power of
NVIDIA GPUs to accelerate various computing tasks, including object detection. The
first step in developing the system is to design a simple graphical user interface (GUI)
for easy navigation. Therefore, a GUI was designed using PyQt5 containing five buttons
and a table.

To identify instances of vehicles crossing at a red traffic light, coordinates for the
area where violations are monitored need to be set. This task must be done manually
because every intersection is unique. Once the coordinates are defined, it’s necessary to
implement a straightforward logic for enabling and disabling the detection process. This
implies that the system will initiate the violation detection process only when the red
light is active and deactivate the detection when either the yellow or green light is on.

Figure 9: Different stages of traffic light.(1) On green light the system will halt its
violation tracking. (2) The system resume violation detection on red-light

In order to determine whether a vehicle performed red-light running or not, we
must examine the vehicle’s position in relation to the defined restricted region. This
can be accomplished by placing a point at the center of each vehicle’s bounding box.
To determine the center point coordinates of bounding boxes, we used the following
formula:

xo + (x1 — o)

c, = Yo + (y21 ), 2)

C,: the x coordinate of the center point
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Cy: the y coordinate of the center point

xo: the x-coordinate of the first end point

x1: the x-coordinate of the second endpoint

yo: the y-coordinate of the first endpoint

y1: the y-coordinate of the second endpoint

Once the x and y coordinates of the center point have been calculated, we can utilize
them for tracking the positions of vehicles. By monitoring the changes in the values of
C and Cy, and comparing them with the given limit lines over individual frames, we
can trace the location and movement of the vehicles. This process allows us to detect
and mark potential red-light running violations or instance, in [Figure 9], when a vehicle

is within the area where zo < C < z1 and yo < Cy < y; then it will be categorized as
a violation. When a violation is detected, it will be displayed on the table. The displayed

Figure 10: Motorbike was caught performing red-light running.

information includes the violator’s ID, vehicle type, the timestamp from the video when
the violation occurred, and an image snippet capturing the moment of the violation.
Referring to [Figure 10], the vehicle with ID number 6 has been observed crossing
the red light, and therefore, this incident should be recorded as a violation in the table.
Nevertheless, there is an issue with the approach. In most cases, Vietnamese traffic
laws do not penalize vehicles that make right turns on a red light. In the case of [Figure
9],where there is no traffic sign prohibiting vehicles from turning right during a red light.
Therefore, it is necessary to establish an additional limit line to exclude marked vehicles
from the list of violators. If a vehicle was marked as a potential violator when crossing
the first line at red light, it will be removed from the list of violations when turning right
to cross the second line.

Following the detailed implementation of YOLOvVS8 and DeepSORT, it is crucial
to evaluate the system’s performance under real-world conditions to validate its effec-
tiveness.The experimental results, which provide insight on the suggested approach’s
overall impact, accuracy, and efficiency in a range of traffic conditions, are presented in
the following section.



270 Le T'D, Dang D.L., Duong T.Q.N., Huynh K.T: Red-light Running Detection

IDs Type Timestamp Image

18 motorbike 00:01

Figure 12: (1) Motorbike got marked for red-light running. (2) Motorbike is removed
from the red-light violation list after crossing the second limit line.

4 Experiment Results

In this section, we present the outcomes of our experiments conducted to evaluate the
performance of the system. To begin, our initial step involves assessing the performance
of the YOLOvVS8 model. Subsequently, the system was set to go through a stress test,
aiming to test its efficacy and to uncover its limitations. Everything was done using a
computer with these specifications [Table 1]:

4.1 Model Evaluation Metrics

To evaluate the model detection performance, these following metrics was used:
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Component|Specification

GPU NVIDIA GeForce GTX 1660 (1,408 CUDA Cores)
Processor |AMD Ryzen 5 2600 Six-Core Processor (12 CPUs)
RAM 16GB

Table 1: Specification of the computer used for testing.

4.1.1 Recall and precision.

. TP
Precision = W (3)
TP
Recl = 7p7n W

Precision determines how many of the predicted positive instances are actually true
positives. True Positive (TP) is the number of correctly predicted positive instances, and
False Positives (FP) is the number of instances that were predicted as positive but are
actually incorrect predictions.

Recall measures how many of the actual positive instances were correctly predicted
as positive by the model. Moreover, False Negative (FN) is the number of instances that
are actually positive but were predicted as negative (missed predictions)

4.1.2 Average precision (AP)

AP = / "P(RMR  (5)
0

To compute AP, we first calculate precision and recall values at multiple thresholds
for the predictions. These precision-recall pairs form a curve, and AP is the area under
this curve which can be seen in [Table 2].

4.1.3 Mean Average Precision (mAP)

i AP,

mAP = ~ (6)

mAP is a metric used to evaluate the performance of object detection or recognition
models across multiple classes or categories. It is represented by the average of the
Average Precision (AP) values calculated for each class I where N is the number of
object classes.

In our study, we employed two mAP variants: mAP50, evaluating precision at 50%
recall, and mAP50-95, assessing precision across the 50% to 95% recall range.
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4.2 Training Results and Discussions

In our evaluation of the custom trained YOLOvVS model, we considered a range of training
evaluation metrics mentioned in [4.1] to evaluate the model. These metrics were calcu-
lated in order to provide insights into the model’s capabilities and areas for improvement.
Here is the result after we validated the model using a validation dataset consisting of
252 images.

Class Images|Instance|Precision Recall mAP50 mAP50-95
all 252 3040 0.892 |0.926| 0.934 0.763
bike 252 66 0.886 |0.827| 0.875 0.600
bus 252 16 0.756 |0.971| 0.856 0.730
car 252 414 0.938 |0.928| 0.964 0.845

green-light | 252 209 0.969 |0.990| 0.992 0.865
motorbike 252 2068 0.935 |0.938| 0.977 0.790
red-light 252 207 0.953 |0.986| 0.985 0.834
truck 252 31 0.827 |0.806 | 0.866 0.682
yellow-light| 252 29 0.870 |0.966 | 0.959 0.735

Table 2: Validation results of the model after training.

The model can accurately detect vehicles such as “motorbike” and “car” with high
precision and performs relatively well on “bike” [Table 2]. However, it still struggles
when detecting other types of transport like “truck,” and “bus” [Table 2]. The model
trained on Vietnamese urban streets, where cars and motorbikes are the primary transport
vehicles, caused confusion between classes due to the frequency of their appearances.
To improve the model’s accuracy, additional images need to be added to the existing
dataset, as the difference in vehicle appearances can lead to confusion.

To further illustrate the performance of each class, a confusion matrix is created to
visualize the classification results. This matrix displays the true positive, true negative,
false positive, and false negative values for each class in the classification model. It
effectively demonstrates how well the model has predicted the different classes and
where it might be struggling.

Based on [Figure 13], the relatively high score for the motorbike class within the
background category, around 0.70 in the confusion matrix, indicates a notable challenge
in accurately distinguishing motorbikes from other elements in the dataset. This suggests
that the model struggles to discern motorbikes distinctly, potentially misclassifying them
as part of the background category due to overlapping features or a lack of specific
patterns unique to motorbikes.

However, despite this discrepancy highlighted in the evaluation metrics, the practical
impact of this misclassification has not been a significant problem when put into prac-
tice. Upon deploying the system, despite the result of the confusion matrix, the overall
performance was not substantially affected, maintaining the system’s functionality.

The precision-recall curve illustrates the model’s performance across different ob-
ject categories[Figure 14]. The precision scores reveal the model’s ability to accurately



Le T.D, Dang D.L., Duong T.Q.N., Huynh K.T.: Red-light Running Detection 273

Confusion Matrix

tight bus bike

Predicted

red-light motorhike green

backgroundyeliow-ight  treck

bike bus car  green-light motorblke red-light  truck  yellow-lightbackground

True

Figure 13: The Confusion Matrix of All Classes.
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Figure 14: Precision-Recall Curve.

recognize specific classes in the dataset. Notably, the model achieves high precision in
identifying various classes, such as cars at 0.960, red-light at 0.983, and an impressive
0.992 for green light. Important categories like bikes and buses also exhibit respectable
precision scores of 0.857 and 0.939, respectively, indicating the model’s capability in
distinguishing these entities. Additionally, the model shows a strong precision of 0.974
for motorbike classification. Though the precision for the truck class is slightly lower at
0.845, the overall mean average precision (mAP@0.5) for all classes collectively stands
at a commendable 0.940. This analysis emphasizes the model’s precise classification
across diverse object categories, highlighting its effectiveness in recognizing objects
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within the dataset.

Figure 15: Testing the trained model by employing modified dataset images to simulate
harsh weather conditions.

A series of diverse testing images is presented, intentionally altered to replicate
harsh weather conditions, including low gamma settings for reduced visibility and the
introduction of static effects to simulate heavy rain and foggy environments. These mod-
ifications aim to closely resemble real-world adverse weather scenarios, challenging the
model’s recognition capabilities. Remarkably, the conducted testing exhibited promising
outcomes, with the model successfully detecting and identifying objects correctly in
100% of the provided images. This impressive performance underscores the model’s
ability to navigate and recognize objects amidst challenging environments, demonstrat-
ing its robustness and potential for effective real-world application in adverse weather
conditions.

The effectiveness of a CCTV system relies heavily on the quality of footage and
the positioning of cameras. Low quality footage can cause issues in detecting objects or
generating false positives. Additionally, the camera’s location may miss certain violations.
Weather conditions and lighting can also significantly impact the system’s effectiveness,
with footage captured during severe weather conditions or with minimal lighting at night
rendering the entire video unusable.

5 Conclusion

The Red-Light Running Detection System, implemented with the YOLOv8 model and the
DeepSORT tracking algorithm, seeks to combat instances of red-light violations occurring
on Vietnamese roadways. The system employs computer vision and deep learning
methodologies to enhance road safety and mitigate accidents. Empirical investigations
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demonstrate that the YOLOv8 model exhibits commendable performance in accurately
detecting a wide range of vehicle categories. However, it encounters difficulties in
accurately distinguishing less common types such as “bus” and “truck” Additional fine-
tuning and augmentation of data are required to enhance precision. The system exhibits
promising potential, however, it is imperative to address and update its limitations in order
to achieve optimal performance in real-world scenarios. Overall, the development of a
Red-Light Running Detection System using computer vision and deep learning could be
a significant step towards improving road safety in Vietnam and addressing the growing
concerns related to red-light violations. As urbanization and traffic congestion continued
to rise, leveraging technology to enhance law enforcement and traffic management
became increasingly important in ensuring the safety of all road users.

In the future works, we will study DeepSORT [Azhar, M. 1. H. et al. (2020, August)]
incorporating additional features from deep learning models (such as object embeddings)
to improve accuracy when tracking objects across multiple frames in our system. The
comparison of DeepSORT technique and other techniques for object detection problems
will also be studied further. Besides, Fuzzy-based approaches have shown a good perfor-
mance in image processing [Garcia-Zamor et al. (2024)] so we will research fuzzy-based
approach as one of our coming works.
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