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Abstract: Hemaspaandra, Hempel, and Wechsung [HHW] initiated the �eld of query
order, which studies the ways in which computational power is a�ected by the order in
which information sources are accessed. The present paper studies, for the �rst time,
query order as it applies to the levels of the polynomial hierarchy. PC:D denotes the class
of languages computable by a polynomial-time machine that is allowed one query to C
followed by one query to D [HHW]. We prove that the levels of the polynomial hierarchy

are order-oblivious: P
�
p

j
:�

p

k = P
�
p

k
:�

p

j . Yet, we also show that these ordered query
classes form new levels in the polynomial hierarchy unless the polynomial hierarchy
collapses. We prove that all leaf language classes|and thus essentially all standard
complexity classes|inherit all order-obliviousness results that hold for P.

Key Words: query order, polynomial hierarchy, ordered computation, commutative
queries, complexity classes, downward separation

Category: F.1.3

1 Introduction

Query order was introduced by Hemaspaandra, Hempel, and Wechsung [HHW]
in order to study whether the order in which information sources are accessed has
any e�ect on the class of problems that can be solved. In the everyday world, the
order in which we access information is crucial, and the work of Hemaspaandra,
Hempel, and Wechsung [HHW] shows that this real-world intuition holds true
in complexity theory when the information one is accessing is from the boolean
hierarchy. In particular, let PC:D denote the class of languages L such that, for
some C 2 C and some D 2 D, L is accepted by some P transducer M that on
any input may make at most one query to C followed by at most one query
to D. Hemaspaandra, Hempel, and Wechsung show that, unless the polynomial
hierarchy collapses, query order always matters when C and D are nontrivial
levels of the boolean hierarchy [CGH+88], except in two cases. In particular
they prove that, for 1 � j � k, PBHj :BHk = PBHk :BHj if

j = k or (j is even and k = j + 1);

and they prove that unless the polynomial hierarchy collapses these are the only
cases (satisfying 1 � j � k) for which PBHj :BHk = PBHk:BHj .
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The goal of the present paper is to study query order in the polynomial
hierarchy. Section 3 shows that, in sharp contrast with the case of the boolean
hierarchy, query order never matters in the polynomial hierarchy: For any j and

k, P�
p

j
:�

p

k = P�
p

k
:�

p

j . We prove this by providing for \PC:D = PD:C" a su�cient
condition, which also has applications in other settings.

Of course, if for j � k, P�
p

j
:�

p

k = P�
p

k
[1], then our P�

p

j
:�

p

k = P�
p

k
:�

p

j theorem

would be trivial. Here, as is standard, P�
p

k
[1] denotes the class of languages that

are computable via polynomial-time 1-Turing reductions to �
p
k [LLS75]. In fact,

the statement P�
p

j
:�

p

k = P�
p

k
[1], for j < k, might on casual consideration seem

plausible, as certainly a �
p
k oracle can simulate the �

p
j query (when j < k)

of P�
p

j
:�

p

k , can compute the answer to it, and then can based on the answer

determine the �
p
k query of P

�
p

j
:�

p

k and can simulate it. (Footnote 1 explains why

this argument fails to establish P�
p

j
:�

p

k = P�
p

k
[1].) Nonetheless, we show that,

unless the polynomial hierarchy collapses, P�
p

j
:�

p

k = P�
p

`
:�p

m only if fj; kg =
f`;mg.

In Section 4, we show that all query order exchanges that hold for PC:D|not
just all those we prove but rather all that are true|are automatically inherited
by all leaf language classes, and thus by essentially all standard complexity
classes. This shows that these classes allow at least as many query order ex-
changes as P does. We also note that some of these classes|in particular NP|
allow (unless the polynomial hierarchy collapses) more order exchanges than P
does.

2 Preliminaries

For standard notions not de�ned here, we refer the reader to any computational
complexity textbook, e.g., [BC93, BDG95, Pap94].

We say a set is trivial if it is ; or ��, and otherwise we say it is nontrivial.
A complexity class is any collection of subsets of ��. For each complexity class
C, let coC denote fL j L 2 Cg. The polynomial hierarchy is de�ned as follows:

�
p
0 = �

p
0 = �

p
0 = �

p
1 = P and, for each i > 0, �

p
i = NP�

p

i�1 , �
p
i = co�

p
i ,

and �p
i = P�

p

i�1 . Let A�B denote the disjoint union of the sets A and B, i.e.,
A�B = fx0 jx 2 Ag[fx1 jx 2 Bg, and let A�B denote the Cartesian product
of the sets A and B, i.e., A�B = fhx; yi j x 2 A and y 2 Bg.

In this paper we use oracles to represent databases that are queried. This
does not mean that this is a \relativized worlds" oracle construction paper. It is
not. Rather we use relativization in much the same way that it is used to build
the polynomial hierarchy, namely, relativization by full, natural classes.

We now present the de�nitions that will allow us to discuss the ways|order of
access, amount of access, etc.|that databases (modeled as oracles) are accessed.
We use DPTM as a shorthand for \deterministic polynomial-time (oracle) Turing
machine." Without loss of generality, we assume that such machines are clocked
with clocks that are independent of the oracle.MA(x) denotes the computation
of DPTM M with oracle A on input x. On occasion, when the oracle involved is
clear from context and we are focusing on the action of M , we may write M(x)
and omit the oracle.
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De�nition 1. Let C and D be complexity classes.

1. [HHW] Let MA:B denote DPTM M restricted to making at most one query
to oracle A followed by at most one query to oracle B.

PC:D = fL � �
� j (9C 2 C)(9D 2 D)(9 DPTM M)[L = L(MC:D)]g:

2. Let M
(A;B)
1;1-tt denote DPTM M restricted to making simultaneously at most

one query to oracle A and at most one query to oracle B.

P
(C;D)
1;1-tt = fL � �

� j (9C 2 C)(9D 2 D)(9 DPTM M)[L = L(M
(C;D)
1;1-tt )]g:

3. Let MA;B denote DPTM M restricted to making at most one query to
oracle A and at most one query to oracle B, in arbitrary order. Similarly, let
M

A[1];B[poly] denote DPTM M making at most one query to oracle A and
polynomially many queries to B, in arbitrary order (it is even legal for the
query to A to be sandwiched between queries to B).

PC;D = fL � �
� j (9C 2 C)(9D 2 D)(9 DPTM M)[L = L(MC;D)]g:

PC[1];D[poly] =

fL � �
� j (9C 2 C)(9D 2 D)(9 DPTM M)[L = L(MC[1];D[poly])]g:

As has been noted by the authors elsewhere [HHH97b], part 2 of De�nition 1
is somewhat related to work of Selivanov [Sel94]. Independently of [HHH97b],
Klaus Wagner [Wag] has made similar observations in a more general form
(namely, applying to more than two sets and to more abstract classes) regarding
the relationship between Selivanov's classes and parallel-access classes. For com-
pleteness, we repeat here, as the present paragraph, some text from [HHH97b]
that presents the basic facts known about the relationship between the classes
of Selivanov (for the case of \4"s of two sets; see Wagner [Wag] for the case of
more than two sets) and the classes discussed in this paper. Selivanov studied
re�nements of the polynomial hierarchy. Among the classes he considered, those
closest to the classes we study in this paper are his classes

�
p
i4�

p
j = fL j (9A 2 �

p
i )(9B 2 �

p
j )[L = A4B]g;

where A4B = (A � B) [ (B � A). Note, however, that his classes seem to be
di�erent from our classes. This can be immediately seen from the fact that all
our classes are closed under complementation, but the main theorem of Seli-
vanov ([Sel94], see also the discussion and strengthening in [HHH97c]) states
that no class of the form �

p
i4�

p
j , with i > 0 and j > 0, is closed under com-

plementation unless the polynomial hierarchy collapses. Nonetheless, the class

�
p
i4�

p
j is not too much weaker than P

(�
p

i
;�

p

j
)

1;1-tt , as it is not hard to see (by

easy manipulations if i 6= j, and from the work of Wagner [Wag90] and K�obler,
Sch�oning, and Wagner [KSW87] for the i = j case) that, for all i and j, it holds

that fL j (9L0 2 �
p
i4�

p
j )[L �

p
1-tt L

0]g = P
(�

p

i
;�

p

j
)

1;1-tt . Here, as is standard, �
p
1-tt

denotes polynomial-time 1-truth-table reducibility [LLS75].
Let C be a complexity class. In the literature, �p

m denotes many-one

polynomial-time reducibility. Similarly, we write A �
p;C[1]
m B if and only if there

is a (total) function f 2 FPC[1] such that, for all x, x 2 A () f(x) 2 B.
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3 Query Order in the Polynomial Hierarchy

3.1 Order Exchange in the Polynomial Hierarchy

We �rst state and prove a su�cient condition for order exchange. This condition
will apply to a large number of classes.

Theorem2. If C and D are classes such that C is closed under disjoint union

and C is closed downwards under �
p;D[1]
m , then

PC:D = PD:C = P
(C;D)
1;1-tt:

Proposition 3 notes that for complexity classes that have complete sets, clo-
sure under disjoint union follows from downward closure under many-one reduc-
tions. For most standard classes C this proposition can be used, when applying
various theorems of this section, to remove the condition that C be closed under
disjoint union.

Proposition3. If C has �p
m-complete sets and C is closed downwards under

�p
m-reductions, then C is closed under disjoint union.

Before proving Theorem 2 we �rst prove some results that will be helpful in
the proof. Also, Theorem 5 may apply even in some cases where Theorem 2's
hypothesis does not hold.

De�nition 4. We say C \ands" (C;D) if (8C 2 C)(8D 2 D)[C �D 2 C].

Theorem5. If C is closed under disjoint union, C \ands" (C;D), and C \ands"
(C; coD), then PC:D � PD:C.

Proof. Suppose L 2 PC:D and let DPTM M , C 2 C, and D 2 D be such that
L = L(MC:D). Without loss of generality, let M always query each of C and
D exactly once, regardless of the answer of the �rst query (that is, even given
an incorrect answer to the �rst query, M will always ask a second query). We

describe a DPTM N and a set C 0 such that C 0 2 C and L = L(ND:C0

). Let

C
0 =

�
(C �D)� (C �D)

�
� C, i.e., C 0 =

fhy1; y2i00 jy1 2 C and y2 62 Dg[fhy1; y2i10 jy1 2 C and y2 2 Dg[fy1 jy 2 Cg:

On input x, DPTM N
D:C0

works as follows:

1. It determines the �rst and the two potential second queries ofM(x). Denote
the �rst query by q0 and the two potential second queries by qy and qn,
where qy is the query asked by M(x) if the �rst query was answered \yes,"
and qn the query asked if the �rst query was answered \no."

2. N queries qn to D.
3. N determines the truth-table of M(x) with respect to q0 and qy, with query

qn answered correctly. That is, let (X1; X2; X3); Xi 2 fA;Rg, where A stands
for accept and R for reject, be such that
(a) X1 is the outcome of M(x) if both q0 and qy are answered \yes" (recall

that if q0 is answered \yes" then M(x) asks qy as its second query),
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(b) X2 is the outcome of M(x) if q0 is answered \yes" and qy is answered
\no," and

(c) X3 is the outcome of M(x) if q0 is answered \no" and qn is answered
correctly.

4. There are eight di�erent cases for (X1; X2; X3). We have to show that each
case can be handled in polynomial time with one query to C 0. We will hence-
forward assume that there are more Rs than As in (X1; X2; X3). (The re-
maining cases follow by complementation.) Depending on the determined
truth-table (X1; X2; X3), N does the following:
(a) (X1; X2; X3) = (R;R;R). In this case, N will of course reject.
(b) (X1; X2; X3) = (A;R;R). Then M accepts if and only if q0 2 C and

qy 2 D. This is the case if and only if hq0; qyi10 2 C
0. So N queries

hq0; qyi10 to C
0 and accepts if and only if the answer is \yes."

(c) (X1; X2; X3) = (R;A;R). Then M accepts if and only if q0 2 C and
qy 62 D. This is the case if and only if hq0; qyi00 2 C

0. So N queries
hq0; qyi00 to C

0 and accepts if and only if the answer is \yes."
(d) (X1; X2; X3) = (R;R;A). Then M accepts if and only if q0 62 C. This is

the case if and only if q01 62 C
0. So N queries q01 to C 0 and accepts if

and only if the answer is \no."

It is clear from the construction that L(MC:D) = L(ND:C0

) and thus L 2
PD:C, since C 0 2 C by the closure properties in the theorem's hypothesis. ut

Corollary 6. If C and D are classes such that C is closed under disjoint union

and C is closed downwards under �
p;D[1]
m , then

PC:D � PD:C
:

Proof. If C contains only trivial sets, i.e., C � f;; ��g, then PC:D = PD = PD:C

and we are done. So from now on we assume that C contains a nontrivial set.
We will show that in this case we can apply Theorem 5, i.e., we will show that
C, which is closed under disjoint union, has also the properties that C \ands"
(C;D) and C \ands" (C; coD).

Let C 2 C and D 2 D. We need to show that C �D 2 C and C �D 2 C. If

C 6= �
�, then C �D �

p;D[1]
m C by f(hx; yi) = x if y 2 D and some �xed element

not in C if y 62 D. Since C is closed under �
p;D[1]
m , it follows that C � D 2 C.

Similarly, if C 6= �
�, then C �D 2 C.

If �� 2 C, it remains to show that �� � D and �
� � D 2 C. Let C 2 C

be a nontrivial set (recall that we earlier eliminated the case in which C lacks

nontrivial sets), and let c 2 C and bc 62 C. Then ���D �
p;D[1]
m C by f(hx; yi) = c

if y 2 D and bc if y 62 D, and �� �D �
p;D[1]
m C by f(hx; yi) = c if y 62 D and bc if

y 2 D. ut
Proof of Theorem 2. Let C and D be classes such that C is closed under disjoint

union and C is closed downwards under �
p;D[1]
m . We have to show that PC:D =

PD:C = P
(C;D)
1;1-tt: The containment PC:D � PD:C follows from Corollary 6, and

P
(C;D)
1;1-tt � PC:D is immediate from the de�nitions.

It remains to show that PD:C � P
(C;D)
1;1-tt. Suppose L 2 PD:C and let DPTM

M , C 2 C, and D 2 D be such that L = L(MD:C). Without loss of generality,
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let M always query both D and C. We now describe a DPTM N and a set C 0

such that C 0 2 C and L = L(N
(C0;D)
1;1-tt ). De�ne

C
0 = fx j the second query asked by MD:C(x) is in Cg:

Since C is closed downwards under �
p;D[1]
m , we clearly have C 0 2 C.

Let N
(C0;D)
1;1-tt on input x work as follows: N

(C0;D)
1;1-tt (x) simulates MD:C(x) until

M
D:C(x) asks its �rst query, call it q. Then N

(C0;D)
1;1-tt (x) queries \x 2 C

0?" and
\q 2 D?" N at this point has enough information to simulate the �nal action
of M . We make this completely rigorous and formal as follows. Let SC0 be ��

if x 2 C
0 and let SC0 be ; if x 62 C

0. Let SD be �� if q 2 D and let SD be ; if

q 62 D. N
(C0;D)
1;1-tt (x) accepts if and only if MSD:SC0 (x) accepts (which N(x) can

easily determine given the answers to N(x)'s two queries). It is clear from the

construction that L(MD:C) = L(N
(C0;D)
1;1-tt ), and thus L 2 P

(C;D)
1;1-tt. ut

In addition to leading to the \polynomial hierarchy is order-oblivious" results
that this section will obtain, and leading to Section 4's applications to proba-
bilistic and unambiguous classes, Theorem 2 has also played an important role
in distinguishing robust Turing and many-one completeness [HHH97b].

The next theorem shows that if C and D are closed under disjoint union and
are order-oblivious with respect to P transducers, then ordered access equals
arbitrary-order access. Note that Theorem 7's hypothesis requires that both
classes be closed under disjoint union, in contrast to the hypothesis of Theo-
rem 5.

Theorem7. If C and D are complexity classes that are both closed under disjoint
union, then

PC:D = PD:C ) PC:D = PC;D:

Proof. Suppose that PC:D = PD:C. Since PC:D � PC;D, we have only to show
that PC;D � PC:D. Let L 2 PC;D, and let DPTM M , C 2 C, and D 2 D be such
that L = L(MC;D). Without loss of generality, we assume that MC;D always
queries each oracle exactly once. De�ne

L1 = fx 2 L jMC;D(x) �rst queries Cg:

L2 = fx 2 L jMC;D(x) �rst queries Dg:

Let N be a DPTM such that L1 = L(NC:D). Since clearly L2 2 PD:C, by our
hypothesis there exists a DPTM T , and sets C 0 2 C and D

0 2 D, such that

L2 = L(TC0:D0

). Let bC = C�C 0 and bD = D�D0. We describe a DPTM S such

that L = L(SbC:bD).
S on input x will work as follows: S(x) simulates (appropriately tagging a 0 or

a 1 onto the end of queries to address the appropriate part of the disjoint union)
M

C;D(x) until MC;D(x) makes its �rst query. Then S(x) simulates NC:D(x) or

T
C0:D0

(x), depending on whether the �rst query of MC;D(x) was asked to C or

D, respectively. Note that clearly L = L(SbC:bD), and thus L 2 PC:D. ut
From Theorem 2 and Theorem 7 we have the following.
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Corollary 8. If C and D are classes such that C is closed downwards under

�
p;D[1]
m and C and D are closed under disjoint union, then

P
(C;D)
1;1-tt = PC:D = PD:C = PC;D:

Corollary 8 implies that query order does not matter in the polynomial hier-
archy.

Corollary 9. 1. For all j; k � 0, P�
p

j
:�

p

k = P�
p

k
:�

p

j :

2. For all j; k � 0 such that j 6= k, P
(�

p

j
;�

p

k
)

1;1-tt = P�
p

j
:�

p

k = P�
p

j
;�

p

k .

Proof. Note that for j = k the claim of part 1 is trivial. Assume j < k (the
j > k case is similar). It is immediately clear that �

p
k is closed downwards

under �
p;�

p

j
[1]

m and it is well-known that �
p
j and �

p
k are both closed under

disjoint union. So we can apply Corollary 8. Thus, both parts of the theorem are
established. ut

Note that in part 2 of Corollary 9 we need j 6= k, since otherwise we would
have included the claim that two truth-table queries to �

p
k have as much com-

putational power as two Turing queries. However, that would imply that the
boolean hierarchy over �

p
k collapses to the 2-truth-table closure of �

p
k , which

in turn would imply that the polynomial hierarchy collapses. The last implica-
tion refers to the well-known fact that if the boolean hierarchy collapses then
the polynomial hierarchy collapses; this fact was �rst proven by Kadin [Kad88],
and the strongest known collapse of the polynomial hierarchy from a given col-
lapse of the boolean hierarchy is the one recently obtained by Hemaspaandra et
al. [HHH98] and, independently, by Reith and Wagner [RW98].

We also have the following.

Corollary 10. 1. For all k � 0 and j > 0,

P
(�

p

j
;�

p

k
)

1;1-tt = P�
p

j
:�

p

k = P�
p

k
:�

p

j = P�
p

k
;�

p

j =

�
�
p
j if j > k

P�
p

k
[1];�

p

j�1
[poly] if j � k.

2. For all j; k � 0, P
(�

p

j
;�

p

k
\�

p

k
)

1;1-tt =

P�
p

j
:�

p

k
\�

p

k = P�
p

k
\�

p

k
:�

p

j = P�
p

k
\�

p

k
;�

p

j =

�
�
p
j if j > k

�
p
k \�

p
k if j � k.

3. For all j; k � 0, P
(�

p

j
\�

p

j
;�

p

k
\�

p

k
)

1;1-tt =

P�
p

j
\�

p

j
:�

p

k
\�

p

k = P�
p

k
\�

p

k
:�

p

j
\�

p

j = P�
p

k
\�

p

k
;�

p

j
\�

p

j = �
p

max(j;k)
\�

p

max(j;k)
:

Proof. We �rst prove part 1. If j > k, then a �
p
j machine can simulate P�

p

j
;�

p

k ,

and it is unconditionally immediate that P
(�

p

j
;�

p

k
)

1;1-tt contains �
p
j . If 0 < j � k,

then �
p
k is closed under �

p;�
p

j
[1]

m and thus, by Corollary 8, P
(�

p

j
;�

p

k
)

1;1-tt = P�
p

j
:�

p

k =

P�
p

k
:�

p

j = P�
p

j
;�

p

k . Since �
p
j = P�

p

j�1 , P�
p

k
:�

p

j � P�
p

k
[1];�

p

j�1
[poly].
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It remains to show that P�
p

k
[1];�

p

j�1
[poly]

� P�
p

k
:�

p

j . Suppose L 2

P�
p

k
[1];�

p

j�1
[poly] and let DPTM M , A 2 �

p
k , and B 2 �

p
j�1 be such that

L = L(MA[1];B[poly]). Without loss of generality, let M ask all its queries to B
before asking anything to A. (If M does not have the desired property, replace
it with a machine that, before asking anything to A, asks to B the queries M
would ask to B if the A query were answered \yes" and also asks to B the queries
M would ask to B if the A query were answered \no" and then queries A and
uses the appropriate set of already obtained answers to complete the simulation
of the original M .) We will denote this with the notation L = L(MB[poly]:A[1]).

Also, without loss of generality assume thatMB[poly]:A[1] on input x asks exactly
one query ax to A.

Now let us describe a DPTM N and sets A0 and C such that A0 2 �
p
k ,

C 2 �
p
j , and L(N

A0:C) = L.

A
0 = fx 2 �� j ax 2 Ag,

C = fx jMB[poly]:;[1](x) acceptsg � fx jMB[poly]:��[1](x) accepts g.

Note that the use of ; and �� in the de�nition of C is just a way to study the
e�ect, respectively, of \no" and \yes" oracle answers. Clearly we have A0 2 �

p
k

and C 2 �
p
j . On input x, NA0:C will work as follows: NA0:C(x) �rst queries

\x 2 A
0." If the answer to \x 2 A

0" is \yes," then N accepts if and only if
x1 2 C and if the answer to \x 2 A

0" is \no," then N accepts if and only if

x0 2 C. It is immediate that L(NA0:C) = L(MB[poly]:A[1]) and thus L 2 P�
p

k
:�

p

j .
This completes the proof of part 1 of the corollary.

We now turn to proving part 2. First note that both �
p
j and �

p
k \ �

p
k are

trivially contained in P
(�

p

j
;�

p

k
\�

p

k
)

1;1-tt . The j > k case now follows from part 1,

since P�
p

k
\�

p

k
;�

p

j � P�
p

k
;�

p

j = �
p
j . If j � k, then a �

p
k machine can simulate

P�
p

j
;�

p

k
\�

p

k . (This simulation is an easy variation of the standard simulation

showing that P�
p

k
\�

p

k = �
p
k \ �

p
k , which itself is a straightforward generaliza-

tion of the early work [Sel74, Sel79] noting PNP\coNP = NP \ coNP.) Since

P�
p

j
;�

p

k
\�

p

k is closed under complement, it follows that P�
p

j
;�

p

k
\�

p

k � �
p
k \�

p
k .

We now prove part 3. As in part 2, �
p
j \ �

p
j and �

p
k \ �

p
k are trivially

contained in P
(�

p

j
\�

p

j
;�

p

k
\�

p

k
)

1;1-tt . Also, a �
p

max(j;k)
machine can (even if j = k)

simulate P�
p

j
\�

p

j
;�

p

k
\�

p

k so, by complementation, we have P�
p

j
\�

p

j
;�

p

k
\�

p

k �
�
p

max(j;k)
\�

p

max(j;k)
. ut

3.2 Query Order Classes Di�er from Standard Polynomial
Hierarchy Levels and from Each Other

In Section 1 we mentioned that though P�
p

j
:�

p

k = P�
p

k
[1], 0 < j < k, might seem

a tempting claim,1 the claim is false unless the polynomial hierarchy collapses. In
fact, we will prove something much stronger, namely that, unless the polynomial

1 The reason the tempting proof implicitly sketched in the introduction is not valid is
that, though �p

k indeed can simulate �p
j , j < k, �p

k can neither pass an extra bit
of information back to the \base" P machine nor|in the crucial case in which the
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�
p
3

PNP[1]

P�
p

2
[1]

PNP:�
p

2

P�
p

2
[2]

P�
p

3
[1]

PNP:�
p

3

P�
p

2
:�

p

3

P�
p

3
[2]

coNPNP

�
p
2�

p
2

�
p
3

Figure 1: All the classes shown are distinct, unless the polynomial hierarchy collapses
(see Theorem 11).
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hierarchy collapses, P�
p

j
:�

p

k = P�
p

`
:�p

m if and only if fj; kg = f`;mg. The \if"
direction is trivial. Theorem 11 establishes the \only if" direction.

Theorem11. Let j; k; `;m � 0. If P�
p

j
:�

p

k = P�
p

`
:�p

m then fj; kg = f`;mg or
the polynomial hierarchy collapses.

This theorem will follow from a result of this paper combined with the results
and techniques of [HHH97c]. The following proposition is a strong and counter-
intuitive downward translation result that has recently been established.

Proposition12. (Special case of [HHH97c, Theorem 2.3]) Let 0 < j and j < k.
If �

p
j4�

p
k = �

p
j4�

p
k , then �

p
k = �

p
k = PH:

For all j and k, it holds that P�
p

j
:�

p

k � �
p
j+14�

p
k . Why? For j � k it is

immediate as in that case P�
p

j
:�

p

k � P�
p

j
[2]. For j < k it follows essentially by

the technique of the proof of [HHH, Lemma 2.3]. So, for all j and k we have

P�
p

j
:�

p

k � �
p
j+14�

p
k � �

p
j+14�

p
k � P�

p

j+1
:�

p

k , and thus we have the following

corollary.

Corollary 13. Let 0 � j and j < k�1. If P�
p

j
:�

p

k = P�
p

j+1
:�

p

k , then �
p
k = �

p
k =

PH.

We note the strength of this collapse. The conclusion obtains a collapse of
the hierarchy to a level that is generally thought to be lower (a priori) than
the level of either of the classes whose equality was assumed in the hypothesis.
That is, this is an actual downward translation of equality, in contrast with the
far more common behavior of upward translation of equality (see, e.g., [Wag87,
Wag89, RRW94], for examples and discussion).

We now can prove Theorem 11.

Proof of Theorem 11. Suppose that P�
p

j
:�

p

k = P�
p

`
:�p

m and that (without loss of
generality in light of Corollary 9) j � k and ` � m. Suppose that either k < m

or (k = m and j < `). First note that if k < m, then P�
p

j
:�

p

k � �
p
m � P�

p

`
:�p

m .

Since P�
p

j
:�

p

k = P�
p

`
:�p

m , it follows immediately that �p
m = �

p
m = PH. So

suppose that k = m and j < `. Then P�
p

j
:�

p

k = P�
p

j+1
:�

p

k . If j < k � 1, then
�
p
k = �

p
k = PH by Corollary 13. Finally, suppose that j = k� 1. Then the class

of sets that 2-truth-table reduce to �
p
k sets equals the class of sets that 2-Turing

reduce to �
p
k sets, which itself is well-known ([Kad88], see also [HHH98, RW98])

to imply that PH collapses. ut
So it is clear from Theorem 11 that query order classes do not equal stan-

dard \bounded query" classes but rather form new intermediate levels in the
polynomial hierarchy, unless the polynomial hierarchy collapses (see Figure 1).

We conclude this section by mentioning some very recent related work that
was inspired by the present paper. In this paper, our basic model is of ordered

base P machine uses the answer to the �
p
j query to decide whether to treat the �

p

k

answer via the strictly positive truth-table or the strictly negative truth-table|can
it complement itself (as that seemingly requires �p

k
= �

p

k
). That is, the tempting

claim fails due to a 1-bit information-passing bottleneck.
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access to two sets. Wagner [Wag] and Beigel and Chang [BC97] build on the
work of the current paper by studying machines that have ordered access to
truth-table groups of queries and they show that in that case too order does not
matter. We consider this work to be important and interesting, and to broaden
the range of models to which the questions of this paper can be applied. We
also mention that the work is not strictly stronger than our work as Beigel
and Chang discuss only sets from the polynomial hierarchy and Wagner has
somewhat di�erent hypotheses than we do on the classes involved, especially
regarding our intermediate results that separate out exactly what hypotheses
imply what conclusions. Also, in contrast to the key hierarchy collapse result
of the present paper, which guarantees and proves a downward translation of
equality, the analogous hierarchy collapses of those papers obtain from weaker
hypotheses weaker collapses (namely, the collapse results of those papers related
to query-order-based language classes merely assert that the hierarchy collapses,
and they rely either on the upward-equality-translation work of Selivanov or
make no speci�c collapse-level claim at all). Finally, as we will discuss later in
more detail, the work of Section 4 applies fully to the cases discussed in these
papers. A survey paper by Hemaspaandra et al. [HHH97a] provides a detailed
overview of query order.

4 Base Classes Other Than P

We show that a wide variety of classes inherit all order exchanges that hold for

P. For example, if PC:D � PD:C then PPC:D � PPD:C . Thus order exchanges
proven for P|such as those of Section 3.1 of this paper and those of Hemas-
paandra, Hempel, and Wechsung [HHW]|can immediately be applied to many
other classes.

We prove our result in a very general form, and then state some corollaries
and applications to make the meaning of the theorem more concrete. For classes
D1 and D2 for which relativization has been de�ned, we say that D1 is robustly
contained in D2 if, for each A, D

A
1 � DA

2 . D
C[1] will mean that each path of the

base machine makes at most one call to C. DC1:C2 will mean that each path of
the base machine makes at most one call to C1 followed by at most one call to
C2.

De�nition 14. Let D be a complexity class for which relativization is de�ned.
We say that D is sane if

(8C1; C2)[D
C1:C2 = D(P

C1:C2)[1]]:

The important point to note is that essentially all standard complexity classes
within the realm of potentially feasible computation (classes from P to PSPACE)
are sane. In particular, bringing work of Bovet, Crescenzi, and Silvestri into
notational analogy with more recent terminology, let us say that a relativizable
complexity class D is leaf-de�nable if D \admits a C-Class representation" in the
formal sense (which we will not repeat here) de�ned by Bovet, Crescenzi, and
Silvestri ([BCS92], see also [BCS95]) and the representation itself holds also in all
relativized worlds (under the natural extension of their work to ordered oracle
access, following exactly their discussion of relativization). Bovet, Crescenzi,
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and Silvestri [BCS92] prove that essentially all standard classes in the realm of
potentially feasible computation \admit C-Class representations," they observe
that these representations all relativize, and we comment that their observation
clearly holds also for ordered access. The reason this is relevant is that it is easy
to see that all leaf-de�nable classes are sane. Thus, the following result says that
essentially all standard complexity classes inherit every order exchange possessed
by P.

Theorem15. Let D1 and D2 be sane complexity classes, and let C1, C2, C3, and
C4 be complexity classes. If D1 is robustly contained in D2 and PC1:C2 � PC3:C4 ,
then

DC1:C2
1 � DC3:C4

2 :

Proof. The theorem holds via the following inclusion chain:

DC1:C2
1

a

� D
(PC1:C2 )[1]
1

b

� D
(PC3:C4 )[1]
1

c

� D
(PC3:C4 )[1]
2

d

� DC3:C4
2 :

Inclusion (b) follows from the assumption that PC1:C2 � PC3:C4 and inclusion (c)
follows from the assumption that D1 is robustly contained in D2. Inclusions (a)
and (d) hold via the fact that the classes are sane. ut

Corollary 16. Let D be any sane complexity class. If PC1:C2 � PC2:C1 then

DC1:C2 � DC2:C1 :

We give some examples of how this can be applied. BHj will denote the
jth level of the boolean hierarchy [CGH+88], and as is standard DP [PY84]
denotes the second level of the boolean hierarchy. Note that Bovet, Crescenzi, and
Silvestri [BCS92] have proven that BPP, UP, and PP are leaf-de�nable classes.
Thus, these classes are sane.

Example 1. 1. PPNP:�
p

2 = PP�
p

2
:NP.

2. BPPBH50:BH25 � BPPBH80:BH10 = BPPBH10:BH80 � BPPBH25:BH38 .
3. UPDP:BH3 = UPBH3:DP = UPNP:BH3 .

Parts 2 and 3 of the example hold due to Corollary 16 in light of [HHW],
which proves that the class of languages computable via a polynomial-time ma-
chine given one query to the jth level of the boolean hierarchy followed by one
query to the kth level of the boolean hierarchy equals R

p
j+2k�1-tt(NP) if j is

even and k is odd, and equals R
p
j+2k-tt(NP) otherwise, where R

p
`-tt(NP) equals

the class of languages that `-truth-table reduce to NP sets. Part 1 follows, as an
application of Corollary 16, from Corollary 9.

Though Theorem 15 says that all order exchanges of P apply to essentially all
standard complexity classes, it of course remains possible that certain path-based
classes may possess additional order exchanges. For example, though Section 3.2
showed that P ordered query classes create new intermediate polynomial hierar-
chy levels unless the polynomial hierarchy collapses, this clearly is not the case
for NP or �

p
k .
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Theorem17. If i � 1 and j; k � 0, then

(�
p
i )
�
p

j
:�

p

k = (�
p
i )
�
p

k
:�

p

j = �
p

i+max(j;k)
:

Proof. Without loss of generality, suppose j � k. Then �
p

i+max(j;k)
= �

p
i+k =

(�
p
i )
�
p

k = (�
p
i )
�
p

k
[1]

is clear in light of the quanti�er characterization of the

levels of the polynomial hierarchy [Wra77, Sto77]. Furthermore, (�
p
i )
�
p

k
[1]

�

(�
p
i )
�
p

j
:�

p

k � (�
p
i )
�
p

k = �
p
i+k and similarly (�

p
i )
�
p

k
[1]
� (�

p
i )
�
p

k
:�

p

j � (�
p
i )
�
p

k =

�
p
i+k. ut
Relatedly, classes may also trivially exhibit certain equalities based on class-

speci�c features. For example, it follows trivially from NP � PP and the (non-
trivial) result of Fortnow and Reingold [FR96] regarding the �

p
tt closure of PP

that PP = PPNP:PP = PPPP:NP.
Finally, as we mentioned earlier, other papers have suggested varying the

model of this paper to include multiple queries to many oracles in various pat-
terns of truth-table and ordered access. We note that the approach of this section
applies completely to such cases (modifying the de�nitions of sanity and leaf-
de�nability to re
ect whatever access model one is using).
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