
Remarks on

Propagating Partition-Limited ET0L Systems

Henning Fernau

Wilhelm-Schickard-Institut f�ur Informatik; Universit�at T�ubingen
Sand 13; D-72076 T�ubingen; Germany

email: fernau@informatik.uni-tuebingen.de

Abstract: In this paper, we sharpen the results of G�artner on the universality of
partition-limited ET0L systems by showing that such deterministic systems character-
ize the recursively enumerable sets, and, furthermore, the propagating deterministic
partition-limited ET0L systems characterize the programmed languages with appear-
ance checking disallowing erasing productions.
The main results of this paper have been announced in [10].

Key Words: Formal languages, parallel rewriting systems, k-limited systems.

Category: F.4.2, F.4.3

1 Introduction and de�nitions

Recently, interest emerged concerning limited parallel rewriting, which is also
well-justi�ed considering the original biological motivation of Lindenmayer sys-
tems [17, 18], since the idea of unlimited growth is only realistic at certain scales.
Especially, realistic growth rates cannot be obtained by unrestricted Linden-
mayer systems [21].

We assume the reader to be familiar with some basics of formal language
theory. Our notational conventions are: the empty word is denoted by �; the
length of a word x is denoted by jxj. If x 2 V �, where V is some alphabet, and
if W � V , then jxjW denotes the number of occurrences of letters from W in
x. Inclusion is denoted by �, while strict inclusion is written �. We use bracket
notations in order to say that the statement holds both in the case of excluding
and in the case of including the bracket contents consistently.

A partition-k-limited ET0L system is a sixtuple G = (V; V 0, fP1; : : : ; Prg, !,
�, k) where V 0 is a non-empty subset (terminal alphabet) of the alphabet V ,
! 2 V + is the axiom, and each so-called table Pi is a �nite subset of V �V

� which
satis�es the completeness condition, i.e., for each a 2 V , there is at least one
word w 2 V � such that a! w 2 Pi, hence, each Pi de�nes a �nite substitution
�i : V

� ! 2V
�

. � is a partition of V , i.e., � = f�1; : : : ; �sg with
Ss

i=1 �i = V
and 1 � i < j � s implies �i \ �j = ; (the sets �i are called parts of �), and k
is some natural number. G is called propagating if no table contains an erasing
production a ! �. Similarly, the notion of deterministic system is inherited
from the theory of Lindenmayer systems, i.e., G is called deterministic if no
table contains two di�erent productions with the same left-hand side. According
to G, x) y (for x; y 2 V �) i� there is a table Pi and x = x0�1x1 � � ��nxn, y =
x0�1x1 � � ��nxn such that �� ! �� 2 Pi for each 1 � � � n, such that, for each
part �j of the partition of �, either (1) j�1 � � ��nj�j = k or (2) j�1 � � ��nj�j < k
and jx0x1 � � �xnj�j = 0.

Journal of Universal Computer Science, vol. 2, no. 11 (1996), 745-755
submitted: 30/4/96, accepted: 28/8/96, appeared: 28/11/96  Springer Pub. Co.

As usual, the language generated by G is given by L(G) = fw 2 V 0� j

!
�
) wg, where

�
) denotes the re
exive transitive closure of).

As special cases, we de�ne uniformly k-limited ET0L systems (introduced
by W�atjen and Unruh in [23, 26]) restricting ourselves to partitions of the form
� = fV g, and k-limited ET0L systems (introduced by W�atjen in [22]) via the
restriction to partitions of the form � = ffag j a 2 V g.

In order to state our results, we de�ne programmed grammars. A programmed
grammar ([6, 20]) is a construct G = (VN ; VT ; P; S), where VN , VT , and S are
the set of nonterminals, the set of terminals and the start symbol, respectively,
and P is a �nite set of productions of the form (r : � ! �; �(r); �(r)), where
r : � ! � is a rewriting rule labelled by r and �(r) and �(r) are two sets of
labels of such core rules in P . By Lab(P) we denote the set of all labels of the
productions appearing in P . For (x; r1) and (y; r2) in V �

G � Lab(P), we write
(x; r1)) (y; r2) i� either

1. x = z1�z2; y = z1�z2; (r1 : �! �; �(r1); �(r1)) 2 P; and r2 2 �(r1), or
2. x = y; the rule r1 : �! � for some production (r1 : �! �; �(r1); �(r1)) 2

P is not applicable to x, and r2 2 �(r1) :

In the latter case, the derivation step is done in appearance checking mode. The
set �(r1) is called success �eld and the set �(r1) failure �eld of r1. The language
generated by G is de�ned as

L(G) = fw 2 V �
T j (S; r1)

�
) (w; r2) for some r1; r2 2 Lab(P)g :

In the literature, six language classes are considered, stemming from allow-
ing/disallowing erasing productions and three di�erent conditions on the success
and failure �elds:

with appearance checking no restrictions (notation: L(P;CF[��]; ac));
without appearance checking �(r) = ; for each rule;
with unconditional transfer �(r) = �(r) for each rule.

Moreover, we need the notion of transducer.
A one-input �nite state transducer with accepting state, or 1-a-transducer for

short, is a 6-tupleM = (Q;X; Y;H; q0; qf);where Q is a �nite set of states,X and
Y are �nite (input and output) alphabets, q0 2 Q is the initial state, and qf 2 Q
is an accepting or �nal state, and H is a �nite subset of Q� (X[f�g)�Y ��Q.
M is called �-free if H � Q� (X [f�g) � Y + � Q.

By a computation of such a 1-a-transducer a word h = h1 � � �hn 2 H+ is
understood such that

{ pr1(h1) = q0, pr4(hn) = qf ;
{ 81 � i � n� 1(pr1(hi+1) = pr4(hi));

where pri are projection homomorphisms on H� de�ned by

pri((x1; x2; x3; x4)) = xi for i = 1; 2; 3; 4:

The set of all computations of M is denoted by C(M). A 1-a-transducer mapping
is de�ned for each language L � X� by M (L) = pr3(pr

�1
2 (L) \C(L)):

746 Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

Remark. It is well-known [1] that a family of languages L is a trio if and only if
it is closed under �-free 1-a-transducer mappings. L is a full trio i� it is closed
under 1-a-transducer mappings.

A [full] abstract family of languages, [F]AFL for short, is a [full] trio closed
under union and iteration-+.

2 Results

In the following, we give a proof of a sharpened variant of [13, Satz 6.3.3], which,
in addition, answers some questions (raised by G�artner in [13]) on the power of
propagating and deterministic partition-limited ET0L systems.

First, we need a lemma whose proof is done by standard construction (see
also [13, Satz 6.3.2]).

Lemma1. Let k � 1. The family of languages generated by [propagating] deter-
ministic partition-k-limited ET0L systems is closed under union. ut

Theorem2. For every given [non-erasing] programmed grammar with appear-
ance checking, there exists an equivalent [propagating] deterministic partition-1-
limited ET0L system and vice versa.

Proof. `=)': Let L 2 L(P;CF[��]; ac) be a language over the terminal alphabet
VT . Consider

L =
[

a;b2VT

fabgLab [L
0;

where Lab = fw 2 V +

T j abw 2 Lg, and L0 is a �nite supplementary language,
precisely, L0 = fw 2 L j jwj � 2g. Since L(P;CF[��]; ac) is an AFL [6], it is
closed under left derivatives and intersection with regular sets, hence each of the
languages Lab is contained in L(P;CF[��]; ac).

Clearly, L0 is generable by a [propagating] deterministic partition-limited
ET0L system. Now, we are going to show that each of the languages fabgLab
is generable by a [propagating] deterministic partition-limited ET0L system. By
the lemma stated above, it follows that L itself is generable by a [propagating]
deterministic partition-limited ET0L system.

Let G = (VN ; VT ; P; S) be a programmed grammar with label set Lab(P) =
fp1; : : : ; png generating Lab.

We construct a [propagating] deterministic partition-1-limited ET0L system

G0 = (V; VT ;H; Ŝ; �; 1) with

V = VN [VT [fŜ; F;#;#
0g [fA0 j A 2 VN g| {z }

=:V 0

N

[Lab(P) ;

where the partition � is given by
n
VT ; fŜ; Fg; VN [f#g;Lab(P); V

0
N [f#0g

o
:

747Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

The set H of tables is described in the following.

hinit = f Ŝ ! p#S j p 2 Lab(P) g [fX ! F j X 6= Ŝ g ;

hfin = f p! a j p 2 Lab(P) g [f c! c j c 2 VT g [f#! bg

[fX ! F j X 2 fŜ; F;#0g [VN [V 0
N g ;

for every (pi : A ! w; �(pi); �(pi)), 1 � i � n and for every q 2 �(pi), we
introduce a table

hi;q = fpi ! qg [f c! c j c 2 VT g [fA! wg

[fX ! F j X 62 fpi; Ag [VT g ;

and, (if �(pi) 6= ;) tables

h0i = fpi ! pig [fB ! B0; B0 ! B0 j A 6= B;B 2 VNg

[f c! c j c 2 VT g [f#! #0;#0 ! #0g

[fX ! F j X 2 (Lab(P) n fpig) [fA;A
0; Ŝ; Fg g ;

as well as, for every q 2 �(pi),

h00i;q = fpi ! qg [f c! c j c 2 VT g [f#
0 ! #g

[fX ! F j X 2 (Lab(P) n fpig) [fŜ; F;#g [VN [V 0
N g ;

h000i = fq! q j q 2 �(pi)g [f c! c j c 2 VT g

[fB0 ! B;B ! B j A 6= B;B 2 VNg

[fX ! F j X 2 (Lab(P) n �(pi)) [fA;A
0; Ŝ; F;#;#0g g :

The tables hi;q simulate an application of pi in the success case. If the sym-
bol A is not present in the current sentential form, an application of hi;q would
introduce the failure symbol F , since A and # belong to the same part of the
partition.

The sequence (h0i)
+h00i;q(h

000
i)

� allows for negative appearance checks. h0i has to
be applied until every nonterminalB is converted to its primed version B0, and #
is converted to #0. Then, the application of h00i;q checks the non-occurrence of A,
since all other symbols in the part VN [f#g of the partition � have been turned
into their primed counterparts. At the same time, the label pi is safely changed
into some q 2 �(pi). Finally, applications of h

000
i permit turning each primed

nonterminal B0 back into its unprimed version B. The colourings obtained by
tables h0i and h000i are necessary, since otherwise a non-occurrence check of the
symbol A contained in a part of the partition where other symbols also belong
to is di�cult.

`(=': We only sketch the basic ideas. In principle, a sequentialization tech-
nique similar to [5] is applicable. First, nondeterministically a table h to be sim-
ulated is chosen, then, every part �i of a partition � of the alphabet is scanned:

{ non-occurrence assumption: no symbol in �i occurs in the current string; this
can be checked sequentially by (t1 : A1 ! F; ;; ft2g); : : : ; (tn : An ! F; ;; ?),
where �i = fA1; : : : ; Ang and F is a special failure symbol.

{ occurrence assumption of Aj : some production Aj ! w 2 h is selected,
leading to a production of the form (? : Aj ! w; ?; ;). ut

748 Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

As in the case of 1-limitation, it is easy to show the following:

Lemma3. Let k � 1. For every given [propagating] deterministic partition-k-
limited ET0L system, there exists an equivalent [non-erasing] programmed gram-
mar with appearance checking. ut

From the well-known closure properties of programmed languages [6], we
infer:

Corollary4. The family of languages generated by propagating (deterministic)
partition-1-limited ET0L systems is an AFL. The family of languages generated
by (deterministic) partition-1-limited ET0L systems is a FAFL and coincides
with the recursively enumerable sets. ut

The following lemma corrects and generalizes the proof of [13, Satz 6.3.2].

Lemma5. Let k � 1. The family of languages generated by propagating partition-
k-limited ET0L systems is a trio. The family of languages generated by partition-
k-limited ET0L systems is a full trio.

Proof. By our remark, we have to show the closure of the corresponding language
families under 1-a-transducer mappings. So, let G = (V;�, fP1; : : : ; Prg, !, �,
k) be a partition-k-limited ET0L system with � = f�1; : : : ; �sg and let M =
(Q;�;�0;H; q0; qf) be a 1-a-transducer.

We construct a partition-k-limited ET0L system G0 = (V 0;�0, P , S, �0, k)
such that L(G0) = M (L(G)). The idea is a modi�cation of the classical triple
construction. Let

V 0 = (Q� (V [fLg)� Q) [fS; F; Lg [� and

�0 = f�01; : : : ; �
0
s g [f fS; F; L g [�

0 [(Q � fLg � Q) g ;

where �0j = f (q; a; q0) j q; q0 2 Q; a 2 �j g.

Let the mapping � : V � ! 2V
0�

be given by � 7! Q � fLg � Q, a 7! Q �
fag � Q for a 2 V , and in general, with 81 � i � n(wi 2 V), w1 � � �wn 7!
f (q1; w1; q2) � � � (qn; wn; qn+1) j 81 � i � n + 1(qi 2 Q) g.
P contains the following tables:

hinit = fS ! v1 � � �vn j v1 � � �vn 2 �(!) ^ 81 � i � n(vi 2 (Q� V �Q))

^q0 = pr1(v1) ^ qf = pr3(vn) g [fX ! F j X 6= S g;

for every 1 � � � r; let

h� = f â! ŵ j â 2 �(a) ^ ŵ 2 �(w) ^ a! w 2 P�

^pr1(ŵ1) = pr1(â) ^ pr3(ŵjŵj) = pr3(â)g

[f (q; L; q0)! (q; L; q0) j q; q0 2 Q g

[fX ! F j X 2 fS; F; Lg [�0 g;

hL = f (q; B; q00)! (q; B; q0)(q0; L; q00); (q; B; q00)! (q; L; q0)(q0; B; q00);

(q; B; q00)! (q; B; q00) j q; q0; q00 2 Q;B 2 V [fLg g

749Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

[fX ! F j X 2 fS; F; Lg [�0 g;

hfin;1 = f (q; a; q0)! w j (q; a; w; q0) 2 H; a 2 �;w 2 �0+ g

[f (q; L; q0)! w j (q; �; w; q0) 2 H;w 2 �0+ g

[f (q; a; q0)! L j (q; a; �; q0) 2 H; a 2 � g

[f (q; L; q0)! L j (q; �; �; q0) 2 H g

[f (q; L; q)! L j q 2 Q g

[f a! a j a 2 �0 [fLg g

[fX ! F j X 2 fS; Fg [(Q� (V n�)� Q) g;

hfin;2 = fL! �g [f a! a j a 2 �0 g [fX ! F j X 62 �0 [fLg g:

A few comments on the construction may be in order:

{ The initialization table hinit is the only one which can be successfully applied
to the start symbol S. hinit guarantees that the 1-a-transducer M whose
application is to be simulated starts in q0 and ends up in qf .

{ Since the partitions are inherited from the original system G properly, the
tables h� simply simulate the original tables P� in some shadow alphabet
Q� (V [fLg)�Q instead of V . L serves as some placeholder for the empty
word �.

{ hL helps to deal with �-moves of the 1-a-transducer.
{ In case only symbols from Q � (� [fLg) � Q occur in the present string,
the table hfin;1 can be applied, which immediately introduces some symbols
from �0 [fLg whose occurrence prevents further applications of the tables
h�.

{ In order to get rid of the non-terminal L, the last table hfin;2 has to be
applied. At this stage, the string contains only terminal letters and the sym-
bol L.

Observe that, in case of propagating systems and �-free transducers, the last
table (which is the only one containing erasing productions) can be omitted. ut

Theorem6. Let k � 1. The family of languages generated by propagating partition-
k-limited ET0L systems is an AFL. The family of languages generated by partition-
k-limited ET0L systems is a full AFL.

Proof. By our previous statements, it remains to be proved that the considered
language families are closed under iteration-+. This can be done as in [22, The-
orem 4.14]. ut

The following construction generalizes [13, Satz 6.3.4] to propagating sys-
tems.

Theorem7. Let k � 2. For every given [propagating] partition-1-limited ET0L
system there exists a [propagating] partition-k-limited ET0L system and vice
versa.

750 Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

Proof. `(=': This assertion is seen combining Theorem 2 with Lemma 3.
`=)': Let G = (V;�, fP1; : : : ; Prg, !, �, 1) be a [propagating] partition-

1-limited ET0L system with � = f�1; : : : ; �sg. Let k � 2. We will construct a
partition-k-limited ET0L system G0 = (V 0;�0;H; !0; �0; k) generating

f#k�1
1 � � �#k�1

s #s$[$; 0]gL(G) ;

where the symbols #�, [$; 0], and $ are new symbols, not contained in �. Since
partition-k-limited ETOL languages form an AFL, they are closed under left
derivatives. Hence, by our construction, L(G) is a partition-k-limited ETOL
language.

We start with !0 = #k�1
1 � � �#k�1

s #s$[$; 0]!. Let A = f#i j 1 � i � sg.
Moreover, there are barred versions of the symbols in V and A, whose sets are
also denoted by �V and �A, respectively. So, let �0 = � [A [f$;#; [$; 0]g. Let
V 0 = �0 [�V [V [�A [fF;#0g [f [$; i] j 1 � i � s + 1 g.

As partition, we take

�0 =
�
f#ig [f �B j B 2 �ig j 1 � i � s

	
[fV g

[f f[$; i] j 0 � i � s + 1g g [f f#; Fg g[
�
�A [f#0; $g

	
:

The tables are de�ned as follows:

hc = fB ! �B; �B ! �B j B 2 V g [fB ! B j B 2 A g

[fB ! F j B 2 �A g [f[$; 0]! [$; 1]; [$;1]! [$; 1]g

[f [$; i]! F j 2 � i � s + 1 g [f$! $;#! #;#0 ! F; F ! Fg;

for 1 � � � r :

h� = f �B ! v j B ! v 2 P� g [fB ! �B j B 2 A g

[f �B ! F j B 2 A g [fB ! F j B 2 V g

[f[$; 0]! F; [$; 1]! [$; 2]; [$;2]! Fg

[f [$; i]! F j 3 � i � s + 1 g [f$! $;#! #;#0 ! F; F ! Fg;

h0c = f �B ! B;B ! B j B 2 V g

[fB ! F j B 2 A g [fB ! B j B 2 �A g

[f[$; 0]! F; [$; 1]! F; [$; 2]! [$; 2]g

[f [$; i]! F j 3 � i � s + 1 g

[f#! #0; $! $;#0 ! #0; F ! Fg;

for 1 � i � s :

gi = f �B ! F j B 2 V g [fB ! B j B 2 V g

[f �B ! B j B 2 A g [fB ! B j B 2 A g

[f[$; i+ 1]! [$; (i+ 2) mod (s + 2)]g

[f#0 ! #;#! #; $! F; F ! Fg:

751Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

Assume we want to simulate a derivation step w) v of the original grammar
G. In G0, this corresponds to a number of steps, deriving

#k�1
1 � � �#k�1

s #s$[$; 0]w
�
) #k�1

1 � � �#k�1
s #s$[$; 0]v :

When �nishing with the colouring process via several applications of hc, we have
a string of the form #k�1

1 � � �#k�1
s #s$[$; 1] �w, where �w is obtained from w by

barring all symbols in w. For simulating one application of P�, we have to apply

h�. Now, there is a string of the form �#k�1
1 � � � �#k�1

s #s$[$; 2]v0, where some
symbols in v are barred, some are not. Several applications of h0c lead to a string
�#k�1
1 � � � �#k�1

s #0s$[$; 2]v. So, we have to check whether we correctly selected
one occurrence of a symbol from part �i (if possible) and (k � 1) occurrences
of #i when applying h�. A possible error would have occurred if we selected
more than one occurrence of a symbol from part �i and, accordingly, less than
(k � 1) occurrences of #i when applying h�. (Furthermore, we check whether
there are still some barred symbols from V .) In the errorfree case, there are
s � (k � 1) + s+ 1 = s � k + 1 occurrences of symbols from the part �A [f#0; $g.
Using subsequently the tables g1; : : : ; gs (this is enforced by the marker [$; i]),
we can check this, since the production $! F is always applicable. Now, we
should have arrived at a string of the form #k�1

1 � � �#k�1
s #s$[$; 0]v. ut

Since the partition-k-limited ETOL system constructed in the last theorem
is deterministic if the given partition-1-limited ETOL system is deterministic,
combining Theorems 2 and 7, we obtain our main result:

Theorem8. Let k; k0 � 1, L � V �. The following assertions are equivalent:

{ L is generated by a [propagating] partition-k-limited ETOL system.
{ L is generated by a [propagating] deterministic partition-k0-limited ETOL

system.
{ L is generated by a [non-erasing] programmed grammar with appearance

checking. ut

As a special case, this last theorem yields [13, Satz 6.3.5].

Corollary9. There are context-sensitive languages which cannot be generated
by partition-limited propagating ET0L systems.

Proof. This follows immediately from our theorem, keeping in mind the strict
inclusion of L(P;CF��; ac) within the family of context-sensitive languages, as
proved by Rosenkrantz [20]. ut

Corollary10. The family of languages generated by partition-limited propagat-
ing ET0L systems is strictly included in the family of languages generated by
partition-limited ET0L systems. ut

As mentioned in the introduction, partition-k-limited Lindenmayer systems
are a generalization of both k-limited and uniformly k-limited Lindenmayer sys-
tems. Therefore, it is of interest to see whether or when these natural subclasses
coincide with the class L(P;CF[��]; ac) of languages generable by partition-k-
limited [propagating] ET0L systems.

752 Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

Corollary11. { The class of 1-limited [propagating] ET0L languages (which
equals the class of languages generated by [non-erasing] programmed gram-
mars with unconditional transfer, see [5, 10]) coincides with the class of
partition-1-limited [propagating] ET0L languages if and only if the class of
1-limited [propagating] ET0L languages is closed under left derivatives.

{ The class of k-limited ET0L languages coincides with the class of partition-k-
limited ET0L languages if and only if the class of k-limited ET0L languages
is closed under intersection with regular sets.

{ The class of uniformly k-limited [propagating] ET0L languages is strictly
included in the class of partition-k-limited [propagating] ET0L languages.

Proof. The �rst two assertions basically follow from [7], for the propagating case
refer to [10].

The third assertion follows from the fact that uniformly limited [propagat-
ing] systems can be simulated by [non-erasing] programmed grammars without
appearance checking [11], and this family of languages is strictly included in
L(P;CF[��]; ac), see [8, 9, 14, 15]. ut

Observe that the second assertion is only known in the case admitting erasing
productions.

3 Discussion

In addition, let us mention that there exists still another proof of [13, Satz 6.3.3],
namely, since partition-limited ET0L languages are closed under intersection
of regular sets [13, Satz 6.3.1] and they are containing the 1lET0L languages,
by [7, Remark 4.2.2] (which readily transfers to this case), they characterize the
recursively enumerable sets. A similar argument applies to the propagating case,
too, cf. [10].

It has been shown by G�artner [13, Satz 6.4.1] that two tables su�ce in or-
der to generate every partition-limited ET0L language. The proof | which is
basically an adaptation of the proof given in [25] in the case of k-limited ET0L
systems | carries over to the propagating case as well.

The question whether systems with just one table (E0L systems) are already
su�cient to generate every partition-limited ET0L language remains open, both
in the propagating and in the nonpropagating case. For limited ET0L system,
this problem was solved by W�atjen [24].

In this connection, it would be interesting to know whether partition-limited
E0L systems are strictly more powerful than their natural subclasses, the limited
E0L systems and uniformly limited E0L systems, respectively. Possible candi-

dates would be fa2
n

j n � 0g and fan
2

j n � 1g. These languages cannot be
generated neither by limited E0L systems [24] nor by uniformly limited E(T)0L
systems, see [11, 14].

There is an interesting connection between partition-1-limited ET0L systems
and cooperating distributed grammars with prescribed teams, see [12, 16, 19].
Since partitions on the alphabet implicitly impose a partition on the tables,
which could be viewed as sets of rule sets in such a way, tables correspond to
teams.

We only sketch some di�erences in the following:

753Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

{ A team is applied by applying exactly one element of the team members
(which are sets of productions) in parallel. On the contrary, in partition-
1-limited ET0L systems, a \team" (= table) is still applicable when some
members are not applicable, since none of the left-hand sides of their pro-
ductions is present in the current string.

{ Teams in cooperating distributed grammars with prescribed teams may be
formed quite freely, while the teams in partition-1-limited ET0L systems are
formed once and forever, due to the partition of the alphabet.

{ There is no such thing as the completeness condition in the team formation.
Especially, terminal symbols are not rewritten in cooperating distributed
grammars with prescribed teams.

{ This last seemingly minor di�erence is the main reason why there is nothing
like the t-mode in partition-1-limited ET0L systems. More precisely, only
the star-mode (a team may work on the sentential form as long as it likes)
has been considered in partition-1-limited ET0L systems (here, we adopt the
notions from the theory of cooperating distributed grammar systems, see,
e.g., the monograph [3]).

{ As regards the obtained language classes, we can state the maybe surprising
fact that cooperating distributed grammars with prescribed teams working
in the star-mode (characterizing the programmed languages without appear-
ance checking) are strictly contained in the partition-1-limited ET0L lan-
guages (characterizing the programmed languages with appearance check-
ing) due to [8, 9, 14, 15].

A similar comment applies to so-called strati�ed grammar systems, see [2, 4].
Finally, let us mention that intuitively there is a close connection between

partition-limited systems and grammars controlled by a bicoloured digraph with
unconditional transfer, see [10]. In both cases, we obtain a characterization of
appearance checking via unconditional transfer due to the applicability de�nition
of rule sets (instead of single production as in limited systems or, again equiva-
lently, in programmed grammars with unconditional transfer). This might be a
third idea to prove [13, Satz 6.3.3] along the lines of [5].

References

1. J. Berstel. Transductions and Context-Free Languages, volume 38 of LAMM.
Stuttgart: Teubner, 1979.

2. E. Csuhaj-Varj�u. Grammar systems: a multi-agent framework for natural language
generation. In Gh. P�aun, editor, Mathematical Aspects of Natural and Formal
Languages, volume 43 of World Scienti�c Series in Computer Science, pages 63{
78. Singapore: World Scienti�c, 1994.

3. E. Csuhaj-Varj�u, J. Dassow, J. Kelemen and Gh. P�aun. Grammar Systems: A
Grammatical Approach to Distribution and Cooperation. London: Gordon and
Breach, 1994.

4. E. Csuhaj-Varj�u, J. Dassow, J. Kelemen and Gh. P�aun. Strati�ed grammar sys-
tems. Computers and Arti�cial Intelligence, 13(5):409{422, 1994.

5. J. Dassow. A remark on limited 0L systems. J. Inf. Process. Cybern. EIK,
24(6):287{291, 1988.

6. J. Dassow and Gh. P�aun. Regulated Rewriting in Formal Language Theory, vol-
ume 18 of EATCS Monographs in Theoretical Computer Science. Berlin: Springer,
1989.

754 Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

7. H. Fernau. Membership for 1-limited ET0L languages is not decidable. J. Inf.
Process. Cybern. EIK, 30(4):191{211, 1994.

8. H. Fernau. Observations on grammar and language families. Technical Report
22/94, Universit�at Karlsruhe, Fakult�at f�ur Informatik, August 1994. Most of this
report will appear in Fundamenta Informaticae in 1996.

9. H. Fernau. A predicate for separating language classes. EATCS Bulletin, 56:96{97,
June 1995.

10. H. Fernau. On unconditional transfer. In W. Penczek and A. Szalas, editors,
Proceedings of MFCS'96, volume 1113 of LNCS, Berlin: Springer, 1996.

11. H. Fernau and H. Bordihn. Remarks on accepting parallel systems. International
Journal of Computer Mathematics, 56:51{67, 1995.

12. R. Freund and Gh. P�aun. A variant of team cooperation in grammar systems.
Journal of Universal Computer Science, 1:105{130, 1995.

13. S. G�artner. Partitions-limitierte Lindenmayer-Systeme. Berichte aus der Infor-
matik. Aachen: Shaker-Verlag, 1995. (Dissertation Technische Universit�at Braun-
schweig.) The basic results of this thesis appeared under the title \On partition
limited 0L systems". In J. Dassow, G. Rozenberg and A. Salomaa, editors, De-
velopments in Language Theory II, pages 230{236. Singapore: World Scienti�c,
1996.

14. D. Hauschildt and M. Jantzen. Petri net algorithms in the theory of matrix gram-
mars. Acta Informatica, 31:719{728, 1994.

15. F. Hinz and J. Dassow. An undecidability result for regular languages and its
application to regulated rewriting. EATCS Bulletin, 38:168{173, 1989.

16. L. Kari, A. Mateescu, Gh. P�aun and A. Salomaa. Teams in cooperating distributed
grammar systems. Journal of Experimental and Theoretical AI, 7:347{359, 1995.

17. A. Lindenmayer. Mathematical models for cellular interactions in development I.
Filaments with one-sided inputs. Journal of Theoretical Biology, 18:280{299, 1968.

18. A. Lindenmayer. Developmental systems without cellular interactions, their lan-
guages and grammars. Journal of Theoretical Biology, 30:455{484, 1971.

19. Gh. P�aun and G. Rozenberg. Prescribed teams of grammars. Acta Informatica,
31:525{537, 1994.

20. D. J. Rosenkrantz. Programmed grammars and classes of formal languages. Jour-
nal of the Association for Computing Machinery, 16(1):107{131, 1969.

21. P. M. B. Vit�anyi. Development, growth and time. In G. Rozenberg and
A. Salomaa, editors, The Book of L, pages 431{444. Berlin: Springer, 1985.

22. D. W�atjen. k-limited 0L systems and languages. J. Inf. Process. Cybern. EIK,
24(6):267{285, 1988.

23. D. W�atjen. On k-uniformly-limited T0L systems and languages. J. Inf. Process.
Cybern. EIK, 26(4):229{238, 1990.

24. D. W�atjen. A weak iteration theorem for k-limited E0L systems. J. Inf. Process.
Cybern. EIK, 28(1):37{40, 1992.

25. D. W�atjen and E. Unruh. On the degree of synchronization of klET0L systems.
Information Processing Letters, 29:87{89, 1988.

26. D. W�atjen and E. Unruh. On extended k-uniformly-limited T0L systems and lan-
guages. J. Inf. Process. Cybern. EIK, 26(5/6):283{299, 1990.

Acknowledgements

The work was supported by Deutsche Forschungsgemeinschaft DFG La 618/3-1.

755Fernau H.: Remarks on Propagating Partition-Limited ETOL Systems

