Journal of Universal Computer Science, vol. 3, no. 5 (1997), 414-415
submitted: 20/12/96, accepted: 20/5/97, appeared: 28/5/97 [Springer Pub. Co.

JUCS Special ASM Issue. Part II.

Egon Borger
(Universita di Pisa, Italy
boerger@di.unipi.it)

In JUCS 3.4 we have explained the context of “Ten Years of Gurevich’s Ab-
stract State Machines” of the special ASM issue for which Part IT is appearing
now. As announced at the end of Part I, this second part is devoted to applica-
tions of ASMs to classical problems of programming and software engineering.
Two papers deal with semantics of programming languages, two papers with
methods for building correct compilers and three papers with integrating ASMs
into the software development life cycle.

Before I summarize the papers appearing here let me provide some technical
data on this special ASM issue of J.UCS. An international call for submission of
papers has been distributed in the first half of 1996, the deadline was December
1996. The first round of the reviewing process was finished at the beginning of
March, the second round at the beginning of May 1997. Assisted by 76 review
reports (ideally four per submission) I have accepted 7 papers for the April issue
and 7 for the May issue, out of 21 submissions. One paper is still in the reviewing
process and may appear in the next issue of J.UCS.

In the paper Montages Specifications of Realistic Programming Languages by
P. Kutter and A. Pierantonio the successful application of ASMs to the descrip-
tion of the dynamics of real programming languages—Ilike Prolog, C, Occam,
VHDL, C**—is enhanced by a semi-visual formalism that allows one to in-
tegrate into the ASM specification method a transparent formalization of the
relevant static programming language features. In the paper The Formal Speci-
fication of Oberon the same authors illustrate their method through a formal but
relatively compact ASM specification of the semantics of Oberon which includes
both the dynamic and the static aspects (including the syntax).

The paper On the Construction of Correct Compiler Back-Ends: An ASM
Approach by W. Zimmermann and T. Gaul uses ASMs for provably correct
bottom-up rewriting systems specifications for back-end compilers which trans-
late intermediate languages (basic block graphs) into binary machine code of a
register based RISC processor with performance of the same order of magnitude
as code generated by non-optimizing unverified C-compilers. The proofs are gen-
eral in the sense that they make no specific assumptions on the instruction set of
the intermediate language and of the target machine so that really a generator is
defined which is parameterized by a term rewrite system, the intermediate and
the target language and a register assignement algorithm. It is remarkable that
all proofs in this paper have been machine checked using PVS, thus showing in
particular that PVS can be put to use in a fruitful way to machine check ASM
based reasoning on program development. The paper Correctness Proof of a Dis-
tributed Implementation of Prolog by Means of ASMs by L. Araujo specifies an
extension of the WAM for (AND- and OR-) parallel execution of Prolog on dis-
tributed memory and proves its correctness. The construction illustrates nicely
the rather typical reusability property of ASM specifications and verifications: it

Boerger E.: JUCS Special ASM Issue. Part 1. 415

builds upon and extends the specification and correctness proof of the sequential
WAM for ISO standard Prolog developed in [Borger and Rosenzweig 1994].

The three last papers deal with Integrating ASMs into the Software Devel-
opment Life Cycle as the title of the paper by myself and L. Mearelli says.
This paper presents a structured software engineering method which allows the
software engineer to control efficiently the modular development and the main-
tenance of well documented, formally inspectable and smoothly modifiable code
out of rigorous ASM models for requirement specifications. It defines an ASM
model for the requirement specifciation and refines it (in a way which is proved
to be correct) to a model which in the paper Refining an ASM Specification of
the Production Cell to C++ Code by L. Mearelli is then refined to C*t*+ code
which has been validated through extensive experimentation. The paper also
shows that the code properties of interest (like correctness, safety, liveness and
performance conditions) can be proved at high levels of abstraction by tradi-
tional and reusable mathematical arguments which have been computer verified
by a model checking approach for ASMs developed by K. Winter and illustrated
in her paper Model Checking for Abstract State Machines.

We hope the reader will benefit from the ASM papers appearing here and
will be tempted to try the method for his next challenging application problem.

References

[Borger and Rosenzweig 1994] E. Borger and D. Rosenzweig: “The WAM Definition
and Compiler Correctness”; C.Beierle, L.Plimer (Eds.), Logic Programming:
Formal Methods and Practical Applications, North-Holland, Series in Com-
puter Science and Artificial Intelligence (1994), 20-90

