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Abstract: Deep learning methods are increasingly used in automated plant species classification 
systems to support biodiversity conservation and ecological monitoring, particularly for 
medicinal plants. This study presents a novel approach to plant leaf recognition by integrating 
the Vision Transformer (ViT) model with the OSSGabor filter, termed the OGViT method. The 
OSSGabor filter is a leaf feature extraction technique that combines the responses of Gabor filters 
in 16 directions and optimizes their parameters using the Structural Similarity Index Measure 
(SSIM). These features capture intricate details such as leaf veins, texture, and frequency 
variations, which are essential for enabling ViT to fully leverage deep learning for leaf 
recognition. Experimental results on four public datasets—Swedish Leaf, Flavia, Folio, and UCI 
Leaf—demonstrate that the OGViT method outperforms state-of-the-art approaches, achieving 
accuracy scores of 100%, 100%, 100%, and 98.88%, respectively, with a 20% testing set and an 
80% training set. This performance highlights the effectiveness of the proposed method for plant 
classification, offering a robust tool with potential applications in agriculture and biodiversity 
conservation. 
 
Keywords: Plant classification, SSIM, Gabor Filter, Vision Transformer, Deep Learning 
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1 Introduction  

Plants play fundamental and pivotal roles in various crucial fields, including 
agriculture, industry, medicine, and environmental protection [Kaya et al., 2019, Lv 
and Zhang, 2023, Zhang et al., 2020]. Therefore, accurate plant species identification 
is vital across disciplines such as agronomy, conservation, and drug discovery. An 
automated system for plant species recognition is essential for botanical gardens, 
conservation efforts, and discovering new species [Zhang et al., 2020]. Such systems 
aim to assist non-experts in identifying plants rapidly and efficiently, saving time and 
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resources [Kaya et al., 2019, Lv and Zhang, 2023]. Plant identification often relies on 
various parts like leaves, roots, branches, fruits, and veins. Among these, leaves offer a 
wealth of information, such as shape, texture, and color, making them a focus for 
developing plant identification methods [Kaya et al., 2019, Lv and Zhang, 2023, Yang, 
2021, Zhang et al., 2020]. These methods typically fall into two categories: image 
processing-based techniques and deep learning-based techniques. Although traditional 
image processing techniques such as Gabor filters have made significant progress and 
proven effective in some specific cases [Chaki and Parekh, 2012, Chi et al., 2003], they 
still have certain limitations. The generalizability of these methods is often limited, 
especially when faced with diverse and complex datasets. In addition, they often require 
high-quality input data, intricate feature engineering, and careful parameter 
optimization. Deep learning, especially Convolutional Neural Networks (CNNs), has 
significantly transformed the field of plant classification [Dyrmann et al., 2016, Lee et 
al., 2015]. Although CNNs have shown the ability to capture intricate features from 
images for precise plant identification, they also require extensive and diverse datasets 
to minimize the risk of overfitting. To solve this challenge, scientists have proposed 
transfer learning, a practical solution that allows models to leverage pre-trained 
knowledge from large databases, thereby enhancing generalization and significantly 
reducing training duration. While CNNs and transfer learning have significantly 
advanced plant classification, they face limitations in capturing intricate spatial 
relationships present in images. Vision Transformers (ViTs) [Dosovitskiy et al., 2021] 
offer a novel approach to image processing, employing an attention mechanism to 
effectively capture detailed spatial relationships within images. ViTs have shown 
strong potential in image classification tasks, particularly in plant classification. 

The objective of this study is to explore and demonstrate the enhanced performance 
of the Vision Transformer model when combined with images processed through a 
Gabor Filter to achieve high accuracy in plant classification. By integrating advanced 
technology with established knowledge, this methodology strives to significantly 
enhance the precision and efficiency of plant identification across various ecosystems. 
The contributions of this paper: 
- Introducing the OGViT method, which integrates the ViT model with OSSGabor 

filters to enhance plant classification accuracy. 
- Proposing the OSSGabor filter, which combines the responses of Gabor filters in 

16 directions and optimizes their parameters using the Structural Similarity Index 
Measure (SSIM), capturing intricate leaf details such as veins, texture, and 
frequency variations for effective leaf recognition 

- Extending ViT models to plant classification, demonstrating their adaptability and 
strong performance. 

- Comprehensively evaluating the OGViT method alongside state-of-the-art 
approaches on four public datasets (Swedish Leaf, Flavia, Folio, and UCI Leaf) 
to demonstrate its superior classification accuracy and robust plant identification. 

The remainder of the paper is structured as follows: Section 2 shows the related 
works. Section 3 presents the methodology, including feature extraction techniques and 
the proposed model. Section 4 covers the analysis and discussion of the results, and 
Section 5 concludes the paper. 
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2 Related Works 

Plant classification has received increased attention and practice in recent years, with 
various methods and techniques focusing on image processing-based techniques and 
deep learning-based techniques. 

The application of image processing methods for extracting plant features and 
classification has been extensively studied. Early approaches leveraged Gabor filter 
banks to analyze texture features, demonstrating their effectiveness in discriminating 
between species based on bark and leaf textures [Chi et al., 2003, Ishak et al., 2009]. 
Chi et al. [Chi et al., 2003] pioneered this approach by constructing Gabor filter banks 
and a classifier based on extracted texture features from plant bark. Ishak et al. [Ishak 
et al., 2009] further advanced this field by introducing an image analysis technique that 
integrated Gabor wavelets with gradient field distribution techniques to extract a unique 
set of feature vectors, leveraging directional texture properties for classifying weed 
species. Cope et al. [Cope et al., 2010] proposed a texture-based approach for plant 
classification, which involved calculating joint distributions at multiple scales of the 
Gabor filter. Chaki et al. [Chaki and Parekh, 2012] developed an automated plant 
species recognition system that applied Gabor Filter analysis to leaf images, with an 
emphasis on varying filter parameters to optimize accuracy. 

Besides Gabor Filter, subsequent studies explored various approaches for plant leaf 
recognition. Zhang et al. [Zhang and Tao, 2015] achieved an accuracy of 91.19% on 
the Flavia dataset by using the wavelet fractal method in combination with the back 
propagation neural network. Chaki et al. [Chaki et al., 2015] achieved 97.6% accuracy 
on the Flavia leaf dataset by combining a Gabor filter and greyscale co-occurrence 
matrix for texture features and a multi-layered perceptron with a neuro-fuzzy controller 
classifier. Naresh et al. [Naresh and Nagendraswamy, 2016] employed an improved 
local binary pattern (MLBP) for leaf texture extraction, achieving accuracies of 97.55% 
and 96.83% on Flavia and Swedish datasets. Saleem et al. [Saleem et al., 2019] 
explored leaf visual features and various extraction techniques, achieving 97.6% 
accuracy on Flavia. Goyal et al. [Goyal et al., 2019] introduced a multi-class dual 
support vector machine method, reaching 98.11% accuracy on Flavia. Su et al. [Su et 
al., 2020] proposed plant classification method by extracting curvature, texture, and 
shape region features from leaf contours, achieving accuracies of 99.35% and 99.43% 
on the Swedish and Flavia plant leaf datasets, respectively. 

Recent research has applied deep learning techniques, particularly CNNs, into the 
field of plant classification. Studies, such as Lee et al. [Lee et al., 2015] in 2015, utilized 
CNNs to achieve a remarkable 99.5% accuracy with unsupervised feature 
representations for 44 plant species. In 2016, Dyrmann et al. [Dyrmann et al., 2016] 
adopted CNNs for plant species identification in color images, achieving 86.2% 
accuracy across 22 species and aiding site-specific weed management. In 2017, Lee et 
al. [Lee et al., 2017] highlighted the capability of CNNs for plant classification by 
learning vein patterns directly from leaf images, highlighting the importance of 
hierarchical feature representation and contextual information. Studies have showed 
that CNNs are highly effective in plant classification, but they also have limitations, 
especially when working with limited datasets. Training a CNN from scratch requires 
a large and diverse dataset to avoid overfitting, as well as significant computational 
resources. When the dataset is not large or diverse enough, the model is prone to 
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overfitting, resulting in poor performance on new data. In this context, transfer learning 
has emerged as an effective solution. By leveraging knowledge from models that have 
been pre-trained on large datasets, transfer learning allows fine-tuning the model for a 
specific plant classification task with less data. This not only reduces training time but 
also significantly improves the generalization ability of the model, allowing it to 
perform better on new and diverse data. 

In 2017, Sun et al. [Sun et al., 2017] successfully utilized ResNet26 to classify plant 
species from image data. In 2019, Aydin Kaya et al. [Kaya et al., 2019] demonstrated 
that transfer learning, particularly with fine-tuning and deep feature extraction, 
significantly enhances deep learning model performance for automated plant 
identification. Meanwhile, Diazet al. [Mamani Diaz et al., 2019] proposed a deep 
learning system in the same year, with Xception outperforming the other models with 
86.21% accuracy on the public dataset “Plant Seedlings Dataset”, and emphasized the 
impact of GPU hardware on classification model results. In 2021, Roopashree et al. 
[Roopashree and Anitha, 2021] introduced DeepHerb, a dataset of 40 Indian herbs. 
They used pre-trained deep learning models like VGG16, VGG19, InceptionV3, and 
Xception and achieved 97.5% accuracy with their proposed DeepHerb model, trained 
with Xception and ANN. In the same year, Venkatesh et al. [Venkatesh et al., 2021] 
proposed a fine-tuned MobileNet CNN model for fruit classification, achieving high 
accuracy (approximately 98.60%) with a low loss rate (around 0.38%) while 
maintaining low computational cost. 

Although these studies have achieved impressive results, they also show that 
traditional deep learning methods can still struggle when dealing with limited or non-
diverse datasets. Thus, it remains important to develop specialized datasets suitable for 
specific plants or tasks. In line with this, Abayomi-Alli et al. [Abayomi-Alli et al., 2024] 
presented FruitQ, a dataset for fruit quality assessment using five deep learning models 
(ShuffleNet, SqueezeNet, EfficientNet, ResNet18, and MobileNet-V2), highlighting 
the need for diverse and well-annotated datasets in the field of plant classification. 

While powerful, CNNs and transfer learning struggle to fully grasp complex spatial 
relationships in images. In 2020, Dosovitskiy et al. [Dosovitskiy et al., 2021] 
demonstrated that pure transformer models, when directly applied to sequences of 
image patches, can achieve excellent classification performance without relying on 
CNN architectures. In 2021, Conde and Turgutlu [Conde and Turgutlu, 2021] 
introduced a multi-stage, multi-scale fine-grained visual classification framework 
based on ViT, utilizing a multi-head self-attention mechanism to capture distinctive 
features from diverse local regions. Additionally, Van Hieu et al. [Van Hieu et al., 
2023] proposed PlantKViT, a hybrid approach that integrates ViT with the KNN 
algorithm, achieving a remarkable 93% accuracy in classifying plants from the Danang 
Forest Plant dataset, surpassing the ConvNeXt model (89%) and the Resnet-152 model 
(76%). 

Recent studies have proposed a hybrid approach to improve plant classification. 
Specifically, Kayaalp & Kiyas [Kayaalp, 2024] proposed a hybrid deep learning 
method to classify medicinal plant leaves based on subtle visual cues, addressing the 
difficulties in distinguishing visually similar species. Furthermore, Qiu et al. [Qiu et al., 
2023] demonstrated the potential of integrating hyperspectral imaging with deep 
learning for enhancing feature extraction and improving classification accuracy, 
particularly in distinguishing different vigor of Osmanthus fragrans seeds. Both of these 
studies highlight the promise of integrating multiple techniques to tackle the challenges 



     627 
 

 

Khuat T.P., Van T., Van H.T.: Plant Leaf Recognition Using ... 

of plant classification, motivating the exploration of hybrid approaches that combine 
spatial and texture-based feature extraction.  

Building on these developments, we introduce the OGViT method, which 
integrates Gabor filters with the ViT model to take advantage of the strong capabilities 
of both to improve the efficiency of plant classification. 

3 Our proposed method-OGViT 

 

 

Figure 1: The proposed framework for leaf recognition 

These related studies demonstrate the evolution of image processing techniques and the 
application of deep learning models in plant classification. ViTs offer several 
advantages over CNNs, particularly the ability to efficiently learn long-range 
dependencies in images through a self-attention mechanism. This allows ViTs to 
consider relationships between all patches in an image, regardless of their spatial 
distance, overcoming the limitations of CNNs, which struggle to capture long-range 
dependencies due to the limited receptive field of convolutional filters. Moreover, ViT 
has better scalability, especially when processing high-resolution images or large 
datasets. By using linear transformations and self-attention, ViT is highly 
parallelizable, enabling fast and efficient processing even with vast amounts of data, 
making it particularly suitable for modern vision tasks that require large datasets. 
However, ViT faces challenges in representing texture and frequency features, where 
Gabor filters excel, particularly in texture analysis, edge detection, and feature 
extraction. To address this, we propose a novel approach that combines Vision 
Transformer models with Gabor filters to enhance plant classification accuracy. Our 
proposed leaf feature extraction method, called the OSSGabor filter, integrates Gabor 
filter responses in 16 directions and optimizes the filter parameters using the Structural 
Similarity Index Measure (SSIM). This method aims to highlight leaf veins and capture 
subtle nuances in texture and frequency, which are crucial for boosting the ViT model's 
performance. A visual representation of our proposed framework for leaf recognition 
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is illustrated in Figure 1. The following subsections will provide detailed descriptions 
of each processing step within our method. 

3.1 Pre-processing 

The pre-processing steps involve resizing the image and removing the background to 
reduce noise [Elhariri et al., 2014]. First, we convert the input image to grayscale and 
apply a threshold to separate the candidate object from the background regions. We 
then apply the GrabCut method [Goy et al., 2023, Joseph et al., 2020], with the iteration 
count set to 5, to compute the leaf mask and detect the leaf region on the original RGB 
image. Next, we convert the leaf region image to the CIELAB color space, apply a 
threshold, and perform morphological erosion and dilation using a 3x3 structural 
element on the binary mask to remove shadows and noise. Finally, we multiply the 
RGB image by the binary mask to extract the leaf from its background. Figure 2 shows 
a flowchart of the pre-processing phase steps. 
 

 

Figure 2: Flowchart of the pre-processing phase steps 

3.2 Gabor filter 

The Gabor filter is a type of convolution filter that combines a Gaussian function with 
a sinusoidal component, providing both spatial localization and directional sensitivity 
[Chaki and Parekh, 2012, Cope et al., 2010, Van et al., 2025]. The Gaussian function 
acts as a weighting factor, while the sinusoidal term introduces directional selectivity. 
The formulation of the Gabor filter is as follows: [Chaki and Parekh, 2012, Cope et al., 
2010]: 

𝑔(𝑥, 𝑦, λ, 𝜃, ψ, 𝜎, 𝛾) = 𝑒𝑥𝑝 /−
𝑥́! + γ!𝑦́!

2𝜎! 5 𝑒𝑥𝑝 6𝑖 82π
x́
λ + ψ;<, 

x́ = 𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃, ý = −𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃 (1) 
here, 𝑖 = √−1, 𝜆 represents the wavelength of the sinusoidal component, 𝜃 defines the 
angle at which the filter is applied, ψ	 represents the phase offset, which shifts the 
sinusoidal component of the filter, σ controls the spread or width of the Gaussian 
function and 𝛾 controls the ellipticity of the filter. Various digital filters (kernels) can 
be generated by adjusting these Gabor parameters (Figure 3). The selection of these 
parameters is critical, as they directly affect the filter's ability to capture important 
image features. The parameters λ, θ, σ, and γ (Table 1) were determined through  
experiments to optimize the detection of key leaf textures like vein patterns and 
structural details. Each parameter was varied within a specified range to evaluate its 
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impact on feature clarity and completeness in controlled leaf images. In image 
processing, Gabor filters are widely used in edge detection, texture analysis, and feature 
extraction. Their ability to resonate with features of similar frequency and orientation 
makes them particularly adept at detecting edges and analyzing textures by capturing 
characteristics like orientation and scale. Furthermore, they excel at extracting salient 
image features such as lines, curves, and corners, which are vital for object recognition. 
 

 

Figure 3: Gabor Filter Response with Varying Parameters:(a) only change the 
lambda parameter from 5 to 8, with fixed parameters (θ = 0, ɣ = 0.25, σ = 2, Ψ = 0), 
(b) only change the theta parameter to π /12, π /6, π /2 and π, with fixed parameters 
(λ= 6, ɣ = 0.25, σ = 2, Ψ = 0), (c)  only change sigma parameter from 2 to 5, with 

fixed parameters (θ = 0, λ= 6, ɣ = 0.25, Ψ = 0), and (d) only change gamma 
parameter to 0.25, 0.5, 0.75 and 1, with fixed parameters (θ = 0, λ= 6, σ = 2, Ψ = 0) 

3.3 OSSGabor filter for optimal structure features 

The Gabor filter captures local structural details like spatial frequency, location, and 
direction, but its effectiveness depends on carefully selecting the right parameters to 
enhance image structure while preserving fine details and minimizing sensitivity to 
lighting variations. To address this, we propose the OSSGabor filter, a leaf feature 
extraction approach that aggregates Gabor filter responses from 16 different 
orientations and optimizes the filter parameters using SSIM [Li et al., 2020]. SSIM, a 
full-reference metric for evaluating image similarity, measures brightness, contrast, and 
structural consistency, with values ranging from 0 (completely different) to 1 
(identical), indicating the degree of image preservation. The formula for the OSSGabor 
filter is defined as follows: 
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 𝑓"##$ =
%
%&
∑ 𝑓 ∗ 𝑔(𝑥, 𝑦, λ, 𝜃' , ψ, 𝜎, 𝛾)(!)

"(!$%)
%' ,+)%,!,..,%&

 (2) 

where 𝑓"##$ is the filtered image, and the parameters (λ, ψ, σ, γ, and filter size) are 
optimized based on the training dataset through the following procedures: 

1. Parameter Grid Initialization (Table 1): This step involves defining parameters 
like (λ, ψ, σ, γ, and filter size). 
2. Generating a set of Gabor filters using the initialized parameter grid. 
3. Apply formula (2) to each set of Gabor filters corresponding to a parameter 
set, and the resulting images are then converted to grayscale. 
4. For each grayscale image, the SSIM value is calculated with its corresponding 
original image using the following formula [Li et al., 2020]: 

 𝑆𝑆𝐼𝑀(𝑥, 𝑦) = !-(-)./%
-(*.-)*./%

∙ !0()./*
0(*.0(*./*

 (3) 

where, δ1! and δ2! are the variances, μx and μy represent the mean values, C1 and 
C2 are constants to prevent division by zero, and δxy is the covariance between the 
original and filtered images. 
5. If the current average SSIM exceeds the previously achieved best SSIM, the 
optimal parameter set is updated accordingly. 
6. Steps 2 to 5 are repeated for each parameter combination in the grid.. 
7. After iterating through all parameter combinations, the best parameter set and 
its corresponding SSIM value are provided as output. 
In this study, the parameter ranges in Table 1 are chosen based on the image size 

and resolution in the datasets. For leaf images with medium resolution, sizes such as 
(15,15) and (21,21) offer a good trade-off between preserving detail and ensuring 
computational efficiency. We varied λ from 5 to 8 to capture the appropriate texture 
features for leaf classification. Smaller lambda values are effective at capturing fine 
details but may also enhance noise and irrelevant textures, potentially complicating 
feature extraction. In contrast, higher λ values are more effective at reducing noise but 
may also blur important fine textures necessary for precise classification. The standard 
deviation σ was chosen within the 2 to 5 range, balancing detail preservation and noise 
reduction based on preliminary observations. Lastly, the range for γ (0.25, 0.5, 0.75) 
was selected to capture both elongated structures, like leaf veins, and more isotropic 
features, reflecting the varied morphological characteristics of leaf surfaces. 
 

Parameter # Values 
filter size [(15,15), (21,21)] 
σ [2, 3, 4, 5] 
λ [5, 6, 7, 8] 
ɣ [0.25, 0.5, 0.75] 
 Ψ [0] 

Table 1: Parameter grid 
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Figure 4: 16 filtered images correspond to 16 different directions 

 

Figure 5: Comparison between the original image and the image filtered by the 
OSSGabor filter 

Figure 4 shows the 16 filtered images correspond to 16 different directions for 
computing the optimal filtered image. Figure 5 illustrates a comparison between the 
original image and the filtered image using the OSSGabor filter, showcasing clearer 
texture while maintaining insensitivity to lighting variations. The filtered image retains 
detailed local structural information, including spatial frequency, location, and 
directionality, while also maintaining the original image's key structural features. 
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3.4 OGViT for leaf recognition 

 

Figure 6: ViT architecture 

The ViT [Dosovitskiy et al., 2021] marked a significant shift in computer vision by 
applying the transformer architecture, originally designed for natural language 
processing, to image analysis. Unlike convolutional neural networks (CNNs) that rely 
on localized spatial filtering, ViT captures both fine-grained and global contextual 
information through self-attention [Van et al., 2025]. The model processes images by 
first breaking them into a series of fixed-size patches, typically 16×16 for a 224×224 
input image, resulting in 196 patches. Each patch is then flattened and projected into a 
high-dimensional vector using a learnable linear projection, effectively treating each 
patch as a token, analogous to word tokens in NLP. To maintain spatial awareness, ViT 
incorporates positional encodings that provide information about the relative positions 
of these patches, ensuring that the model captures spatial structure despite its non-
convolutional design. This sequence of patch embeddings, combined with a special 
classification token (CLS token), is then fed into a stack of transformer encoder layers. 
Each encoder layer includes two key components: multi-headed self-attention (MSA), 
which captures long-range dependencies by allowing the model to focus on multiple 
image regions simultaneously, and a multi-layer perceptron (MLP) for non-linear 
feature transformation. The MLP consists of fully connected layers with Gaussian Error 
Linear Unit (GELU) activation, which helps capture complex feature interactions. To 
enhance training stability, each encoder layer also incorporates layer normalization 
(LN) and residual connections, ensuring that gradient flow is preserved throughout the 
network. After passing through these encoder layers, the final representation of the CLS 
token is extracted and processed through a classification head to generate the model's 
output. This combination of global attention and positional encoding enables ViT to 
outperform traditional CNNs in tasks requiring a more comprehensive understanding 
of image content. 

In this study, we propose the OGViT method, a combination of OSSGabor filters 
and ViT, adapted to better suit the task of classifying leaf images. In the OGViT 
method, the original images are first preprocessed to detect the leaf regions, after which 
the OSSGabor filter is applied. The filtered images are then used as inputs for training 
and testing the ViT model. The ViT model in our leaf recognition method consists of 
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12 transformer encoder layers, each containing 12 attention heads. Figure 7 illustrates 
an example of the original image and its corresponding 'attention map from the last 
layer.' Figure 8 shows the OSSGabor-filtered image and its corresponding 'attention 
map from the last layer.' The contrast between the attention maps in Figures 7 and 
Figure 8 demonstrates that ViT utilizes more regions (with higher values) from the 
filtered image for classification than from the original image, significantly improving 
classification effectiveness. 

 

 

Figure 7: Key regions influencing the model's decision: (a) The original image and 
(b) the corresponding last-layer attention map.  

 

Figure 8: Key regions influencing the model's decision: (a)The  OSSGabor-filtered 
image and (b) the corresponding last-layer attention map. 

 

 

  (a)      (b) 

 

 

  (a)      (b) 
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4 Experimental Results 

4.1 Datasets 

In this study, we utilized four public plant datasets: Swedish Leaf [J. O. Söderkvist, 
2001], Flavia[Wu et al., 2007], Folio [Pudaruth, 2015], and UCI Leafdataset [Silva, 
2014], to assess the effectiveness of deep learning models in medicinal plant 
classification.Figure 9 shows sample images of the Swedish Leaf, Flavia, Folio, and 
UCI Leaf datasets. 

 

Figure 9: Sample images from the Flavia, Folio, Swedish Leaf, and UCI Leaf datasets 

Table 2 shows the infomation for these datasets. Swedish Leafand Flavia consist of 
images with relatively high clarity and brightness, with each category containing 
approximately 35 to 75 images - a sample size sufficient for effectively training the 
models. Conversely, Folio and UCI Leaf datasets comprise low-quality images and a 
small number of images per class, which evaluate the model's performance with limited 
data per class. The selection of these diverse datasets facilitates a comprehensive 
exploration of the model's robustness across varying image qualities and dataset sizes. 
 

Dataset Classes 
Number 

Sample 
Total 

Color Average Images per 
Class 

Swedish Leaf 15 1125 RGB 75 
Flavia 32 1097 RGB 35 
Folio  32 637 RGB 20 
UCI Leaf 40 443 RGB 11 

Table 2: Properties of the experimented datasets 
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4.2 Evaluation Metrics 

The performance of our proposed method is assessed through several evaluation 
metrics, including Accuracy (Acc), Precision (Pre), Recall (Re), and F1-score (F1). 
These metrics offer a thorough evaluation of the model's performance in different 
classification areas. The computation of these metrics for multi-class classification, 
utilizing macro-averaging, is outlined in Equations (4)–(7): 

𝐴𝑣𝑔𝐴𝑐𝑐 = %
345##6#

∑ 𝐴𝑐𝑐(𝑖)345##6#
'  , 𝐴𝑐𝑐(𝑖) = 78(').7;(')

78(').7;(').<8(').<;(')
 (4) 

𝐴𝑣𝑔𝑅𝑒 = %
345##6#

∑ 𝑅𝑒(𝑖)345##6#
'  , 𝑅𝑒(𝑖) = 78(')

<;(').78(')
   (5) 

𝐴𝑣𝑔𝑃𝑟𝑒 = %
345##6#

∑ 𝑃𝑟𝑒(𝑖)345##6#
'  , 𝑃𝑟𝑒(𝑖) = 78(')

78(').<8(')
  (6) 

𝐴𝑣𝑔𝐹% =
%

345##6#
∑ 𝐹%(𝑖)345##6#
'  , 𝐹%(𝑖) = 2 × 8=6(')×?6(')

8=6(').?6(')
  (7) 

where, for class i, TP (True Positive) denotes instances correctly identified as belonging 
to class i, TN (True Negative) refers to instances correctly identified as not belonging 
to class i, FP (False Positive) represents instances incorrectly labeled as class i, and FN 
(False Negative) represents instances incorrectly labeled as not belonging to class i. 
 
4.3 Results 

The test models were trained for a fixed duration of 50 epochs, with early stopping 
implemented. The early stopping criterion was configured to halt training if there was 
no improvement in performance for 5 consecutive epochs, with a threshold of 0.0 for 
change. The performance was evaluated using the 'accuracy' metric. The datasets were 
divided into two segments: 80% for training and 20% for testing. To enhance 
generalization and avoid overfitting, the K-Fold Cross-Validation method  [Saud et al., 
2020, Shiddiq et al., 2024] was employed in the experiments. With k set to 5, each 
subset was used as the validation set once, while the remaining k−1 subsets were used 
for training. The experiments were conducted on the Google Colab platform, utilizing 
T4 GPUs. We conducted two experiments to evaluate the effectiveness of the proposed 
model compared to state-of-the-art deep learning methods.  

4.3.1 Result of Experiment 1: Demonstrating that ViT outperforms VGG16, 
Xception, MobileNet, and DenseNet201 for plant classification 

In the first experiment, we evaluated five different models, including VGG16, 
Xception, MobileNet, DenseNet201, and ViT, using the original dataset to determine 
the most effective architecture. The Vision Transformer (ViT) model demonstrated 
superior performance in terms of accuracy and F1 scores across all datasets, as shown 
in Table 3. Figure 10 shows that the ViT method consistently achieves the highest 
accuracy compared to the other methods across all datasets. The confusion matrices for 
the ViT method across all datasets are presented in Figures 11 and Figure 12. This 
outperformance is consistent and significant when compared to models like VGG16, 
Xception, MobileNet, and DenseNet201, indicating that the ViT model's architecture 
is highly effective and generalizes well for various leaf classification tasks. Given its 
high accuracy, the ViT model emerges as a particularly suitable choice for applications 
where optimal performance is crucial. 
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As illustrated in Table 4, the ViT model has a longer training time compared to the 
other models, but its testing time per sample is similar to that of the other methods. 
Notably, the ViT method is the smallest in size, Figure 13. These experiments 
demonstrate that the ViT method not only achieves high accuracy but also provides fast 
recognition with a compact model size. Therefore, we developed the proposed method 
based on ViT combined with the OSSGabor filter, which is evaluated in Experiment 2. 
 

Dataset VGG16 Xception MobileNet DenseNet201 ViT 
Swedish Leaf 
Accuracy (%) 100 98.22 100 100 100 
F1 Score (%) 100 98.00 100 100 100 
Flavia 
Accuracy (%) 98.98 98.47 98.47 99.49 100 
F1 Score (%) 99.00 98.49 98.49 99.49 100 
Folio 
Accuracy (%) 92.97 93.75 94.53 96.09 99.22 
F1 Score (%) 93.00 94.00 94.00 96.00 99.20 
UCI Leaf 
Accuracy (%) 90.57 88.68 97.17 96.23 97.75 
F1 Score (%) 90.00 88.00 96.00 96.00 97.33 

Table 3: Comparative performance of five models (VGG16, Xception, MobileNet, 
DenseNet201, ViT) across datasets on the test dataset 

 

Figure 10: Model accuracy comparison across datasets 
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Figure 11: Confusion matrix of the ViT model on (a) the Swedish Leaf dataset and (b) 
the Flavia dataset, respectively 

 

Figure 12: Confusion matrix of the ViT model on (a) the Folio dataset and (b) the 
UCI Leaf dataset, respectively 
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Dataset VGG1
6 

Xceptio
n 

Mobile-
Net 

Dense-
Net201 

ViT 

Swedish Leaf 
Training time (second) 836 552 489 803 1995 
Test time (second/sample) 0.02 0.05 0.03 0.02 0.08 
Flavia 
Training time (second) 2546 3071 2535 1630 2921 
Test time (second/sample) 0.03 0.03 0.02 0.02 0.06 
Folio 
Training time (second) 1755 1386 1135 1466 2430 
Test time (second/sample) 0.08 0.09 0.08 0.09 0.13 
UCI Leaf 
Training time (second) 279 463 397 583 992 
Test time (second/sample) 0.01 0.03 0.01 0.02 0.04 

Table 4: Comparison of Processing Time for Models across Datasets 

 

Figure 13: Comparison of model sizes (Mb) across datasets 

4.3.2 Result of Experiment 2: Prove that OSSGabor filters can help improve 
model accuracy 

In this experiment, we conducted an extended analysis using the ViT model on Gabor 
filter-processed data. We then compared the performance of two different model 
configurations—using the original dataset and the OSSGabor filter-processed dataset—
to determine the most effective model. We used the parameter grid described in Table 
1 (Section 3.3) to find the optimal parameters for the OSSGabor filter. Table 4 presents 
the optimal parameter set obtained by evaluating and comparing the SSIM values of 
various filters, covering all possible parameter combinations derived from Table 1. 
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Figure 14 shows the results of applying the OSSGabor filter with the optimal set of 
parameters to an image in the Swedish Leaf, Flavia, Folio, and UCI Leaf, respectively. 

 
Dataset Best Parameters 

(number of filters,  filter size, σ, λ, ψ, γ) 
# SSIM values 

Swedish Leaf (16, (21, 21), 2, 5, 0.75, 0) 0.731 
Flavia (16, (15, 15), 2, 6, 0.5, 0) 0.815 
Folio (16, (15, 15), 3, 7, 0.25, 0) 0.795 
UCI Leaf (16, (15, 15), 3, 6, 0.75, 0) 0.742 

Table 4: Best parameters of all datasets 

 

Figure 14: Original image and corresponding Gabor filter responses across different 
datasets 

Name Parameter Set 
(number of filters,  filter size, σ, λ, 

ψ, γ) 

Accuracy 
(%) 

F1 score 
(%) 

Set 1 (16, (15, 15), 3, 6, 0.5, 0) 96.63 96.42 
Set 2 (4, (15, 15), 3, 6, 0.75, 0) 97.75 97.81 
Set 3 (8, (15, 15), 3, 6, 0.75, 0) 97.75 98.04 
Set 4 (16, (15, 15), 3, 7, 0.75, 0) 98.87 98.81 
Set 5 (16, (21, 21), 3, 6, 0.5, 0) 95.51 93.98 

Optimal 
Parameter 

Set  

(16, (15, 15), 3, 6, 0.75, 0) 98.88 99.00 

Table 5: ViT accuracy comparison with different Gabor parameter sets on the UCI 
Leaf Dataset 
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To validate the selection of the optimal parameter set using SSIM, additional 
experiments were conducted with various parameter configurations. These included 
sets with four and eight directions while keeping other parameters constant, as well as 
three sets where only one parameter was altered at a time. The results presented in Table 
5 demonstrate that the ViT method, when applied to images filtered with the optimal 
SSIM-based parameter set, achieved the highest recognition accuracy compared to 
manually chosen parameter configurations on the UCI Leaf dataset. This confirms the 
effectiveness of the OSSGabor filter in improving leaf feature extraction for plant 
classification. Furthermore, Table 6 presents the K-fold cross-validation results of the 
OGViT method across four different datasets. The proposed algorithm consistently 
achieved high performance, with an average accuracy (Mean) across all folds exceeding 
0.9751, showcasing strong generalization capabilities and the absence of overfitting. 
The low standard deviation (STD-DEV) across datasets, ranging from 0.0037 to 
0.0167, indicates that the model's performance was stable across different folds, 
validating the effectiveness of the data partitioning process in K-fold validation. 
Additionally, the model demonstrated near-perfect precision on both the Swedish Leaf 
and Flavia datasets. Although performance on the Folio dataset was slightly lower, this 
can be attributed to the dataset’s more complex distribution. The model also maintained 
strong performance on the UCI Leaf dataset with high average precision. 
 

Dataset Fold 1 Fold 2 Fold 3 Fold 4 Fold 5 Mean STD-DEV 

Swedish Leaf 1 1 0.9956 0.9911 1 0.9973 0.004 

Flavia 1 0.9921 0.9948 1 1 0.9974 0.0037 

Folio 0.9921 1 0.9842 1 0.9685 0.9889 0.0132 

UCI Leaf 1 0.9551 0.9775 0.9773 0.9659 0.9751 0.0167 

Table 6: Accuracy of the OGViT method through K-fold cross-validation across four 
datasets 

 
Figure 15: Accuracies of of ViT model and OGViT model - UCI Leaf 
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Dataset Accuracy 
(%) 

F1 score 
(%) 

Test time 
(second/sam

ple) 
Swedish Leaf 
Original Image 100 100 0.08 
Gabor Filter images 100 100 0.10 
Flavia 
Original Image 100 100 0.06 
Gabor Filter images 100 100 0.10 
Folio 
Original Image 99.22 99.22 0.13 
Gabor Filter images 100 100 0.16 
UCI Leaf 
Original Image 97.75 97.33 0.04 
Gabor Filter images 98.88 99.00 0.07 

Table 7: Comparative performance of two models (ViT with original images, ViT with 
Gabor Filter Images) across datasets 

 
Figure 16: Confusion matrix of the OGViT model on (a) the Swedish Leaf dataset and 

(b) the Flavia dataset, respectively 

 

  

 

(a)  

(b) 
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Figure 17: Confusion matrix of the OGViT model on (a) the Folio dataset and (b) the 

UCI Leaf dataset, respectively 

After applying the OSSGabor filter with optimal parameter sets to four datasets, 
we conducted experiments to compare the performance of the ViT method on the 
original datasets and the datasets filtered by OSSGabor. Figure 15 presents the accuracy 
chart of the ViT model on these two datasets during training. The confusion matrices 
for the OGViT method across all datasets are shown in Figures 16 and Figure 17. The 
results in Table 7 demonstrate that all four datasets processed with the OSSGabor filter 
achieved high accuracy when used for model building. For the UCI Leaf dataset, which 
contains the fewest images per class, the OSSGabor-filtered images achieved an 
accuracy of 98.88% and an F1 score of 99.00%, outperforming the original images, 
which reached 97.75% and 97.33%, respectively. Although the proposed method 
requires slightly more processing time per sample compared to the ViT model on the 
original dataset, this difference is minor. Given the improved accuracy, the proposed 
approach remains a strong candidate for plant leaf identification tasks. 

 
4.4 Discussion 

The primary objective of our study was to evaluate the effectiveness of combining the 
OSSGabor filter with the ViT model for classifying medicinal plants, a method we call 
OGViT. Our key finding is a significant improvement in classification accuracy, 
confirming that the OSSGabor filter enhances the performance of the ViT model. We 
tested OGViT on four diverse datasets, each presenting distinct challenges, from high- 
to low-resolution images and varying sample sizes per class. The high accuracy 
achieved across all datasets highlights the model's versatility, robustness, and 
adaptability to a range of real-world data conditions, demonstrating its potential for 
broad application. While OGViT showed strong performance in medicinal plant 
classification, a limitation of this study is that the evaluation was based on only four 
datasets. Although these datasets include a wide variety of medicinal plants, the 

 

  

(a) 
  

(b) 
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model’s performance may vary when applied to different plant species or real-world 
imaging conditions. Compared with existing research, as detailed in Table 8, our results 
represent a significant advancement in plant classification. Prior studies have 
demonstrated the progression of leaf classification techniques, from traditional feature 
extraction to deep learning, and from single approaches to hybrid methods. While deep 
learning dominates, traditional methods still show strong performance in specific cases. 
By combining the strengths of both approaches (traditional feature extraction with deep 
learning), our study establishes a new benchmark in this field. The integration of the 
OSSGabor filter with ViT resulted in exceptionally high accuracy, particularly in 
medicinal plant classification, underscoring the potential of this hybrid approach. In 
practical terms, precise identification of medicinal plants is crucial in traditional 
medicine, as it reduces errors and facilitates the discovery of new compounds. 
Additionally, our research contributes to botany and agriculture by aiding in the 
conservation of plant diversity and improving crop selection, though its broader impact 
will depend on ongoing advancements in these fields. 
 

 Datasets Best 
accuracy 
(%) 

Method 

Our study Swedish 100 OSSGabor Filter and ViT 
Flavia 100 
Folio 100 
UCI Leaf 98.88 

[Elhariri et al., 
2014] 

UCI Leaf 92.65 LDA 

[Arafat et al., 
2016] 

Flavia 98.00 Colored SIFT (CSIFT) 

[Aakif and Khan, 
2015] 

Flavia  96.00 Fourier descriptors, 
shape defining-feature 
and ANN 

[Lee et al., 2015] Flavia  99.40 CNN, Fine-Tuning 
[Wick and Puppe, 
2017] 

Flavia  99.00 CNN 

[Yang, 2021] Flavia,  99.10  Multiscale triangle 
descriptor and local 
binary pattern histogram 
Fourier (LBP-HF) 

Swedish Leaf 98.40 

[Gu et al., 2021] Folio  97.90 VGG16 
[Lv and Zhang, 
2023] 

Flavia  
Swedish Leaf 

99.30 
99.52 

LBP, HOG, PCA, and 
Extreme Learning 
Machine 

Table 8: Related works summary –Classification accuracy 
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5 Conclusions and Future Work 

In conclusion, this study presents an innovative approach by combining the OSSGabor 
filter with the ViT model for plant leaf recognition. The OSSGabor filter serves as a 
powerful feature extraction technique, leveraging the responses of Gabor filters in 16 
directions and optimizing their parameters using the SSIM. This method effectively 
captures intricate leaf details, such as veins, texture, and frequency variations, which 
are critical for enabling ViT to maximize its deep learning capabilities for leaf 
recognition. The significant improvement in classification accuracy across multiple 
datasets validates the efficacy of this combined approach. While our research focused 
on integrating OSSGabor with ViT, the potential for OSSGabor to be applied with other 
deep learning architectures remains largely untapped. Future studies could explore its 
integration with the state-of-art deep learning models to assess additional performance 
gains or task-specific advantages. Moreover, the success demonstrated with leaf 
recognition suggests that OSSGabor could be equally effective in analyzing other 
botanical structures, such as flowers, stems, roots, or fruits. Expanding the application 
of OSSGabor could lead to more comprehensive plant identification systems, 
broadening its utility in botany and beyond. 

Future research will explore new deep learning methods and address computational 
challenges, focusing on larger, diverse plant datasets to refine the approach. This holds 
promise for advancing botanical research and supporting biodiversity conservation with 
better plant identification tools. 
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