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Abstract: A formal speci�cation of an algorithm is a very rich mathematical abstrac-
tion. In general, it not only speci�es an input-output relation, but also - at some level
of abstraction - constrains the states and transitions associated with computing this
relation. This paper explores the relationship between a formal speci�cation of an al-
gorithm and the many di�erent ways in which the associated states and transitions can
be embodied in physical objects and agency. It illustrates the application of principles,
tools and techniques that have been developed in the Empirical Modelling Project at
Warwick and considers how such an approach can be used in conjunction with a formal
speci�cation for exploration and interpretation of a subject area. As a speci�c example,
we consider how Empirical Modelling can be helpful in gaining an understanding of a
formal development of a heapsort algorithm.
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1 Introduction

One current theme of research in theoretical computer science is the way in
which di�erent formal (and semi-formal) approaches to system development may
be combined to provide a more coherent and complete picture of the system un-
der consideration (see, for example, [Hoare and He 1998, Araki et al 1999]). The
work of this paper is related to this theme, but broadens the scope by question-
ing how two very di�erent modelling paradigms may be viewed in relation to
each other, and how they can complement each other when used together.

The �rst approach considered is that of formal development. Formal tech-
niques for the development of both software and hardware have evolved over the
past 25 years, giving rise to a wealth of di�erent notations and approaches. Such
techniques have been used in many areas of industry and, although research
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continues with particular emphasis on usability and scalability, the principles
behind them are well understood. Formal approaches have in common a pre-
cise, unambiguous syntax with a clearly-de�ned semantics enabling veri�cation
of key properties and of re�nement. As an example, we consider a heapsort algo-
rithm derived from a pre/post-condition speci�cation using weakest precondition
techniques [Dijkstra 1976]. It is the formal aspect of the approach which is of
importance here rather than the speci�c notation.

The second approach we consider is that of Empirical Modelling [EM web]
developed over the past 10 years by the Empirical Modelling Research Group
in the Computer Science department at the University of Warwick. Whereas a
formal speci�cation �xes the important features of the system under develop-
ment, an Empirical Modelling (EM) approach allows exploration of the state
and the e�ects of dependencies between observables. In this sense it is closer to
the requirements-gathering end of the development life-cycle. However, it incor-
porates tools to enable this exploration which perform a visualisation rôle and
may be seen as closer to an environment for rapid prototyping or programming.
EM is based on a rather di�erent conceptual framework from formal approaches.
It is this important underlying di�erence which is introduced and explored in
this paper.

The aim of our work is to examine, with reference to a particular case study,
the fundamental di�erences between the two approaches and the ways in which
they may be used together to provide observational motivation for the formal
descriptions we develop. This investigation will be carried out from a pedagogical
perspective; that is, we concentrate on how the approach can help a student
explore and gain an understanding of the basic components and relationships
which interact to achieve a required goal. The subject in this case is taken to
be a heapsort algorithm, where understanding of such concepts as \is a heap" is
needed to master the overall approach. We were able to use existing EM tools
with the addition of predicates from the formal development to facilitate this
exploration. The two approaches di�er fundamentally in their methodology. We
use the example to emphasise this and to illustrate the EM philosophy.

In the following section the more widely known formal approach is used to
introduce the case study. We consider what constitutes a heapsort and how we
can recognise and characterise a heapsort activity. Questions also arise concern-
ing how a given speci�cation is interpreted. This leads to a description of the EM
approach and the features of using it to explore the heapsort activity. Next, we
describe how this model can be extended to incorporate the formal properties,
and consider the bene�ts of exposing students to both mathematical description
and interactive exploration. Finally, we discuss what has been achieved by this
work and consider some directions for future research.

2 A formal approach to heapsort

What is heapsort? If we are thinking of a formal description and development of
the algorithm we might well start by describing the speci�cation the procedure
is required to meet and the data structures it uses. So, if a(1 : : :N) is an array
of length N with an ordering relation on its elements, we can give a speci�cation
of a sorting process in terms of pre- and post-conditions as follows:

PRE: N � 1
POST: (8i; j � 1 � i � j � N ) a(i) � a(j)) ^ a = perm(a0)
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That is, our formal description views a heapsort as a process which establishes
a \sorted" predicate, with the predicate perm de�ned to ensure that the �nal
content of the array is a permutation of the original. If it is heapsort in particular
that we are interested in, then we also need to introduce the concept of a heap:

heap(lo; hi), (8i; j � (lo � i < j � hi ^ 9k � k > 0 ^ i = j div 2k)) a(i) � a(j))

The algorithm we have in mind should maintain a heap structure of the elements
to be sorted and proceed towards its goal by increasing the number of elements
in the sorted segment of the array. When we develop such an algorithm we draw
on both our knowledge of the strategy we intend to pursue (e.g. \lengthen the
sorted segment of array whilst maintaining heap in unsorted portion") and also
on the conditions for correctness in the formal system (e.g. \the invariant of the
loop together with the negation of the guard must imply the postcondition"). It
is natural to introduce pictures of examples of heaps to explain what is intended.
This is also true for describing the workings of the algorithm itself.

. . . . . .

unsorted� - sorted� -

index

a

1 n+1 N

all LHS elements � all RHS elements

A decision on the representation has been made at this stage, the plan being to
store the sorted portion in the the higher indexed part of the array. Thus, right
from the start, we are rejecting some possible implementations of heapsort and
homing in on a particular approach. The unsorted portion will start as the whole
of the array and decrease from the upper indices. A variable, n, is introduced to
indicate the highest unsorted position so far (N initially).

Using a weakest precondition development, the task can be broken down,
introducing intermediate goals which �t the algorithm we intend to develop. For
example, the plan could be represented as follows.

fPREg
n := N ;
\establish heap(1; n)00

fheap(1; n)g
do n 6= 0! fQg

n := n� 1;
\swap a(1) and a(n)"
\re-establish heap(1; n)"
fQg

od
fPOSTg

Loop variant is n.
Loop invariant is Q, de�ned:

(0 � n � N) ^ heap(1; n) ^
(8i; j � n+ 1 � i � j < N ) a(i) � a(j)) ^
(8i; j � 1 � i � n < j � N ) a(i) � a(j))

We could say that an acceptable heapsort program is any one which satis-
�es this speci�cation. However, because of the concrete decisions already made,
this excludes many possibilities which would in fact be perfectly valid heapsort
programs. Also, we may feel that the way in which the heap is re-established is
relevant, since heapsort is generally associated with a particular compare-and-
swap process. The full development is not presented here. The remaining tasks
from the plan would be developed, with pre- and post-conditions calculated to
guide each step. The guard of a command (as with n 6= 0 in the plan) indicates
when that command is enabled. A formal development along these lines results
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in a veri�ed (if the conditions have been checked!) implementation of a heapsort
algorithm valid for any �nite heap.

3 Interpreting the formal development

A development such as this is a standard example for classes in algorithm devel-
opment and program veri�cation. Experience shows that, from whichever way
the development is approached (that is, either requiring students to formalise a
heapsort process, or presenting the formalised version as a case study) under-
standing and interpreting the formal approach is not an easy task. It is often
helpful to give speci�c examples, draw pictures, and encourage students to exper-
iment. Even for users familiar with a formal notation, experience and exploration
are needed to understand a required task and �nd an appropriate abstraction.
The importance of experimentation and visualisation has been recognised in
many contexts, for example with Tarski'sWorld [Barwise and Etchemendy 1992]
for learning logic.

One purpose of a formal speci�cation is to provide a clear and unambiguous
statement of a desired system. It is intended that the speci�cation should be
interpreted in only one way by all who read it, thus providing a sound basis for
review and continued development. Work by Loomes and Vintner suggests that
misinterpretation of formal text is extremely common and that, even amongst
experienced users, the understanding gained from reading a speci�cation can
di�er widely [Loomes and Vintner 1996]. Certain logical constructions (impli-
cation being the main culprit) cause particular problems, and the process of
abstraction can itself be a barrier to understanding (incorrect inferences were
frequently drawn from a speci�cation, but never from speci�c instances). Inter-
estingly, there also seems to be scope for systematic misinterpretation, with a
group of subjects independently agreeing on the same (incorrect!) interpretation
of a formal statement. The formal speci�cation had been used to con�rm the
subjects' expectations.

In order to establish an association between experience and a formal concept
as in the case of heapsort, we may well go through some of the illustrative steps
mentioned above. We might show pictorially the structures involved, provide
visualisation of the steps required or give a manual demonstration of a heapsort
process. These may or may not be instances of the formal speci�cation - examples
couched in other terms can help our understanding and cases which show when
things do not work can be particularly useful. The link is that they are all
informative experiences which contribute to our appreciation of the heapsort.
Of course, some experiences may not be so helpful. Indeed, we may be misled
by something which looks like heapsort but is not, or by leaping to unjusti�ed
generalisations from particular cases.

Given the importance of experience, it may be useful to ask how we may
categorise the relevant ones in a particular case. What experiences could be
viewed as the counterparts of the speci�cation? Also, what is the nature of the
relationship between what is experienced and what is formalised? In one sense,
formality constrains, in that it requires many features to be pinned down. On
the other hand, abstraction is one of the most powerful aspects of formal speci-
�cation in that it leads to generality. A particular instance of heapsort stands in
much the same relation to a speci�cation as a particular occurrence of twoness
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(such as observing a pair of magpies) stands to the abstract number two. Foun-
dational issues in modern computer science (and the \logicist debate" in partic-
ular) hinge upon whether or not the ontology of abstract concepts is framed in
experiential terms [Beynon 1999]. In the spirit of Smith [Cantwell-Smith 1996],
who rephrases Kronecker's famous dictum as \Man made the integers - all the
rest is the work of God", EM puts its fundamental emphasis on observation and
experiment. This perspective is discussed in the next section.

4 What is heapsort - an observational point of view

How can we sustain the claim that understanding of the formal speci�cation of an
algorithm is rooted in experience? Creating experiences that can illuminate the
interpretation of a formal speci�cation of an algorithm is problematic in several
respects. In illustrating the execution of any abstract algorithm, many forms of
particularisation are involved. There are many possible choices of input; many
possible computer implementations using di�erent programming languages and
platforms; ways to demonstrate an algorithm that involve manual execution or
the use of special artefacts. A central concern in demonstrating any algorithm
is the presentation of state to the human interpreter: the di�erent states of the
execution have to be made manifest through some form of embodiment, and
those states that are vitally signi�cant in the interpretation of the algorithm
distinguished from those that are incidental.

A particular illustration helps to emphasise the signi�cance of such issues. In
the case of heapsort, imagine that we had constructed a \Heapsort Machine":
a mechanical device in the form of a jointed tree structure in which tokens of
di�erent weights are placed at the nodes, and the exchange of tokens attached
to a parent-child node pair is e�ected by rotating an arm of the tree. Using this
physical artefact as a visual aid, we could demonstrate the steps of the heap-
sort process manually, sorting the tokens by weight. The possible inputs for the
Heapsort Machine would no doubt be tightly restricted by physical constraints.
The number of input tokens and their possible weights would be bounded. To
convince an observer that the process was e�ectively changing state according
to the correct prescription it would be necessary to have a means of demon-
strating how tokens were ordered by weight in any particular con�guration of
the machine. For instance, it might be possible to extract an arm of the tree
structure, together with the tokens at each end, and place it on a balance. In
this context, it would be essential to recognise that the activity associated with
using the balance was not to be interpreted as part of the heapsort algorithm.

The concrete idiosyncratic character of the Heapsort Machine, and the sub-
tlety of the observational and experiential issues that surround its use, are self-
evident. In practice, the interpretation of any particular instance of heapsorting
activity, however it is implemented, involves similar considerations. The formal
description of heapsort, transcending any speci�c experience, can be related to
such particular instances only through a powerful process of extrapolation.

The key element in this process of extrapolation is supplied by the human
interpreter. Recognising an instance of an abstract algorithm is essentially con-
cerned with projecting an explanatory account onto an observed activity - an
important theme to be elaborated throughout the paper. With speci�c reference
to heapsort, the activity should visit certain abstract states [as prescribed by the
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formal speci�cation], and involve certain characteristic abstract actions [such as
\consulting the data value at a certain node, and if this value is less then the
value at another node, carrying out an exchange"]. This characterises an in-
stance of heapsort as a phenomenon in which - as it is construed by the human
interpreter - state-change is e�ected by a reliable stimulus-response mechanism
[such as a conventional computer, or human following prescribed rules faithfully]
that is con�gured to react to speci�ed stimuli in a speci�ed way.

The fact that this characterisation of heapsort activity directly invokes the
human interpreter is crucial. It gives prominence to activities of an empirical
nature that are not well represented in the conventional theory of computation.
From a philosophical perspective that favours an empirical stance, explanation
of phenomena is a matter of making judgements about experiences. It may be
convenient to presume that an explanation is in some sense \absolutely correct",
but it is more illuminating to regard it as a provisional hypothesis that is al-
ways subject to refutation by future experience. This demands a radical shift on
perspective on phenomena that are potentially instances of heapsort, one that is
particularly di�cult to make when we seek to explain the execution of a conven-
tional heapsort algorithm. Characteristic of this shift is the idea of being able
to intervene in an open-ended manner, in much the way that an experimental
scientist explores the implications of changing contexts and parameters.

The process of construing a phenomena provides a fundamental and subtle
connection between theoretical and empirical perspectives. As Gooding remarks
([Gooding 1990], p.88): \Construing may be thought of as a process of mod-
elling phenomena while the conceptual necessities of theory are held at arms
length." Nonetheless construing is an imaginative activity that, like a theory,
can transcend the limitations imposed by the particular, provisional and subjec-
tive qualities of experience. This can be illustrated with reference to the issues
of particularising heapsort cited above. When we see a heapsort program exe-
cute on a particular set of numbers, we construe the mechanisms that operate
as depending upon these numbers in a speci�c way, and as independent of the
number of numbers in some abstract sense. For instance, if the inputs happen
to have decimal expansions of distinct lengths, the sorting is presumed to rely
upon comparing their values and not their representations.

5 Empirical Modelling principles for construing

Our previous discussion connects recognising and creating experiential counter-
parts for a formal speci�cation with construing phenomena. The principles and
tools of EM serve to address two closely related issues: How do we represent and
communicate our explanatory models? and To what extent and by what means
can we exploit computer support?

The character of EM activity can be best motivated by referring to the
way in which experimental scientists have documented their understanding of
phenomena. David Gooding's research into the experimental methods of Fara-
day [Gooding 1990] gives an appropriate orientation. In his analysis of Faraday's
evolving understanding of electro-magnetic phenomena, Gooding refers to the
essential rôle played by \objects and images which conveyed likely relationships
between electricity, magnetism, wires and magnetised needles". Gooding intro-
duces the term \construal" to describe such artefacts, and characterises them
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in the following terms: \Construals are a means of interpreting unfamiliar expe-
rience and communicating one's trial interpretations. Construals are practical,
situational and often concrete. They belong to the pre-verbal context of ostensive
practices." ([Gooding 1990], p.22); \... a construal cannot be grasped indepen-
dently of the exploratory behaviour that produces it or the ostensive practices
whereby an observer tries to convey it." ([Gooding 1990], p.87).

EM can be viewed as contributing to the science of construing in two com-
plementary ways. On the one hand, it o�ers principles that can be used to frame
explanatory accounts. On the other, it introduces new practical techniques and
tools for constructing construals. Though EM is centrally concerned with con-
struals that exploit computer-based technology, it also o�ers a broader perspec-
tive on modelling in general.

EM principles link construing phenomena to identifying observables, depen-
dency and agency. This is consistent with our everyday understanding of the
world, with the way in which scienti�c investigation is conducted, and how we
may aspire to analyse more complex processes, such as social and political activ-
ities. The term observable refers to a feature of a situation that is perceived to
have identity and integrity. A dependency is a relationship amongst observables
that expresses expectations about how the values of observables are indivisibly
linked in change. An agent is an observable (generally identi�ed with a family
of primitive observables) that is deemed to be responsible for changes of state
within the situation. As discussed in [Beynon 1998], these fundamental concepts
have broad interpretation and application. Their use will be sketched here in
connection with an account of heapsort. In this context, the construals to be
constructed resemble the blackboard diagrams that a lecturer would revise and
annotate in introducing heapsort.

The top half of Figure 1 depicts the computer-based construal for heapsort
that we have developed using Empirical Modelling. The status of Figure 1 as
a computer model will be discussed in the next section. This section focuses
on the abstract analysis of observables, dependencies and agency that informs
the construal. The motivation for the construal is most easily understood from
the perspective of a student who witnesses an expert performing the heapsort
process on an array, and has no auxiliary visualisation to aid interpretation.

In developing the construal, more than mere visualisation of the heap data
structure is involved. Understanding heapsort demands heap observation and
manipulation of a very speci�c kind. Careful inspection of Figure 1 highlights
the fact that what is given visual embodiment is precisely what the heapsort
expert attends to in interpreting the data structure and its application. For
instance, relevant features are: the order relationships between values at parent
and child node;, whether the heap condition holds at a node; and the index of the
child node with the greater value. A brief account of the dependencies between
such observables to be captured in the construal follows.

A student of heapsort who inspects Figure 1 has �rst to understand the
relationship between the disposition of elements in the array and the geometry of
the associated tree. This can be expressed using a simple system of dependencies:

val[root of tree] = array[1]
val[R child of root] = array[3] etc:

This simple dependency enables the student to study the relationship between
array values and tree values empirically, through changing the values of array
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Figure 1: An EM construal for heapsort
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elements, and observing the e�ect on the tree.
In the tree, the basic observables are nodes and edges that metaphorically

represent array elements and order relations between array elements that are
signi�cant in determining whether the tree satis�es the heap condition. A richer
level of observation involves examining the values that are associated with the
nodes in the tree, and the nature of the order relationships (<, =, >). In deciding
whether the tree is a heap, it is further necessary to consider whether the heap
condition is satis�ed at each node - that is to say, is the value associated with a
particular node at least as great as that associated with each of its children.

To model observation of this nature via dependencies requires observables
to represent the index and value of each node, to record the order relation that
pertains on each edge of the tree, and to register whether the heap condition
holds at each node. The index and value of a node are de�ned by explicit values,
whilst the order relations and heap conditions have values that depend on these.
For instance, for the node with index i, the heap condition would be de�ned by:

HC[i] = (val[i] � val[2 � i]) and (val[i] � val[2 � i+ 1])

(subject to a suitable convention to deal with nodes with less than 2 children).
Likewise, an order relation for the edge that joins the nodes indexed by i and
2*i is de�ned by:

OR[i; 2 � i] = if (val[i] > val[2 � i]) then 1 else (if(val[i] < val[2 � i]) then (�1) else 0):

In our EM modelling environment, additional dependencies can readily be in-
troduced to establish suitable visual conventions for representing these abstract
conditions. For instance, the label of a node and the edges between nodes can
be coloured so as to re
ect whether or not the heap condition is satis�ed at a
node, and to re
ect the nature of the order relation associated with an edge:

colour of label at node[i] = if HC[i] then black else white
colour of edge[i; 2 � i] = if (OR[i; 2 � i] = 1) then black else white

This allows the user to experiment with the assignment of values to nodes,
and register visually the status of just those observables that are signi�cant in
understanding the heap concept. For instance, Figure 1 represents a heap if and
only if all the nodes of the tree are coloured black. Such a condition can be
independently monitored by attaching another high-level observable, de�ned by

is heap = HC[1] and HC[2] and HC[3] and ::: and HC[7]

The computer model developed in this way serves a similar function to the
animation that a lecturer might conduct on a blackboard when explaining the
basic heap concept. For instance, it can be used to demonstrate how the heap
condition is a�ected by changing the value at a node, or exchanging the values
at adjacent nodes.

In giving an account of heapsort, more is required. The de�nition of the heap
condition has to be re�ned to take account of restricting the heap to a segment of
the array. For this purpose, the indices that de�ne the endpoints of this segment
are new observables to be referred to as first and last, and a new observable
in heap[i] introduced to determine whether each index i lies within the segment.
The de�nition of the heap condition at node i can then be interactively revised
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to the form:

HC[i] = not in heap[i]
or(
in heap[i]
and ((not in heap[2 � i]) or (in heap[2 � i] and OR[i; 2 � i] � 0))
and ((not in heap[2 � i+ 1]) or (in heap[2 � i+ 1] and OR[i; 2 � i+ 1] � 0))

):

6 The semantics of EM computer-based construals

The above discussion illustrates how the development of a construal proceeds in
an exploratorymanner. EM tools give computer support to this activity, enabling
incremental and interactive extension, re�nement and revision of a computer
model. The semantic framework for this modelling activity is radically di�er-
ent from conventional computer programming. The key feature is that what is
being construed (to be termed the referent of the construal) is itself subject
to clari�cation and modi�cation during the model-building. Such 
uidity and
negotiation of meaning is possible because the modelling involves open-ended
experimental interaction with the environment of the referent. For instance, in
construing heapsort, the modelling activity has to embrace interactions associ-
ated with issues such as \what is a heap?" that are pertinent but not speci�c to
heapsort. The aim of this section is to examine the semantics of EM construals
more closely. For more details of the practical tools that can be used to construct
construals such as Figure 1, see [Beynon 1998].

Key concepts in using EM principles to construct construals are depicted in
Figure 2. The concepts that pertain to the referent, and to the external semantics
of the computer model are displayed on the right of the diagram. The way in
which these concepts are represented in and through the construction of the
computer model is indicated on the left. In the above discussion of construing
heapsort, the computer model is the construal, and the referent is heapsort. A
relevant situation might be observation of a heapsort expert in action.

The diagram is to be interpreted in the implicit context of the modeller's
exploratory interaction with the computer model and its referent. The aim of this
interaction is to create a model embodying relationships between observables,
dependencies and agents congruent to those that the modeller projects onto the
referent. The computer model provides perceptible counterparts for relationships
that typically cannot be directly observed in the referent.

The use of humanoid icons to depict agents is not intended to exclude im-
personal or inanimate forms of agency, but to stress a key principle of EM. All
agency is construed as similar to human agency. All state-changing agents are
construed as operating through changing observables and, in their turn, respond-
ing to changes of observables.

The current state of the referent, as construed by the modeller, is determined
by the current values of the observables and the dependencies that hold between
them. Each observable is represented by a variable in the computer model. To
each variable there is an attached de�nition that resembles the de�nition of a
spreadsheet cell in character. This de�nition may either associate an explicit
value with a variable, or express the way in which its value is functionally de-
pendent on the values of other variables.
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Figure 2: Empirical Modelling for computer-based construals

Taken in conjunction, the variable de�nitions in the computer model make
up what we shall call a de�nitive (for de�nition-based) script. It is signi�cant
that the de�nitions attached to variables are not �xed or subject to variation
within a preconceived circumscribed framework. The values and dependencies
exhibited by the computer model are subject to change in many di�erent ways.
Such changes are always driven by its rôle as a construal, but can have all kinds
of semantic signi�cance. For instance, rede�ning a variable may re
ect a change
of state in the referent, or a correction to an observation; introducing a new
dependency may correspond to a new insight on the part of the modeller, or
a development in the situation. (A useful comparison can be made here with a
spreadsheet, whose possible evolution in development and use is similarly guided
by its external semantics, so that its potentially meaningful states cannot be
preconceived.)

As be�ts its open-ended exploratory rôle, the computer model is associated
with the uncharted space of possible con�gurations of values and dependencies
that can be associated with a de�nitive script. Despite its openness, this char-
acterisation is precise in much the same sense that the concept of mainland
Britain represents the land - most of which I have never visited - which I can
in principle reach on foot. As a pedestrian explorer, I cannot specify in advance
what land can be reached. In clarifying my referent, I may need to negotiate
interpretations: is an island reachable by low-tide, or on an inland lake part of
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mainland Britain? How can I be absolutely sure that the Isle of Wight will never
be accessible by foot? Is the American Embassy part of the British mainland?

As Figure 2 indicates, my perception of a situation is represented both by
the space of conceivable states of a de�nitive script, and by the state-changing
agents that I construe to operate in that space. Agent action is associated with
particular privileges to rede�ne variables. In Figure 2, possible actions of agents
A and B are represented by the rede�nitions and corresponding transitions in
state space labelled by a and b respectively. Figure 2 depicts a and b as non-
interfering actions that can be performed simultaneously to achieve the same
state transition as would result from performing them in either order. This is
represented in the computer model by performing rede�nitions of a and b in
parallel.

7 EM construals and formal speci�cation

The openness of a heapsort construal is respected in its implementation us-
ing EM tools. There is no single way in which the computer model can be
extended and applied. In using de�nitive scripts to represent state, the order-
ing of de�nitions is immaterial. This means that the same script can be or-
ganised for presentation in di�erent ways, and assembled in di�erent orders.
Two distinct purposes for a heapsort model derived from the experimental en-
vironment for studying the heap concept introduced above are discussed else-
where [Beynon 1998, Beynon et al 1998]. Two models chosen from these sources
to illustrate subtleties associated with construing an activity as heapsort will
now be brie
y outlined.

The de�nitive script outlined in the previous section captures the way in
which the values at the nodes of the tree, the order relations on the edges,
and the heap conditions at the nodes depend upon the values in the array.
By interacting with such a script, manipulating the values of first and last,
and making appropriate sequences of exchanges, a user can manually simulate
heapsort. The visualisation in the model is such that the choice of nodes at which
to perform an exchange can be inferred from the colours encircling the nodes.
This means that the user can learn to carry out heapsort without explicitly
consulting the values at nodes, following a recipe based only upon the colour
conventions used in their visualisation. Consideration of this model exposes some
of the subtle issues attached to construing an activity as heapsort. A user who
learned the colour conventions to be followed in a recipe for heapsort could
not necessarily be deemed to be performing heapsort. Possible experiments to
test understanding could easily be applied by adapting the heapsort model.
Suppressing the colour coding on the visualisation, or removing the dependency
between the visualisation and the true values at the tree nodes would both o�er
relevant insight.

The use of EM tools also makes it possible to introduce automatic agents into
models. In [Beynon 1998], a number of possible scenarios are described, in which
di�erent degrees of automatic support for heapsorting are o�ered, ranging from
completely manual to completely automatic execution. All these models can be
derived interactively from a single model simply by introducing an appropriate
�le of de�nitions and automatic agents. An automatic agent is represented by a
triggered procedure for rede�nition. A useful mechanism that is exploited in all
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the automated models attaches such an agent to each node of the tree. When
the heap condition at this node is violated, the corresponding agent is primed
to exchange the value at this node for a value attached to one of its child nodes,
whichever is the greater. An interesting feature of this approach that the heapsort
process can be mimicked merely by manipulating the first and last indices
according to the prescription of heapsort, followed by invocation of any primed
agent attached to a node. Despite appearances, this process di�ers from authentic
heapsort in a signi�cant way. In e�ect, the transfer of control from node to node
is always driven by the nodes at which the heap condition is currently violated.
This does not accord with the formal speci�cation, where - for the most part -
transfer of control entails no reference to the values attached to nodes. In this
case, the need to construe the activity as di�ering from heapsort is disclosed
by intervening during the execution of the algorithm. A conventional heapsort
does not repair violations of the heap condition except in contexts that are
preconceived in designing the control procedure. Our unconventional algorithm
in some circumstances can.

Figure 1 is an extension of the heapsort model that includes observation
that is associated with a formal speci�cation of heapsort. The concept behind
this extension is that the formal speci�cation supplies an abstract trace of the
heapsorting process as it might be observed by a mathematician. The lower
component of Figure 1 takes on a di�erent form according to which phase of the
heapsort algorithm is currently being inspected, and the values of invariants and
variants are monitored as the algorithm is executed. There are two complemen-
tary motivations for such observation: the formal speci�cation can be used to
con�rm that the heapsorting process is indeed being correctly followed, or the
heapsorting process may serve as worked example for the purpose of checking
the accuracy of the formal speci�cation.

In Figure 1, the invariants and variants of the speci�cation are treated as
observables in their own right, and linked to the more primitive observables at-
tached to the heapsort model. Strictly speaking, this mode of observation of
the heapsort model is only appropriate in a restricted context for use, since it
presumes that heapsorting activity is in progress, and makes references to ob-
servables concerned with control issues. For instance, each invariant is expressed
as a predicate whose truth value is dependent on the current state, as determined
by the present status of both data and control.

As the above discussion has indicated, there are many modes of interaction
with the heapsort model. Most of these operate outside the context of a particular
heapsorting process. When monitoring the invariants of the formal speci�cation
in interaction with the model, the user has complete discretion over whether this
interaction respects the heapsorting process. This is a crucial distinction between
our computer-based construal and a conventional animation of heapsort. The
function of a construal can only be served by a model that can be tested beyond
the limits of any preconceived and circumscribed range of interactions. If our
formal speci�cation is 
awed, it is still important that it can be incorporated
in the model. If the heapsort process is not correctly followed, there must be
scope to re
ect this deviation. More generally, a complete understanding of the
heapsort process - if indeed there is such a thing - stems from insight into the
way in which the process relies upon its context. In developing this insight, it is
valuable - if not essential - to have scope for experimental interaction.

Setting algorithm speci�cation and design in an experimental setting is a
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powerful way to explore and develop new functionality. In experimenting with
the model in Figure 1, we can \follow the right steps in the algorithm" and
\check that the invariants are respected", or \deliberately depart from the algo-
rithm" and \check that this transgression is re
ected in the speci�cation". It is
appropriate to annotate these phrases with quotation marks because they may
re
ect the intentions of the human interpreter rather than the true status of the
model: there may be unrecognised anomalies in either the speci�cation or the
construal. Observation of invariants and variants attached to the formal speci�-
cation can also be used in a constructive way to counteract the e�ects of random
changes to the values to be sorted during the heapsort process. To demonstrate,
we have created a variant of the heapsort model in which such changes prompt
the model to determine the optimal point to which the heapsort process has
to be rewound. In this way, observation of the formal speci�cation is used as a
powerful form of meta-control that would normally entail intelligent action on
the part of a user.

8 Conclusion

Incorporating a formal speci�cation into an EM environment allows us to in-
terpret the signi�cance of the formal statements and to explore the concepts
behind them. One aspect of the EM approach is the visualisation it provides
but, as emphasised above, an observation-oriented viewpoint o�ers more than
this. Fundamental to the approach is its support for user interaction and experi-
mentation which is crucial for gaining an understanding of the abstract concepts
in a formal speci�cation. To explore a particular algorithm e�ectively, the open-
ness of interaction associated with EM may need to be restricted in certain ways
(as when tracing the steps of the algorithm) but the user is also free to step
outside such constraints for a wider exploration of the subject.

Reliance on empirical evidence does not give certainty since, although expe-
rience can contribute to understanding, it can also be misleading. It is essential
to introduce formal speci�cation to guard against this. Combining the two helps
us to formulate theories which can be veri�ed.

Our work emphasises the di�erent and complementary nature of the two ap-
proaches, but also reveals some similarity. Both a formal speci�cation of heapsort
and a construal of a particular instance of heapsort refer to abstract features of
a physical process that are independent of any particular realisation.

Although the approach here has been to explore an existing speci�cation from
an observation-oriented perspective, it would also be possible to start with an EM
investigation to explore the requirements and clarify ideas, using this to inform
the construction of the formal speci�cation. Safety-critical areas, such as railway
operation, have been successfully modelled both empirically [Beynon 1999] and
formally [FMERail]. A combined approach may be bene�cial here, with EM
helping to resolve con
icting requirements and perhaps suggesting approaches
which might not otherwise have been considered. The further development of
existing EM tools to support such usage will be a theme of future work. The
distributed variants of our EM tools are of particular interest in this connection.
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