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Abstract: In this paper, we sharpen the results of Gartner on the universality of
partition-limited ETOL systems by showing that such deterministic systems character-
ize the recursively enumerable sets, and, furthermore, the propagating deterministic
partition-limited ETOL systems characterize the programmed languages with appear-
ance checking disallowing erasing productions.

The main results of this paper have been announced in [10].
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1 Introduction and definitions

Recently, interest emerged concerning limited parallel rewriting, which is also
well-justified considering the original biological motivation of Lindenmayer sys-
tems [17, 18], since the idea of unlimited growth is only realistic at certain scales.
Especially, realistic growth rates cannot be obtained by unrestricted Linden-
mayer systems [21].

We assume the reader to be familiar with some basics of formal language
theory. Our notational conventions are: the empty word is denoted by A; the
length of a word z is denoted by |z|. If # € V*, where V is some alphabet, and
if W C V, then |z|w denotes the number of occurrences of letters from W in
z. Inclusion is denoted by C, while strict inclusion is written C. We use bracket
notations in order to say that the statement holds both in the case of excluding
and in the case of including the bracket contents consistently.

A partition-k-limited ETOL system is a sixtuple G = (V, V', {P1,..., P}, w,
m, k) where V' is a non-empty subset (terminal alphabet) of the alphabet V,
w € V1 is the axiom, and each so-called table P; is a finite subset of V x V* which
satisfies the completeness condition, 1.e., for each a € V, there is at least one
word w € V* such that a — w € P;, hence, each P; defines a finite substitution
o; 1 V* = 2V xis a partition of V, ie., m = {my, ..., m,} with U_,m=V
and 1 < i< j < s implies m; N 7; = O (the sets m; are called parts of 7), and &
1s some natural number. G is called propagating if no table contains an erasing
production ¢ — A. Similarly, the notion of deterministic system is inherited
from the theory of Lindenmayer systems, i.e., G is called deterministic if no
table contains two different productions with the same left-hand side. According
to G, z = y (for z,y € V*) iff there is a table P; and @ = zga1@1 - - - onp, y =
zof1z1 - - - Oy such that o, — G, € P; for each 1 < v < n, such that, for each
part 7; of the partition of 7, either (1) |ay - -anlr; =k or (2) a1 anlr, <k
and |zoz1 - Tplr, =0
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As usual, the language generated by G is given by L(G) = {w € V|
w = w}, where = denotes the reflexive transitive closure of =.

As special cases, we define uniformly k-limited ETOL systems (introduced
by Watjen and Unruh in [23, 26]) restricting ourselves to partitions of the form
m = {V}, and k-limited ETOL systems (introduced by Watjen in [22]) via the
restriction to partitions of the form 7 = {{a} |a € V}.

In order to state our results, we define programmed grammars. A programmed
grammar ([6, 20]) is a construct G = (Vi, Vi, P, S), where Vi, Vr, and S are
the set of nonterminals, the set of terminals and the start symbol, respectively,
and P is a finite set of productions of the form (r : o — S, o(r), ¢(r)), where
r . a — B is a rewriting rule labelled by » and o(r) and ¢(r) are two sets of
labels of such core rules in P. By Lab(P) we denote the set of all labels of the
productions appearing in P. For (z,r1) and (y,72) in VZ x Lab(P), we write
(z,71) = (y,re) iff either

1. z = z1023, y = 210822, (r1: @ = B, o(r1), ¢(r1)) € P, and r3 € o(r1), or
2. ¢ =y, the rule 71 : a — [ for some production (r1 : & = G, o(r1), ¢(r1)) €
P is not applicable to z, and r; € ¢(r1).

In the latter case, the derivation step is done in appearance checking mode. The
set o(r1) is called success field and the set ¢(r1) failure field of r1. The language
generated by G is defined as

L(G) = {w € V7 |(8,71) = (w, rs) for some 71,75 € Lab(P)}.

In the literature, six language classes are considered, stemming from allow-
ing/disallowing erasing productions and three different conditions on the success
and failure fields:

with appearance checking no restrictions (notation: £(P, CF[—A], ac));
without appearance checking ¢(r) = 0 for each rule;
with unconditional transfer ¢(r) = o(r) for each rule.

Moreover, we need the notion of transducer.

A one-input finite state transducer with accepting state, or 1-a-transducer for
short, is a 6-tuple M = (Q, X, Y, H, qo, g5), where @ is a finite set of states, X and
Y are finite (input and output) alphabets, gq € @ is the initial state, and ¢; € Q
is an accepting or final state, and H is a finite subset of @ x (XU{A}) x Y™ x Q.
M is called A-free if HC Q x (XU{A}) x Y+ x Q.

By a computation of such a 1l-a-transducer a word h = hy---h, € HT is
understood such that

— pry(h1) = qo, Pra(hn) = g5;
— V1 <o <n—1(pry(hit1) = pra(hi));

where pr; are projection homomorphisms on H* defined by
pr;((z1, 22,3, 24)) = z; for 7=1,2,3,4.

The set of all computations of M is denoted by C(M). A I-a-transducer mapping
is defined for each language L C X* by M (L) = prs(pr; '(L) N C(L)).
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Remark. Tt is well-known [1] that a family of languages £ is a trio if and only if
1t 1s closed under A-free l-a-transducer mappings. £ is a full trio iff it is closed
under l-a-transducer mappings.

A [full] abstract family of languages, [F]AFL for short, is a [full] trio closed
under union and iteration-T.

2 Results

In the following, we give a proof of a sharpened variant of [13, Satz 6.3.3], which,
in addition, answers some questions (raised by Gartner in [13]) on the power of
propagating and deterministic partition-limited ETOL systems.

First, we need a lemma whose proof is done by standard construction (see

also [13, Satz 6.3.2]).

Lemmal. Let k > 1. The family of languages generated by [propagating] deter-
manistic partition-k-limited ETOL systems s closed under union. a

Theorem 2. For every given [non-erasing] programmed grammar with appear-
ance checking, there exists an equivalent [propagating] deterministic partition-1-
limited ETOL system and vice versa.

Proof. ‘==":Let L € L(P,CF[—]], ac) be a language over the terminal alphabet
Vr. Consider
L= |J {ab}Lapu L,
a,beVp

where Loy, = {w € VI | abw € L}, and L’ is a finite supplementary language,
precisely, L' = {w € L | |w| < 2}. Since £(P,CF[—],ac) is an AFL [6], it is
closed under left derivatives and intersection with regular sets, hence each of the
languages L, is contained in £L(P, CF[—A], ac).

Clearly, L' is generable by a [propagating] deterministic partition-limited
ETOL system. Now, we are going to show that each of the languages {ab}Lgp
is generable by a [propagating] deterministic partition-limited ETOL system. By
the lemma stated above, it follows that L itself is generable by a [propagating]
deterministic partition-limited ETOL system.

Let G = (Vw, Vr, P, S) be a programmed grammar with label set Lab(P) =
{p1,...,pn} generating Lgp.

We construct a [propagating] deterministic partition-1-limited ETOL system

G =(V,Vp,H, 8 x,1) with

V=VnUVr U{S,F # #TU{A" | A€ Vy}ULab(P),
—
::VI(I

where the partition = is given by

{Vr 48,7}, Vi U {3, Lab(P), Vi U{#}}
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The set H of tables is described in the following.

hinit = {8 — p#S |p € Lab(P)}U{X - F | X £ 8},
htin ={p—a|pe€Llab(P)}U{c—c|ceVr}U{# — b}
U{X 5 F|Xec{SF#IUVNyUV};

for every (p; : A — w,o(p;),¢(pi)), 1 < i < n and for every ¢ € o(p;), we
introduce a table

hig={pi > q}U{c—cleceVr}U{4 - w}
U{X = F|X ¢{pi,A}UVT },

and, (if ¢(p;) # 0) tables

={pi > pi}U{B—B B - B |A+B,BecVy}
U{c—cleceVr}U{#—# # = #}
U{X = F| X e (Lab(P)\ {p:}) U{4, 4", 5§, F}},

as well as, for every ¢ € ¢(p;),

bl ={pi = q}U{c—clce Vr}U{# — #}
U{X = F|X e (Lab(P)\{p: ) U{S, F,#}UVy UV },
R"={qg—qlaed(p)}U{c—c|lceVr}
U{B"—-B,B—B|A#B,BecVy}

U{X = F| X e (Lab(P)\ ¢(p;)) U{A, A", S, F #, #1}.

The tables h; 4 simulate an application of p; in the success case. If the sym-
bol A is not present in the current sentential form, an application of h; 4 would
introduce the failure symbol F', since A and # belong to the same part of the
partition.

The sequence (hg)"‘hg”q(hg”)* allows for negative appearance checks. h/ has to
be applied until every nonterminal B is converted to its primed version B’, and #
is converted to #’. Then, the application of h”q checks the non-occurrence of A4,
since all other symbols in the part Viy U {#} of the partition 7 have been turned
into their primed counterparts. At the same time, the label p; 1s safely changed
into some ¢ € ¢(p;). Finally, applications of h’” permit turning each primed
nonterminal B’ back into its unprlmed version B The colourings obtained by
tables k. and A’ are necessary, since otherwise a non-occurrence check of the
symbol A contained in a part of the partition where other symbols also belong
to 1s difficult.

‘<—=": We only sketch the basic ideas. In principle, a sequentialization tech-
nique similar to [5] is applicable. First, nondeterministically a table h to be sim-
ulated 1s chosen, then, every part m; of a partition 7 of the alphabet is scanned:

— non-occurrence assumption: no symbol in 7; occurs in the current string; this
can be checked sequentially by (¢1 : A1 — F, 0, {t2}),...,(tn : An — F,0,7),
where m; = {A;,...,A,} and F is a special failure symbol.

— occurrence assumption of A;: some production A; — w € h is selected,
leading to a production of the form (? : 4; — w,?,0). O
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As in the case of 1-limitation, it is easy to show the following:

Lemma3. Let k > 1. For every given [propagating] deterministic partition-k-
limited ETOL system, there ezists an equivalent [non-erasing] programmed gram-
mar with appearance checking. a

From the well-known closure properties of programmed languages [6], we
infer:

Corollary 4. The family of languages generated by propagating (deterministic)
partition-1-limited ETOL systems s an AFL. The family of languages generated
by (deterministic) partition-1-limited ETOL systems s a FAFL and coincides
with the recursively enumerable sets. a

The following lemma corrects and generalizes the proof of [13, Satz 6.3.2].

Lemmab5. Letk > 1. The family of languages generated by propagating partition-
k-limited ETOL systems s a trio. The famaily of languages generated by partition-
k-limited ETOL systems is a full trio.

Proof. By our remark, we have to show the closure of the corresponding language
families under 1-a-transducer mappings. So, let G = (V, A, {P1,..., P}, w, 7,
k) be a partition-k-limited ETOL system with 7 = {m1,..., 7} and let M =
(Q,A, A H,qo,q5) be a l-a-transducer.

We construct a partition-k-limited ETOL system G’ = (V/, A, P, S, ', k)
such that L(G') = M(L(G)). The idea is a modification of the classical triple
construction. Let

V' = (Q@x (VU{I}) x QU{S,F,L}UA and
m={r, . YU{{S,F,LIUAU(Qx{L}xQ)},

where 77 = {(g,a,¢') [ 9,9’ €Q,a € 7; }.
Let the mapping ¢ : V* — 2V be given by A = Q x {L} x Q, a — Q X
{a} x @ for a € V, and in general, with V1 < ¢ < n(w; € V), w1 - -wp —
{((11,101,92) e '(Qnywnan+l) | Vi<i<n+ 1(91' € Q)}
P contains the following tables:
hinit ={S = v1 v |v1- vy Ec(W)AVI <i<n(v; € (@ XV XQ))
Ago =pri(v1) Ags =pra(vn) }U{X = F | X # S}

for every 1 < p <r, let
hy={a—-w|acola)ANbec(w)Aa—wEP,
Apry (1) = pry (@) A pra(ls|) = pra(a)}
U{(e,L,d) = (¢,L,d) | ¢,d €Q}
U{X > F|X€e{S,FLIUA};

hr ={(¢,B,q") = (¢,B,4')(d', L,q"),(¢,B,¢") — (¢,L,¢')(d', B,q"),
(¢,B,¢") = (¢,B,¢") | q,¢',¢d" €Q,BeVU{L}}
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U{X > F|X€e{S,FLIUA};

—w|(g,a,w,q¢)EHa€Awe A}
—wl(g,\w,q)eHwe AT}
U{(g,a,¢) = L|(g,0,\¢)€Hac A}
U{(g,L,d)—=>L|(g,\\\¢)eH}
U{(e,L,9) > L|q€Q}

U{a—alaec AU{L}}

U{X > FIXe{SFIUu@x(V\A)xQ)}

~—

hfi'n.,l = {(qya‘yq/
U{(qg, L, ¢
(g,a
(

~— N

htina={L =X U{a—alacAIU{X > F|X¢gAU{L}}]
A few comments on the construction may be in order:

— The initialization table h;y,;: 1s the only one which can be successfully applied
to the start symbol S. h;,;: guarantees that the l-a-transducer M whose
application is to be simulated starts in ¢o and ends up in g¢;.

— Since the partitions are inherited from the original system G properly, the
tables h, simply simulate the original tables P, in some shadow alphabet
Q x (VU{L}) x Q instead of V. L serves as some placeholder for the empty
word A.

— hyz, helps to deal with A-moves of the 1-a-transducer.

— In case only symbols from @ x (AU {L}) x @ occur in the present string,
the table h;y, 1 can be applied, which immediately introduces some symbols
from A’ U{L} whose occurrence prevents further applications of the tables
hy.

— II;) order to get rid of the non-terminal L, the last table hf;y, 2 has to be
applied. At this stage, the string contains only terminal letters and the sym-

bol L.

Observe that, in case of propagating systems and A-free transducers, the last
table (which is the only one containing erasing productions) can be omitted. O

Theorem 6. Letk > 1. The family of languages generated by propagating partition-
k-limited ETOL systems is an AFL. The family of languages generated by partition-
k-limited ETOL systems is a full AFL.

Proof. By our previous statements, it remains to be proved that the considered
language families are closed under iteration-t. This can be done as in [22, The-
orem 4.14]. O

The following construction generalizes [13, Satz 6.3.4] to propagating sys-
tems.

Theorem 7. Let k > 2. For every given [propagating] partition-1-limited ETOL
system there exists a [propagating] partition-k-limited ETOL system and vice
versa.
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Proof. ‘<=": This assertion is seen combining Theorem 2 with Lemma 3.

‘=" Let G = (V, A, {P1,..., P}, w, m, 1) be a [propagating] partition-
1-limited ETOL system with 7 = {m,...,7ms}. Let k > 2. We will construct a
partition-k-limited ETOL system G' = (V', A, H,w', ', k) generating

{H#1#TIH8I8, 03 L(G)

where the symbols #4, [$, 0], and $ are new symbols, not contained in A. Since
partition-k-limited ETOL languages form an AFL, they are closed under left
derivatives. Hence, by our construction, L(G) is a partition-k-limited ETOL
language.

We start with o’ = #5717 #5198 Olw. Let A = {#; | 1 < i < s}.
Moreover, there are barred versions of the symbols in V' and A, whose sets are
also denoted by V and A, respectively. So, let A’ = AU A U {$,#,[8$,0]}. Let
V= AUVUVUAU{F#3U{[$,7]]|1<i<s+1}.

As partition, we take

= {{#i}U{B|B€7ri} | 1 Sigs}U{V}
U{{8,9]10<i<s+13JU{{# Fryu{Au{# 8}
The tables are defined as follows:

he={B—B,B—B|BecV}U{B—B|BcA}
U{B—F|BcAYU{$,0 —1$1],[$,1]—[$ 1]}
U{S$,i = F|2<i<s+1IU{$—>8$ # > # # - F F— F},

for1<p<r:
h,={B—v|B—veP,}JU{B—B|BcA}
U{B—F|BcA}YU{B—>F|BecV}
U {[$,0] — F,[$,1] —[$,2],[$,2] — F}
U{[$,i ] = F|3<i<s+1IU{$—>8$# - # # - FF— F}

h.={B—-B,B—B|BcV}
U{B—F|BcAYU{B—-B|BcA}
U {[$,0] = F,[$,1]— F,[$,2] = [$,2]}
U{$,{] > F|3<i<s+1}
U{#—-># 88 # - # F— F},

for 1 <i<s:
¢i={B—F|BcVIU{B—-B|BeV}
U{B—B|BcA}YU{B—+B|BcA}
U{[$,i+1] —[$,(+2) mod (s+2)]}
U{#' - #,#—>#$>FF— F}
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Assume we want to simulate a derivation step w = v of the original grammar
G. In G, this corresponds to a number of steps, deriving

llc—l . .#lsc—l#s$[$’ O]UJ iy #lf—l .. .#'l:—l#s$[$’ 0]1) )

When finishing with the colouring process via several applications of A, we have
a string of the form #%~1...#*~145§[$ 1]@, where @ is obtained from w by
barring all symbols in w. For simulating one application of P,, we have to apply
h,. Now, there is a string of the form #¥~1...4F-14:8[§ 2]v/, where some
symbols in v are barred, some are not. Several applications of k. lead to a string
#lf_l . ~#lj_l#/s$[$,2]v. So, we have to check whether we correctly selected
one occurrence of a symbol from part m; (if possible) and (k — 1) occurrences
of #; when applying h,. A possible error would have occurred if we selected
more than one occurrence of a symbol from part m; and, accordingly, less than
(k — 1) occurrences of #; when applying h,. (Furthermore, we check whether
there are still some barred symbols from V.) In the errorfree case, there are
s-(k—1)+s+1=s-k+ 1 occurrences of symbols from the part AU {#', $}.
Using subsequently the tables g1,...,gs (this is enforced by the marker [$, ¢]),
we can check this, since the production $ — F' is always applicable. Now, we
should have arrived at a string of the form #lf_l R I45818 0w, O

Since the partition-k-limited ETOL system constructed in the last theorem
1s deterministic if the given partition-1-limited ETOL system is deterministic,
combining Theorems 2 and 7, we obtain our main result:

Theorem 8. Let k, k' > 1, L C V*. The following assertions are equivalent:

— L is generated by a [propagating] partition-k-limited ETOL system.
— L is generated by a [propagating] deterministic partition-k'-limited ETOL

system.
— L s generated by a [non-erasing] programmed grammar with appearance
checking. a

As a special case, this last theorem yields [13, Satz 6.3.5].

Corollary 9. There are context-sensitive languages which cannot be generated
by partition-limited propagating ETOL systems.

Proof. This follows immediately from our theorem, keeping in mind the strict
inclusion of £L(P,CF — A, ac) within the family of context-sensitive languages, as
proved by Rosenkrantz [20]. O

Corollary 10. The family of languages generated by partition-limaited propagat-
ing ETOL systems 1s strictly included wn the famaly of languages generated by
partition-limited ETOL systems. a

As mentioned in the introduction, partition-k-limited Lindenmayer systems
are a generalization of both k-limited and uniformly k-limited Lindenmayer sys-
tems. Therefore, 1t 1s of interest to see whether or when these natural subclasses
coincide with the class £(P, CF[—A], ac) of languages generable by partition-k-
limited [propagating] ETOL systems.
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Corollary11. — The class of 1-limited [propagating] ETOL languages (which
equals the class of languages generated by [non-erasing] programmed gram-
mars with unconditional transfer, see [5, 10]) coincides with the class of
partition-1-limited [propagating] ETOL languages if and only if the class of
1-limited [propagating] ETOL languages is closed under left derivatives.

— The class of k-limited ETOL languages coincides with the class of partition-k-
limited ETOL languages if and only if the class of k-limited ETOL languages
1s closed under wntersection with reqular sets.

— The class of uniformly k-limited [propagating] ETOL languages is strictly
wncluded in the class of partition-k-limited [propagating] ETOL languages.

Proof. The first two assertions basically follow from [7], for the propagating case
refer to [10].

The third assertion follows from the fact that uniformly limited [propagat-
ing] systems can be simulated by [non-erasing] programmed grammars without
appearance checking [11], and this family of languages is strictly included in

L(P,CF[=]], ac), see [8, 9, 14, 15]. O

Observe that the second assertion is only known in the case admitting erasing
productions.

3 Discussion

In addition, let us mention that there exists still another proof of [13, Satz 6.3.3],
namely, since partition-limited ETOL languages are closed under intersection
of regular sets [13, Satz 6.3.1] and they are containing the 1IETOL languages,
by [7, Remark 4.2.2] (which readily transfers to this case), they characterize the
recursively enumerable sets. A similar argument applies to the propagating case,
too, cf. [10].

It has been shown by Gértner [13, Satz 6.4.1] that two tables suffice in or-
der to generate every partition-limited ETOL language. The proof — which is
basically an adaptation of the proof given in [25] in the case of k-limited ETOL
systems — carries over to the propagating case as well.

The question whether systems with just one table (EOL systems) are already
sufficient to generate every partition-limited ETOL language remains open, both
in the propagating and in the nonpropagating case. For limited ET0L system,
this problem was solved by Watjen [24].

In this connection, it would be interesting to know whether partition-limited
EOL systems are strictly more powerful than their natural subclasses, the limited
EOL systems and uniformly limited EOL systems, respectively. Possible candi-

dates would be {a®" | n > 0} and {a®" | n > 1}. These languages cannot be
generated neither by limited EOL systems [24] nor by uniformly limited E(T)0L
systems, see [11, 14].

There is an interesting connection between partition-1-limited ETOL systems
and cooperating distributed grammars with prescribed teams, see [12, 16, 19].
Since partitions on the alphabet implicitly impose a partition on the tables,
which could be viewed as sets of rule sets in such a way, tables correspond to
teams.

We only sketch some differences in the following:
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A team 1s applied by applying exactly one element of the team members
(which are sets of productions) in parallel. On the contrary, in partition-
1-limited ETOL systems, a “team” (= table) is still applicable when some
members are not applicable, since none of the left-hand sides of their pro-
ductions is present in the current string.

— Teams in cooperating distributed grammars with prescribed teams may be

formed quite freely, while the teams in partition-1-limited ETOL systems are
formed once and forever, due to the partition of the alphabet.

— There 1s no such thing as the completeness condition in the team formation.

Especially, terminal symbols are not rewritten in cooperating distributed
grammars with prescribed teams.

— This last seemingly minor difference is the main reason why there is nothing

like the ¢{-mode in partition-1-limited ETOL systems. More precisely, only
the star-mode (a team may work on the sentential form as long as it likes)
has been considered in partition-1-limited ETOL systems (here, we adopt the
notions from the theory of cooperating distributed grammar systems, see,
e.g., the monograph [3]).

— As regards the obtained language classes, we can state the maybe surprising

fact that cooperating distributed grammars with prescribed teams working
in the star-mode (characterizing the programmed languages without appear-
ance checking) are strictly contained in the partition-1-limited ETOL lan-
guages (characterizing the programmed languages with appearance check-

ing) due to [8, 9, 14, 15].

A similar comment applies to so-called stratified grammar systems, see [2, 4].
Finally, let us mention that intuitively there is a close connection between

partition-limited systems and grammars controlled by a bicoloured digraph with
unconditional transfer, see [10]. In both cases, we obtain a characterization of
appearance checking via unconditional transfer due to the applicability definition

of

rule sets (instead of single production as in limited systems or, again equiva-

lently, in programmed grammars with unconditional transfer). This might be a
third idea to prove [13, Satz 6.3.3] along the lines of [5].
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