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Abstract: Iterated Function Systems (IFSs) are among the best-known methods for
constructing fractals. The sequence of pictures E0; E1; E2; : : : generated by an IFS
fX; f1; f2; : : : ; ftg converges to a unique limit E , which is independent of the choice of
starting set E0, but completely determined by the choice of the maps fi.
Random context picture grammars (rcpgs) are a method of syntactic picture genera-
tion. The terminals are subsets of the Euclidean plane and the replacement of variables
involves the building of functions that will eventually be applied to terminals. Context
is used to enable or inhibit production rules.
We show that every IFS can be simulated by an rcpg that uses inhibiting context only.
Since rcpgs use context to control the sequence in which functions are applied, they
can generate a wider range of fractals or, more generally, pictures than IFSs. We give
an example of such a fractal. Then we show that under certain conditions the sequence
of pictures generated by an rcpg converges to a unique limit.
Category: F.4.2.

1 Introduction

A method of syntactic picture generation, using random context picture gram-
mars (rcpgs), was described and studied elsewhere [Ewert and Van der Walt 97],
[Ewert and Van der Walt 98], [Ewert and Van der Walt 99],
[Ewert and Van der Walt 99b]. In this paper we generalize the notion of an rcpg
somewhat, retaining the name. This concept can be considered a generalization
both of 2-dimensional collage grammars [Drewes, Kreowski, and Lapoire 97] and
of Iterated Function Systems (IFSs).

An IFS fX ; f1; f2; : : : ; ftg is an iterative method for constructing fractals
from the �nite set of contractive maps f1; f2; : : : ; ft de�ned on the complete
metric space X . The sequence of pictures E0; E1; E2; : : : generated by an IFS
converges to a unique limit E , which is independent of the choice of starting
set E0, but completely determined by the choice of the maps fi. The method
was developed principally by Barnsley and co-workers, who obtained impres-
sively life-like images both of nature scenes and the human face [Barnsley 88],
[Barnsley and Hurd 93].

First we show that any picture sequence generated by an IFS can also be
generated by an rcpg that uses forbidding context only. Secondly, since rcpgs
use context to control the sequence in which functions are applied, they can
generate a wider range of fractals or, more generally, pictures than IFSs. We
give an example of such a fractal. Then we introduce the pre�x property for the
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sequence of pictures generated by an rcpg and show that every picture sequence
that can be generated by an IFS has that property. Finally we prove our main
result, namely that every sequence of pictures with the pre�x property converges
to a unique limit.

2 Random Context Picture Grammars

We de�ne a random context picture grammar and illustrate the main concepts
with an example, the iteration sequence of the Sierpi�nski gasket.

A random context picture grammar G = (VN; VT; VF; P; (S; �)) has a �-
nite alphabet V of labels , consisting of disjoint subsets VN of variables , VT
of terminals and VF of function identi�ers . The productions , �nite in number,
are of the form A ! f(A1; �1) ; (A2; �2) ; : : : ; (At; �t)g (P ;F), where A 2 VN,
A1; : : : ; At 2 VN [ VT, �1; : : : ; �t 2 V �

F and P ;F � VN. Finally, there is an initial
con�guration (S; �), where S 2 VN and � denotes the empty string.

A pictorial form � is a �nite set f(B1; '1) ; (B2; '2) ; : : : ; (Bs; 's)g, where
B1; : : : ; Bs 2 VN [ VT and '1; : : : ; 's 2 V �

F . We denote the set fB1; : : : ; Bsg by
l (�).

For an rcpg G and pictorial forms � and � we write � =)G � if there is
a production A ! f(A1; �1) ; (A2; �2) ; : : : ; (At; �t)g (P ;F) in G, � contains an
element (A;'), l (� n f(A;')g) � P and l (� n f(A;')g) \ F = ;, and � =
(� n f(A;')g) [ f(A1; '�1) ; (A2; '�2) ; : : : ; (At; '�t)g. As usual, =)�

G denotes
the re
exive transitive closure of =)G.

A picture is a pictorial form � with l (�) � VT. The gallery G (G) generated
by an rcpg G is the set of pictures � such that f(S; �)g =)�

G �.
The gallery of an rcpg G is rendered by specifying functions

	G : VT ! }
�
R

2
�
and �G : VF ! F

�
R

2
�
, where F

�
R

2
�
=
�
g j g : R2 ! R

2
	
.

This yields a representation of a picture � = f(B1; '1) ; (B2; '2) ; : : : ; (Bs; 's)g
in R2 by r (�) =

Ss

i=1 �G ('i) (	G (Bi)), where �G has been extended to V �
F in

the obvious manner, �G (�) representing the identity function.
If every production in G has P = ;, we call G a random forbidding context

picture grammar (rFcpg).
Note: For the sake of convenience we write a productionA ! f(A1; �)g (P ;F)

as A ! A1 (P ;F).
We illustrate these concepts with an example.

Example 1. We generate the typical iteration sequence of the Sierpi�nski gasket
with the rFcpg Ggasket = (fS; T; U; Fg ; fbg ; fglb; grb; gtg ; P; (S; �)), where P is
the set:

S ! f(T; glb) ; (T; grb) ; (T; gt)g (fg ; fUg) (1)

T ! U (fg ; fS; Fg) j (2)

F (fg ; fS;U; Fg) j (3)

b (fFg ; fg) (4)

U ! S (fg ; fTg) (5)

F ! b (fg ; fTg) (6)
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We give the derivation of a picture � in G (Ggasket) in detail.

f(S; �)g

=)G f(T; glb) ; (T; grb) ; (T; gt)g (rule 1)

=)�
G f(U; glb) ; (U; grb) ; (U; gt)g (thrice rule 1)

=)�
G f(S; glb) ; (S; grb) ; (S; gt)g (thrice rule 5)

=)�
G f(T; glbglb) ; (T; glbgrb) ; (T; glbgt)g[

f(T; grbglb) ; (T; grbgrb) ; (T; grbgt)g[

f(T; gtglb) ; (T; gtgrb) ; (T; gtgt)g (thrice rule 1)

=)G f(T; glbglb) ; (T; glbgrb) ; (T; glbgt)g[

f(T; grbglb) ; (F; grbgrb) ; (T; grbgt)g[

f(T; gtglb) ; (T; gtgrb) ; (T; gtgt)g (rule 3)

=)�
G f(b; glbglb) ; (b; glbgrb) ; (b; glbgt)g[

f(b; grbglb) ; (F; grbgrb) ; (b; grbgt)g[

f(b; gtglb) ; (b; gtgrb) ; (b; gtgt)g (repeated application of rule 4)

=)G f(b; glbglb) ; (b; glbgrb) ; (b; glbgt)g[

f(b; grbglb) ; (b; grbgrb) ; (b; grbgt)g[

f(b; gtglb) ; (b; gtgrb) ; (b; gtgt)g (rule 6)

Let �G (glb) = (x; y)!
�
x
2
; y
2

�
, �G (grb) = (x; y)!

�
x
2
+ 1

2
; y
2

�
and �G (gt) =

(x; y)!
�
x
2
+ 1

4
; y
2
+

p
3
4

�
.

Then r (�) =
S9
i=1 �G ('i) (	G (b)), where �G ('1) = (x; y) !�

1
2
� x

2
; 1
2
� y

2

�
, �G ('2) = (x; y) !

�
1
2

�
x
2
+ 1

2

�
; 1
2
� y

2

�
, �G ('3) = (x; y) !�

1
2

�
x
2
+ 1

4

�
; 1
2

�
y
2
+

p
3
4

��
, . . . .

Let 	G (b) be the dark triangle with vertices
n
(0; 0) ; (1; 0) ;

�
1
2
;
p
3
2

�o
. Then

r (�) represents the picture in [Fig. 1]. Alternatively, let 	G (b) be the dark
square determined by the vertices f(0; 0) ; (1; 0) ; (1; 1)g. Then r (�) represents
[Fig. 2].

3 Iterated Function Systems

An Iterated Function System fX ; f1; f2; : : : ; ftg or fX; f1�tg is a pair consisting
of a complete metric space X together with a �nite set of contractive maps
fi : X ! X , 1 � i � t. [Hoggar 92] contains an extensive treatment of IFSs.

Let H (X) be the set of all nonempty compact subsets of X . For E 2 H (X),
let F (E) = f1 (E) [ f2 (E) [ : : :[ ft (E). By repeated application of F to E, we
obtain a sequence in H (X), E0 = E;E1 = F (E0) ; E2 = F (E1) ; : : : : We show
that every such sequence can be generated by an rFcpg.
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Figure 1: 	G (fbg) is a dark triangle
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Figure 2: 	G (fbg) is a dark square
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Lemma1. Let fX; f1�tg be an IFS. Then there is an rFcpg G such that for
every integer l � 1, G generates the set

��
a; 'l1

�
;
�
a; 'l2

�
; : : : ;

�
a; 'l

tl

�	
, where

the 'li are all tl possible sequences of length l of the fj .

Proof. Let G = (fS; I; T; U; Fg ; fag ; ff1; f2; : : : ; ftg ; P; (S; �)), where P is the
set:

S ! f(I; f1) ; (I; f2) ; : : : ; (I; ft)g

I ! f(T; f1) ; (T; f2) ; : : : ; (T; ft)g (fg ; fF;Ug) j

F (fg ; fT; Ug)

T ! U (fg ; fIg)

U ! I (fg ; fTg)

F ! a (fg ; fIg)

ut

Example 2. We obtain the iteration sequence of the Sierpi�nski gasket with the
IFS

�
R

2; glb; grb; gt
	
, where glb : (x; y) !

�
x
2
; y
2

�
, grb : (x; y) !

�
x
2
+ 1

2
; y
2

�
and

gt : (x; y)!
�
x
2
+ 1

4
; y
2
+

p
3
4

�
.

For any E 2 H
�
R

2
�
, F (E) = glb (E) [ grb (E) [ gt (E). Let E0 = E. Then

E1 = F (E0) = glb (E0) [ grb (E0) [ gt (E0), E2 = F (E1) = glbglb (E0) [-
glbgrb (E0) [ glbgt (E0) [ grbglb (E0) [ grbgrb (E0) [ grbgt (E0) [ gtglb (E0) [-
gtgrb (E0)[gtgt (E0) ; : : : . When we choose E0 to be a dark triangle, respectively,
a dark square, E2 is represented by [Fig. 1] and [Fig. 2], respectively.

To this IFS cor-
responds the rFcpg G = (fS; I; T; U; Fg ; fag ; fglb; grb; gtg ; P; (S; �)), where P
is the set:

S ! f(I; glb) ; (I; grb) ; (I; gt)g

I ! f(T; glb) ; (T; grb) ; (T; gt)g (fg ; fF;Ug) j

F (fg ; fT; Ug)

T ! U (fg ; fIg)

U ! I (fg ; fTg)

F ! a (fg ; fIg)

G generates the
pictorial forms f(a; glb) ; (a; grb) ; (a; gt)g, f(a; glbglb) ; (a; glbgrb) ; (a; glbgt)g [-
f(a; grbglb) ; (a; grbgrb) ; (a; grbgt)g [ f(a; gtglb) ; (a; gtgrb) ; (a; gtgt)g ; : : :.

Since rcpgs use context to control the sequence in which functions are applied,
they can generate a wider range of pictures than IFSs. An example of such a pic-
ture set is Gtrail, which is described below. Gtrail cannot be generated by an rFcpg,
as becomes clear when inspecting the proof in [Ewert and Van der Walt 99b],
and therefore also not by an IFS.
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Gtrail = f�1; �2; : : :g, where �1, �2 and �3 are shown in [Fig. 3], [Fig. 4]
and [Fig. 5], respectively. For the sake of clarity, an enlargement of the lower
lefthand ninth of �3 is given in [Fig. 6].

For i = 2; 3; : : :, �i is obtained by dividing each dark square in �i�1 into
four and placing a copy of �1, modi�ed so that it has exactly i+2 dark squares,
all on the diagonal, into each quarter.

The modi�cation of �1 is e�ected in its middle dark square only and pro-
ceeds in detail as follows: The square is divided into four and the newly-created
lower lefthand quarter coloured dark. The newly-created upper righthand quar-
ter is again divided into four and its lower lefthand quarter coloured dark. This
successive quartering of the upper righthand square is repeated until a total of
i � 1 dark squares have been created, then the upper righthand square is also
coloured dark. The new dark squares thus get successively smaller, except for
the last two, which are of equal size.

Gtrail is generated by the rcpg G = (fSg [ fA;L;R; T;Atg [ fMg [-
fXe; Xt; Exg [ fAe; Zxg [ fXg [ fLxg [ fYe; Yt; Bg [ fBeg [ fEy; Y; Zyg [
fLyg ; fg14; g24; g34; g44; g19; g29; g39; g49; g59; g69; g79; g89; g99g ; fb; wg ; P; (S; �)),
where P is the set:

S ! f(L; g19) ; (w; g29) ; (w; g39) ; (w; g49) ; (A; g59) ; (w; g69) ; (w; g79)g [

f(w; g89) ; (R; g99)g

A! At (fg ; fB;Be; Ae; Atg)

A! b (fAtg ; fg)

L! b (fAtg ; fg)

R! b (fAtg ; fg)

T ! b (fAtg ; fg)

At ! b (fg ; fA;L;R; Tg)

A! f(A; g14) ; (M; g24) ; (M; g34) ; (Ae; g44)g (fg ; fB;Be; Ae; Atg)

L! f(M; g14) ; (M; g24) ; (M; g34) ; (M; g44)g (fAeg ; fg)

R! f(M; g14) ; (M; g24) ; (M; g34) ; (M; g44)g (fAeg ; fLxg)

T ! f(M; g14) ; (M; g24) ; (M; g34) ; (M; g44)g (fAeg ; fg)

M ! (f(Lx; g19) ; (w; g29) ; (w; g39) ; (w; g49) ; (Xe; g59) ; (w; g69) ; (w; g79)g [

f(w; g89) ; (R; g99)g) (fAeg ; fL;R; T; Lxg)

Xe ! f(Xt; g14) ; (w; g24) ; (w; g34) ; (Xe; g44)g (fAg ; fXt; Exg)

Xt ! X (fExg ; fg)

A! Ex (fXtg ; fExg)

Ex ! Zx (fg ; fXtg)

Ae !M (fg ; fA;Exg)

Zx ! f(M; g14) ; (M; g24) ; (M; g34) ; (M; g44)g (fZxg ; fAeg)

Zx !M (fg ; fZx; Aeg)
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Figure 3: �1 of Gtrail

Figure 4: �2 of Gtrail
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Figure 5: �3 of Gtrail

Figure 6: Bottom lefthand ninth of �3 of Gtrail enlarged
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X ! B (fg ; fAeg)

Xe ! Be (fg ; fAeg)

Lx ! L (fg ; fAe; Zx; X;Xeg)

M ! (f(Ly; g19) ; (w; g29) ; (w; g39) ; (w; g49) ; (Ye; g59) ; (w; g69) ; (w; g79)g [

f(w; g89) ; (R; g99)g) (fBeg ; fLx; Lyg)

Ye ! f(Yt; g14) ; (w; g24) ; (w; g34) ; (Ye; g44)g (fBg ; fYt; Eyg)

Yt ! Y (fEyg ; fg)

B ! Ey (fYtg ; fEyg)

Ey ! Zy (fg ; fYtg)

Y ! T (fg ; fYt; Ey; Bg)

Ye ! T (fg ; fYt; Ey; Bg)

Zy ! B (fg ; fY; Yeg)

Ly ! L (fg ; fZy; Yeg)

B ! A (fg ; fM;Lyg)

Be ! A (fg ; fM;Lyg)

Gtrail is rendered by de�ning �G (g14) = (x; y)!
�
x
2
; y
2

�
, �G (g24) = (x; y)!�

x
2
+ 1

2
; y
2

�
, �G (g34) = (x; y) !

�
x
2
; y
2
+ 1

2

�
, �G (g44) = (x; y)!

�
x
2
+ 1

2
; y
2
+ 1

2

�
,

�G (g19) = (x; y) !
�
x
3
; y
3

�
, �G (g29) = (x; y) !

�
x
3
+ 1

3
; y
3

�
, �G (g39) = (x; y) !�

x
3
+ 2

3
; y
3

�
, �G (g49) = (x; y) !

�
x
3
; y
3
+ 1

3

�
, �G (g59) = (x; y)!

�
x
3
+ 1

3
; y
3
+ 1

3

�
,

�G (g69) = (x; y) !
�
x
3
+ 2

3
; y
3
+ 1

3

�
, �G (g79) = (x; y) !

�
x
3
; y
3
+ 2

3

�
, �G (g89) =

(x; y) !
�
x
3
+ 1

3
; y
3
+ 2

3

�
and �G (g99) = (x; y) !

�
x
3
+ 2

3
; y
3
+ 2

3

�
, moreover,

	G (b) as the dark square determined by the vertices f(0; 0) ; (1; 0) ; (1; 1)g and
	G (w) as the light square determined by the vertices f(0; 0) ; (1; 0) ; (1; 1)g.

4 Shrink Indecomposable Fractals

According to Banach's Fixed Point Theorem, also known as the Contraction
Mapping Theorem, the map F associated with an IFS fX; f1�tg has a unique
�xed point E (i.e., there exists a unique E 2 H (X) such that F (E) = E) and the
sequence E0; E1; E2; : : : converges to E . E is independent of the choice of starting
set E0, but completely determined by the choice of the fi.

Since E = F (E) = f1 (E)[f2 (E)[ : : :[ft (E), we may call a fractal generated
by an IFS shrink decomposable. We now present a theorem that could be con-
sidered a generalization of the contraction mapping theorem and that, similarly
to the latter, guarantees the existence and construction of fractals. The range of
fractals constructed in this way is wider than in the case of Banach's theorem;
we call those that cannot be generated by an IFS shrink indecomposable. An
example of such a fractal is the limit set � of the gallery Gtrail of [Section 3].

Let therefore X be a complete metric space with metric d. Let � =
ff1; : : : ; ftg be a �nite set of contractive maps fi : X ! X , i.e., for all x; y 2 X ,
d (fi (x) ; fi (y)) � rid (x; y) for some ri, 0 � ri < 1. Let r = max (r1; : : : ; rt).
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As before, let H (X) be the set of all nonempty compact subsets of X . For
E 2 H (X), let F (E) = '1 (E)['2 (E)[ : : :['p (E), where 'i 2 �+. We call F
a collage map; this is a slightly more general usage of the term than commonly
found in literature. We call the 'i the constituents of F.

Let b be any point and B any set in X . Then the distance between b and
B is given by d (b; B) = minb02B d (b; b0). This minimum exists [Hoggar 92]. The
Hausdor� distance between elements of H (X) is then de�ned as

d (B0; B) = max

�
max
b2B0

d (b; B) ;max
b2B

d (b; B0)
�

:

The Hausdor� distance is a metric on H (X) [Hoggar 92]. We then have:

Lemma2. A collage map on H (X) is a contractive map on H (X).

Let '1; '2 2 �+. '1 is called a proper pre�x of '2 if '2 = '1fi1fi2 : : : fik
for some k � 1. A sequence F1; F2; : : : of collage maps is said to have the pre�x
property if, for all 1 � m � n, every constituent of Fm is a proper pre�x of a con-
stituent of Fn and every constituent of Fn has a constituent of Fm for a proper
pre�x. For example, any rFcpg that simulates an IFS using the construction of
[Lemma 1] generates a sequence of collage maps with the pre�x property. More-
over, it is easily seen that the sequence of collage maps representing �1; �2; : : :
of Gtrail has the pre�x property. However, it is unknown whether it is decidable if
an arbitrary rcpg generates sequences of collage maps with the pre�x property.

We can now formulate a generalization of the Banach Fixed Point Theorem:

Theorem3. Let F1; F2; : : : be a sequence of collage maps with the pre�x prop-
erty. Let E0 2 H (X). Then the sequence E0; E1 = F1 (E0) ; E2 = F2 (E0) ; : : :
converges to a limit E 2 H (X). Moreover, we have the following estimates:

1. d (En; E) �
r

1�rd (En�1; En) ; n � 1

2. d (En; E) �
rn

1�rd (E0; E1) ; n � 0

Proof. Let a = maxf2� d (f (E0) ; E0). Let n > m � 1. The assertion of the
theorem follows from

d (En; Em) �
rm

1� r
a ;

which we establish using the following known or easily proven facts:

1. For f 2 � and Ei; Ej 2 H (X), d (f (Ei) ; f (Ej)) � rd (Ei; Ej).

2. For ' 2 �+ and Ei; Ej 2 H (X), d (' (Ei) ; ' (Ej)) � rj'jd (Ei; Ej).
3. For ' 2 �+, d (' (E0) ; E0) �

a
1�r .

Proof. Suppose ' = fi1fi2 : : : fis , for fij 2 � and some integer s. Then

d (fi1fi2 : : : fis (E0) ; E0)
� d (fi1 (E0) ; E0) + d (fi1fi2 (E0) ; fi1 (E0))
+ d (fi1fi2fi3 (E0) ; fi1fi2 (E0)) + : : :
+ d

�
fi1fi2 : : : fis (E0) ; fi1fi2 : : : fis�1

(E0)
�

� a
�
1 + r + r2 + : : :+ rs + rs+1 + : : :

�
= a

1

1� r

ut
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4. For Ei; Ej ; Ek; El 2 H (X),
d (Ei [ Ej ; Ek [ El) � max (d (Ei; Ek) ; d (Ej ; El)) : [Hoggar 92]

Now suppose
Fm = '1 [ : : : [ 'p

and
Fn = '1 (�11 [ : : : [ �1q1) [ : : : [ 'p

�
�p1 [ : : : [ �pqp

�
:

Then

d (En; Em)
= d('1 (�11 [ : : : [ �1q1) (E0) [ : : : [ 'p

�
�p1 [ : : : [ �pqp

�
(E0) ;

'1 (E0) [ : : : [ 'p (E0))
� max

j

�
d
�
'j
�
�j1 [ : : : [ �jqj

�
(E0) ; 'j (E0)

��
� rmmax

j

�
d
��
�j1 [ : : : [ �jqj

�
(E0) ; E0

��
� rmmax

j
max
k

d (�jk (E0) ; E0)

� rm
a

1� r

= a
rm

1� r

ut

5 Conclusion

We showed that any IFS can be simulated by an rFcpg. Moreover, we gave an
example of a fractal that can be generated by an rcpg, but not by any IFS. Then
we introduced the pre�x property for the picture sequence generated by an rcpg
and proved that every sequence with this property converges to a unique limit.
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