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Abstract: Nielsen, Rozenberg, Salomaa and Skyum have shown that HD0L languages
are CPDF0L languages. We will generalize this result for formal power series. We will
also give a new proof of the result of Nielsen, Rozenberg, Salomaa and Skyum.
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1 Introduction

Nielsen, Rozenberg, Salomaa and Skyum have shown that HD0L languages are
CPDF0L languages (see [9]). In other words, the effect of an arbitrary morphism
on an arbitrary D0L language can be reduced to a coding of a propagating D0L
language with multiple axioms. This result is discussed in detail also in [7], where
it is described as one of the most sophisticated results about the elimination of
ε-rules in the theory of Lindenmayer systems.

In this paper we will generalize the result of [9] for power series. It has been
shown in [2] that infinite D0L power series having coefficients in an arbitrary
commutative semiring are CPDF0L power series. On the other hand, CPDF0L
power series over the semiring of nonnegative integers are properly included
in HD0L power series. Below we will show, however, that HD0L power series
are CPDF0L power series if certain natural restrictions are posed on HD0L
power series. As a byproduct we will see that there is a close connection between
the result of [9] and the usual simplification of D0L systems by elementary
morphisms (see [10]).

Results connecting HD0L power series with CPDF0L power series might turn
out to be very useful in studying the equivalence problem of HD0L power series.
It has recently been shown that we can cope with multiple axioms (see [5]). At
present there are no methods to deal simultaneously with codings and multiple
axioms.

It is assumed that the reader is familiar with the basics concerning formal
power series and L systems (see [1, 8, 10, 11, 12]). Notions and notations that
are not explained are taken from these references. For further background and
motivation we refer to [2, 3, 4] and their references.
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2 Definitions and results

In what follows A will always be a commutative semiring. We assume also that
either A is a subsemiring of a field or A is the Boolean semiring. Let X be
an alphabet. The set of formal power series with noncommuting variables in X

and coefficients in A is denoted by A〈〈X∗〉〉. The subset of A〈〈X∗〉〉 consisting of
polynomials is denoted by A〈X∗〉. If a ∈ A is nonzero and w ∈ X∗, the length of
aw equals by definition the length of w. In symbols,

|aw| = |w|.

Let X and Y be finite alphabets. A semialgebra morphism h : A〈X∗〉 −→
A〈Y ∗〉 is called a monomial morphism if for each x ∈ X there exist a nonzero
a ∈ A and w ∈ Y ∗ such that h(x) = aw. A monomial morphism h : A〈X∗〉 −→
A〈Y ∗〉 is called nonerasing (or propagating) if h(x) is quasiregular for all x ∈ X .
(Recall that a series r is called quasiregular if (r, ε) = 0.) A monomial morphism
h : A〈X∗〉 −→ A〈Y ∗〉 is called a coding if

|h(x)| = 1

for all x ∈ X .
A series r ∈ A〈〈Y ∗〉〉 is called an HD0L power series if there exist monomial

morphisms g : A〈X∗〉 −→ A〈X∗〉, h : A〈X∗〉 −→ A〈Y ∗〉, a nonzero a ∈ A and a
word w ∈ X∗ such that

r =
∞∑

n=0

hgn(aw) (1)

and, furthermore, the family

{hgn(aw) | n ≥ 0} (2)

is locally finite. (Recall that, by definition, (2) is locally finite if for any v ∈ Y ∗

there exist finitely many values of n such that (hgn(aw), v) �= 0.) If X = Y and
h is the identity, r is called a D0L power series. Finally, a series r ∈ A〈〈Y ∗〉〉 is
called a CPDF0L power series if there exist a nonerasing monomial morphism
g : A〈X∗〉 −→ A〈X∗〉, a coding c : A〈X∗〉 −→ A〈Y ∗〉 and a polynomial P such
that

r =
∞∑

n=0

cgn(P ) (3)

and, furthermore, the family

{cgn(P ) | n ≥ 0} (4)

is locally finite.
The following results have been established in [2].
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Theorem 1. If r is a D0L power series such that the support of r is infinite,
then r is a CPDF0L power series.

Theorem 2. Suppose that the basic semiring A is the semiring of nonnegative
integers. Then CPDF0L power series are properly included in HD0L power se-
ries.

The following theorem will be proved in the next section.

Theorem 3. Let

r =
∞∑

n=0

hgn(w)

be an HD0L power series where g : A〈X∗〉 −→ A〈X∗〉 and h : A〈X∗〉 −→ A〈Y ∗〉
are monomial morphisms and w ∈ X∗. Suppose that

(hgn(x), ε) ∈ {0, 1} for all x ∈ X and n ≥ 1.

Then there exist a positive integer k, an alphabet Σ, a nonerasing monomial
morphism f : A〈Σ∗〉 −→ A〈Σ∗〉, a coding c : A〈Σ∗〉 −→ A〈Y ∗〉 and monomials
wi ∈ A〈Σ∗〉, 0 ≤ i < k, such that

hgk(n+1)+i(w) = cfn(wi) (5)

for all 0 ≤ i < k and for almost all n ≥ 0.

Theorem 3 implies a generalization of the result of Nielsen, Rozenberg, Sa-
lomaa and Skyum, [9].

Corollary 4. Let

r =
∞∑

n=0

hgn(w)

be an HD0L power series where g : A〈X∗〉 −→ A〈X∗〉 and h : A〈X∗〉 −→ A〈Y ∗〉
are monomial morphisms and w ∈ X∗. Suppose that

(hgn(x), ε) ∈ {0, 1} for all x ∈ X and n ≥ 1.

Then there exist a polynomial s1 ∈ A〈Y ∗〉 and a CPDF0L power series s2 ∈
A〈〈Y ∗〉〉 such that

r = s1 + s2.
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3 Proofs

To prove Theorem 3 we will use elementary morphisms in a power series frame-
work. By definition, a monomial morphism h : A〈X∗〉 −→ A〈Y ∗〉 is simplifiable if
there exist an alphabet Z and monomial morphisms h1 : A〈X∗〉 −→ A〈Z∗〉 and
h2 : A〈Z∗〉 −→ A〈Y ∗〉 such that h = h2h1 and card(Z) < card(X). If h is not
simplifiable it is called elementary. (If card(X) = 1 then h is regarded as elemen-
tary if and only if h is nonerasing.) Elementary morphisms are closely related
to cyclic morphisms. Here, we call a monomial morphism h : A〈X∗〉 −→ A〈X∗〉
cyclic if for all x ∈ X , the letter x occurs at least once in the support of h(x).
For the proof of the following lemma see [3, 6].

Lemma5. Let h : A〈X∗〉 −→ A〈X∗〉 be an elementary morphism. Then there
exists a positive integer t such that ht is cyclic.

First we show how a nonerasing morphism can be replaced by a coding.

Lemma6. Let

r =
∞∑

n=0

hgn(w)

be an HD0L power series where g : A〈X∗〉 −→ A〈X∗〉 and h : A〈X∗〉 −→
A〈Y ∗〉 are monomial morphisms and w ∈ X∗. Assume that g is cyclic and h

is nonerasing. Then there is an alphabet ∆, a nonerasing monomial morphism
g1 : A〈∆∗〉 −→ A〈∆∗〉, a coding c : A〈∆∗〉 −→ A〈Y ∗〉 and a word w1 ∈ ∆∗ such
that

hgn(w) = cgn
1 (w1)

for all n ≥ 0.

Proof. Let
∆ = {(x, i) | x ∈ X, 1 ≤ i ≤ |h(x)|}

be a new alphabet. Define the morphism α : X∗ −→ ∆∗ by

α(x) = (x, 1) . . . (x, |h(x)|)

for x ∈ X . Denote w1 = α(w). Let g1 : A〈∆∗〉 −→ A〈∆∗〉 be a nonerasing
monomial morphism such that

g1α(x) = αg(x)

for all x ∈ X . The existence of g1 follows because g is cyclic and, hence, the
word (x, 1) . . . (x, |h(x)|) is a factor of αg(x). Finally, let c : A〈∆∗〉 −→ A〈Y ∗〉
be a coding such that

cα(x) = h(x)
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for all x ∈ X . The existence of c follows because for all x ∈ X the length of α(x)
equals the length of h(x). Then we have

hgn(w) = cαgn(w) = cgn
1 (α(w)) = cgn

1 (w1)

for all n ≥ 0. �

If a ∈ A is nonzero and w ∈ X∗, then alph(aw) is the set of all letters of X

which have at least one occurrence in w.

Lemma7. Let

r =
∞∑

n=0

hgn(w)

be an HD0L power series where g : A〈X∗〉 −→ A〈X∗〉 and h : A〈X∗〉 −→ A〈Y ∗〉
are monomial morphisms and w ∈ X∗. Assume that

(hgn(x), ε) ∈ {0, 1} and x ∈ alph(g(x)) = alph(g2(x))

for all x ∈ X and n ≥ 1. Then there exist an alphabet X1, a cyclic mono-
mial morphism g1 : A〈X∗

1 〉 −→ A〈X∗
1 〉, a nonerasing monomial morphism

h1 : A〈X∗
1 〉 −→ A〈Y ∗〉 and a word w1 ∈ X∗

1 such that

hgn+1(w) = h1g
n
1 (w1)

for all n ≥ 0.

Proof. Denote
X1 = {x ∈ X | hg(x) �= ε}.

Equivalently, x ∈ X1 if and only if hg(x) is quasiregular. Let β : A〈X∗〉 −→
A〈X∗

1 〉 be the monomial morphism defined by

β(x) =
{

x if x ∈ X1

ε otherwise

and let g1 : A〈X∗
1 〉 −→ A〈X∗

1 〉 be the monomial morphism defined by

g1(x) = βg(x)

for x ∈ X1. Then we have g1β(x) = βg(x) for all x ∈ X . This is clear if x ∈ X1.
Otherwise, hg(x) = ε and hg2(x) = ε, hence βg(x) = ε.

Finally, let h1 : A〈X∗
1 〉 −→ A〈Y ∗〉 be the monomial morphism defined by

h1(x) = hg(x)

for all x ∈ X1 and denote w1 = β(w). Then

hgn+1(w) = hgβgn(w) = hggn
1 β(w) = h1g

n
1 (w1)
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for all n ≥ 0. �

As a penultimate step we prove Theorem 3 if the monomial morphism g is
elementary.

Lemma8. Let

r =
∞∑

n=0

hgn(w)

be an HD0L power series where g : A〈X∗〉 −→ A〈X∗〉 and h : A〈X∗〉 −→ A〈Y ∗〉
are monomial morphisms and w ∈ X∗. Assume that g is elementary and that

(hgn(x), ε) ∈ {0, 1} for all x ∈ X and n ≥ 1.

Then there exist a positive integer k, an alphabet Σ, a nonerasing monomial
morphism f : A〈Σ∗〉 −→ A〈Σ∗〉, a coding c : A〈Σ∗〉 −→ A〈Y ∗〉 and monomials
wi ∈ A〈Σ∗〉, 0 ≤ i < k, such that (5) holds for all 0 ≤ i < k and for all n ≥ 0.

Proof. By Lemma 5 there is a positive integer t such that gt is cyclic. Hence
there is a multiple k of t such that

x ∈ alph(gk(x)) = alph(g2k(x))

for all x ∈ X . By Lemmas 6 and 7 there exist alphabets Σi, nonerasing monomial
morphisms fi : A〈Σ∗

i 〉 −→ A〈Σ∗
i 〉, codings ci : A〈Σ∗

i 〉 −→ A〈Y ∗〉 and monomials
wi ∈ A〈Σ∗

i 〉 for 0 ≤ i < k such that

hgk(n+1)+i(w) = cif
n
i (wi)

for all 0 ≤ i < k and n ≥ 0. This implies the claim. Indeed, by renaming we
may assume that the alphabets Σi, 0 ≤ i < k, are pairwise disjoint. Therefore, if
Σ = Σ0∪. . .∪Σk−1, there exist a nonerasing monomial morphism f : A〈Σ∗〉 −→
A〈Σ∗〉 and a coding c : A〈Σ∗〉 −→ A〈Y ∗〉 such that

f(σ) = fi(σ) and c(σ) = ci(σ)

if σ ∈ Σi, 0 ≤ i < k. Then (5) holds for all 0 ≤ i < k and n ≥ 0. �

Now we are in a position to conclude the proof of Theorem 3. We use in-
duction on the cardinality of X . If card(X) = 1, the claim follows by Lemma
8 because g is elementary. Consider then an alphabet X and suppose that the
claim holds for smaller alphabets. If g is elementary, Theorem 3 again follows
by Lemma 8. So, assume there are an alphabet Z and monomial morphisms
g1 : A〈X∗〉 −→ A〈Z∗〉 and g2 : A〈Z∗〉 −→ A〈X∗〉 such that g = g2g1 and
card(Z) < card(X). Without restriction we assume that g2(z) ∈ X∗ for all
z ∈ Z. Then

r = h(w) +
∞∑

n=0

hgn+1(w) = h(w) +
∞∑

n=0

hg2(g1g2)ng1(w)
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where g1g2 : A〈Z∗〉 −→ A〈Z∗〉 is a monomial morphism. Because (hgn(x), ε) ∈
{0, 1} for all x ∈ X and n ≥ 1, also (hgn(u), ε) ∈ {0, 1} for all u ∈ X∗ and n ≥ 1.
Hence

(hg2(g1g2)n(z), ε) = (h(g2g1)ng2(z), ε) ∈ {0, 1}
for all z ∈ Z and n ≥ 1. Now the claim follows by induction. �
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