
Utilizing Debugging Information of Applications in
Memory Forensics

Mohammed I. Al-Saleh, Ethar Qawasmeh
(Jordan University of Science and Technology

Department of Computer Science
P.O. Box 3030

Irbid, Jordan 22110
misaleh@just.edu.jo, eaqawasmeh16@cit.just.edu.jo)

Ziad A. Al-Sharif
(Jordan University of Science and Technology

Department of Software Engineering
P.O. Box 3030

Irbid, Jordan 22110
zasharif@just.edu.jo)

Abstract: The rapid development in the digital world has contributed to th e dramatic
increase in the number of cybercrimes. An application's volatil e data that is kept in
memory (RAM) could give clues on how a criminal has been using the application up
to acquisition time. Unfortunately, application-level memo ry forensics has been con-
ducted in an ad hoc manner because a forensic investigator has to come up with a new
technique for a new application. This process has become problematic and exhaust-
ing. This paper proposes a general solution to investigate any application in memory.
We heavily utilize applications' debugging information gene rated by compilers in our
solution. Furthermore, we extend Volatility[Walters, 2007], a n open-source memory
forensic framework, by developing and integrating a plugin to inve stigate applications
in memory. We design several experiments to evaluate the e�ectiveness of our plugin.
Interestingly, our plugin can parse debugging information and ex tract variables' names
and data types regardless of their scope and complexity. In addition, we experimented
with a real world application and succeeded in collecting vita l information out of it.
By accurately computing the Virtual Addresses (VA) of variables along with their al-
located memory sizes based on their types, we are able to extract their values out
of memory. In addition, we trace call stacks as per threads to ext ract local variables'
values. Finally, direct and indirect pointers are successfully d ereferenced.
Key Words: Debugging information, Memory forensics, Application forensics
Category: D.4.1, D.4.6, D.4.9

1 Introduction

Recent technologies have led to a signi�cant increase in the numberof cyber-
crimes. Intruding into others' machines to steal their valuable information, ex-
ecuting malicious programs, spying on users' activities or causing damage to
systems are examples of cybercrimes. Digital forensics is inevitable in investi-
gating cybercrimes and resolving cases. It follows standard methodologies to

 Journal of Universal Computer Science, vol. 26, no. 7 (2020), 805-826
 submitted: 23/11/19, accepted: 12/4/20, appeared: 28/7/20 CC BY-ND 4.0

maintain the soundness of the whole investigation process. Digital artifacts can
be utilized in convicting cyber criminals and exposing their activities. Various
digital storage media can be inspected to extract digital evidence such as Hard
Drives (HD), Solid State Drives (SSD), memory (RAM), and networks devices
hd1,hdssd,IMpc,ssd1, memory1, memory2, memory3,memory4,net1,net2, net3.

Memory Forensics (MF) is vital in the investigation process for the wealth
of information it comprises lit14,lit30. For example, it holds information ab out
open �les, processes, browsing history, passwords, encryption keys, and network
connections. Moreover, MF plays an essential role in malware analysis and re-
verse engineering. Finally, there are some cases where information canonly be
found in memory lit35.

Various applications might be involved in criminal activities. Researchers
have developed techniques to investigate well-known applications such as web
browsers and VoIP applications lit33,lit31. Despite being useful, these techniques
are ad hoc in the sense that the corresponding forensic technique only targets a
speci�c version of an application by collecting strings and network datawithout
a priori knowledge of the application's internal structures. When a new version
of an application is developed or a new application has come out then the old
technique might be rendered useless. This paper, however, aimsto provide a uni-
�ed solution to investigate any application in memory. Our framework uti lizes
information about the applications' structures and variables. In particular, com-
pilers generate various kinds of information about applications. For example, a
compiler generates what is called debugging information to help debuggers trace
running applications. Debugging information includes de�ned data structures
and variables along with their virtual memory addresses.

The ability to investigate any application in memory helps re�ne the i nvesti-
gation process and reach a better understanding of an application's usage.Our
ultimate goal is to make the whole memory investigation process more e�cient
and e�ective so that cases can be resolved easily and quickly.

The rest of this paper is organized as follows: Section 2 presents related
work. Section 3 provides a background about Volatility framework, Portable
Executable �le (PE) and Program Database (PDB) �le. Our methodology is
explained in Section 4. The experimentation and results are presented in Section
5. Section 6 discusses limitations and future work, followed by the conclusion.

2 Related work

Memory keeps valuable information that can be utilized for forensics purposes
[Hausknecht et al., 2015, Solomon et al., 2007, Schuster, 2008a, Walters and
Petroni, 2007, Inoue et al., 2011]. In fact, many activities might involve memory-
only information [Al-Saleh and Al-Sharif, 2013]. The main objective of memory
forensics is to analyze volatile data in order to extract digital artifacts.

806 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

[Bugcheck, 2006] proposed GrepEXEC forensic tool to extract executiveob-
jects such asETHREADand EPROCESSfrom a memory image by searching for
their recognizable signatures. Furthermore, earlier studies [Beebe and Dietrich,
2007, Beebe and Clark, 2007] utilized text-mining techniques to reducethe infor-
mation retrieval overhead. [Dolan-Gavitt, 2007], used the Virtual Address De-
scriptor (VAD) tree structure in Windows in memory analysis. In add ition, the
e�ectiveness of Microsoft Windows pool allocation methods on memory foren-
sics and incident response procedures were studied by [Schuster, 2008b]. Boost-
ing con�dence in the reliability of evidence could be achieved by analyzing the
memory data from di�erent consecutive RAM dumps as proposed by [Law et al.,
2010].

[Al-Saleh and Al-Sharif, 2012] showed that TCP bu�ers might still keep data
for a long time. With the increasing adoption of virtualization, memory f orensics
had become an imperative need to engage. [Graziano et al., 2013] proposed a set
of techniques to extend the memory forensic domain towards virtual machines
and hypervisors analysis. They implemented a new open source forensic tool
that was extended to the Volatility framework [Walters, 2007]. Their tool aimed
to detect any hypervisor that uses Intel VT-x technology. In addition, their
proposed tool had the ability to reconstruct the address space of the virtual
machine to support any Volatility plugin aiming to expand the analysis scope of
virtual environments. [Dolan-Gavitt, 2009] supports hibernation �les analysis in
Volatility. In the recent versions of Microsoft Windows OSes, Microsoft changed
the hibernation �le format, which led to breaking all existing foren sic tools.
[Sylve et al., 2017] proposed the analysis of a new format of the hibernation �le
that is used in Windows 8, 8.1 and 10.

[Olajide et al., 2009] analyzed common Windows applications. Their exper-
iments showed that user information such as documents and web pages could
be extracted from various memory areas for the tested applications. [Saidet al.,
2011] studied the e�ectiveness of the privacy mode feature on widely used web
browsers. [Ohana and Shashidhar, 2013] explored memory artifacts from private
and portable web browsing sessions. [Al-Khaleel et al., 2014] examined memory
artifacts of the Tor bundle. [Pulley, 2013] and [Pshoul, 2017] built Volatilit y
plugins for Windows x86 environment namedexportstack and callstacks
respectively. Recently, [Otsuki et al., 2018] implemented a stacktrace method as
a plugin in Rekall memory analysis framework [Inc, 2017]. A program's state can
be explored by utilizing the source code [Al-Sharif et al., 2017, Al-Sharif et al.,
2018]. Their results showed that a program's states could still be extracted even
after the garbage collector was invoked.

Memory forensics plays an important role in incident response and malware
analysis [Schuster, 2006]. Memory analysis had been successfully utilized to de-
tect malware. [Cohen, 2017] applied Yara signatures to memory contents in an

807Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

e�cient manner. [Lapso et al., 2017] produced a visualization tool to improve
the memory analysis methods. Recently, [Al-Saleh et al., 2019] utilized memory
forensics to detect network reconnaissance attacks.

Microsoft Visual Studio compiler generates debugging information during
the compilation process in the form of a Program DataBase (PDB) �le. The
idea of utilizing PDB �les in digital forensics has been introduced by the au-
thors [Qawasmeh et al., 2019]. Although the format of the PDB �les is not o�-
cially documented by Microsoft, [Schreiber, 2001] described the internal struc-
ture of the PDB �les. [Okolica and Peterson, 2010] proposed a memory analysis
tool that utilizes the PDB �les to extract important kernel struct ures such as
processes, registries and network communication. [Okolica and Peterson, 2011]
leveraged the Microsoft's online server PDB �les to extract usefulsystem infor-
mation in both user32.dll and win32k.sys. [Cohen and Metz, 2014] implemented
a PDB parser to calculate kernel symbol addresses. Their work is integrated
as a plugin (namedmspdb) in the Rekall memory analysis framework. [Cohen,
2015] studied the potential di�erences between Microsoft kernel versions and
their impact in memory analysis by the means of PDB �les.

The lifetime of data in memory is vital from privacy, forensics, and secu-
rity perspectives. Information about processes stay in memory for more than a
day even after a process terminates [Schuster, 2008a]. Allocated bu�ers could
also keep data after being deallocated [Farmer and Venema, 2004]. [Al-Saleh
and Jararweh, 2020] can detect violating machines by collecting magic valuesin
memory. Only small portions of memory in idle machines are changed [Walters
and Petroni, 2007]. Dynamic information
ow tracking system is used to get
a better understanding of data lifetime in memory [Chow et al., 2004]. When
sensitive information stays in memory for longer than expected, thiscreates se-
curity and privacy problems [Gar�nkel et al., 2004, Engler et al., 2001, Chow
et al., 2005, Broadwell et al., 2003]. Consequently, [Chow et al., 2005] proposed
a solution for secure memory deallocation. Di�erent programming languages
can leave di�erent memory footprints [Al-Sharif et al., 2019]. The artefacts of
deleted user accounts can be recovered from di�erent storage devices including
memory [Al-Saleh and Al-Shamaileh, 2017]. PDF �les can also be carved from
memory [Al-Sharif et al., 2015]. Antiviruses could have an impact on the digital
evidence [Al-Saleh, 2013].

3 Background

This section provides an overview about Volatility framework, Portable Exe-
cutable (PE) structure, and Program Database (PDB) �les. It is not meant
to be complete by any means. We aim to highlight important parts that help
identify the main thrust of this work.

808 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

3.1 Volatility

Several memory analysis tools have been developed to help investigators �nd
digital evidence out of volatile data. Among such tools are Volatility lit30, mem-
parser b1, and PTFinderlit9. Volatility is an open source framework that is imple-
mented in Python. As far as we know, Volatility is the most mature open-source
memory forensics tool. It has useful functionalities that are provided through
its plugin system. The typical way to extend its functionalities is by developing
a new plugin and integrating it into Volatility. Volatility has the capab ility to
analyze memory captures that are sourced from di�erent platforms such asMi-
crosoft Windows, Linux, Mac OS X, and Android operating systems. Volatility
is utilized for various purposes such as digital forensics, incidentresponse, and
malware analysis lit14.

3.2 Portable Executable (PE) File

Microsoft introduced the PE �le as a common format for Windows applicati ons.
The PE �le consists of several sections. Thetable section provides information
about the other sections such as their names, locations, and sizes. For example,
the global variables along with their values are located in the.data section. The
.text section contains the program's code. Each section has a virtual address
that is relative to the beginning of the PE �le.

3.3 Program Database File (PDB)

In Microsoft Windows, debugging information is created by the compiler in a
separate �le, called Program Database (PDB) �le. Basically, PDB �les are t o
locate symbols and related source code information for debugging purposes.
Although the PDB format is undocumented, it contains valuable informati on
that can be utilized for forensic purposes. The information inside PDB �le can
be extracted using DIA (Debug Interface Access), or by using third-party tools.

The internal structure of a PDB �le is logically divided into stream s. Each
stream has a unique number and an optional name. Here we provide brief infor-
mation about some streams that we utilize in this work:

Type Information stream (TPI) : This stream holds information about
all data types, known as leaf types. For example, the LFSTRUCTURE type
refers to astruct data type and the LF CLASS type refers to aclass data type.
Parsing data types depends on the leaf type. For primitive data types, we can
look up the whole information in one TPI entry. However, we need more than
one step to look up non-primitive types. For example, we lookup theclass data
type in one entry. This entry includes more information about the members of
the class such as the number of its members. In addition, it has a reference that

809Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

is labeled LF FIELDLIST that enables us to access the members' information.
The reference is used to lookup another TPI entry.

Global symbol stream: This stream includes information about global
variables and functions, such as their o�sets, names and data types.

Section header stream: This stream provides information about the PE
�le sections.

Symbols stream: This stream provides information about the functions, lo-
cal variables and parameters. This includes the function's start address and size.
In addition, the names, data types, and o�sets of local variables and parameters
are given.

4 Methodology

Figure 1: Our methodology

Our purpose is to provide a mechanism that enables us to investigateany
application in memory. As Volatility a�ords a rich environment for memory

810 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

analysis, we want to utilize it as much as possible. In addition, we wantto
develop a plugin and integrate it into Volatility. In the end, we want t he usage
of Volatility to be as simple as running it in its normal usage but provid ing it
with a PDB �le, application name, and the name of the newly developed plugin
as inputs. The following command usage illustrates how to run Volatility with
the new plugin:
$python vol.py -f [memory-image] --profile=[OS-profile]
[our-plugin] -a [app-name] --input-file= pdb-file

Figure 1 shows the procedure we follow to develop and evaluate our prod-
uct. As a running example, we used Microsoft Visual Studio as a development
environment and the C++ programming language to test our plugin.

1. We develop and compile an application in order to get both executable and
PDB �les. In Visual Studio, the debugging information that is contained
in PDB �les can be produced when choosing Debug mode during the com-
pilation process. See Section 3.3 for more information about the PDB �le
format.

2. We take the executable �le and run it in a production environment. While
the application is running, a memory dump of the machine is taken. We
use Oracle VirtualBox for experimentation and memory acquisition. Virtu-
alBox has built-in features that enable us to capture bit-by-bit copies of the
memory. VirtualBox has the capability to capture memory without freez ing
or interfering with the Virtual Machine. Our Volatility plugin inve stigates
the memory dump in an investigation environment (not in the producti on
environment) and thus no changes are made to the production environment
by our plugin.

3. Now that the memory is captured from the production environment, we
take the memory dump into the investigation environment. In addition , we
take the PDB �le from the development environment into the invest igation
environment.

4. Our Volatility plugin is now ready to perform the analysis step. It i s designed
to achieve the following functionalities (seeAlgorithm 1):

(a) It parses the PDB �le to extract all variable names and their Relativ e
Virtual Addresses (RVA). It also analyzes their data types. We integrate
and use microsoft-pdb parser to parse the PDB �le.

(b) It utilizes Volatility API to obtain the virtual address space (VAS) of the
target application out of the memory dump programmatically. Volatil-
ity extracts the page tables of the target application and then it walks
through them to obtain the virtual address space of the application.

811Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Algorithm 1 The outline of our Volatility plugin
Require: MemoryImage , PDBf ile , P ID
1: BaseAddress P ID:ImageBaseAddress
2: GlbV ariables; F unctionsInfo ParseP DB (PDBf ile ,BaseAddress)
3: //Extract info about functions and global variables
4: T askSpace P ID:GetP rocessAddressSpace
5: //Parsing PE Info to get VA of .data section (V APE)
6: for each variable in GlbV ariables do
7: variable:RV A variable:of fset + V APE + BaseAddress
8: //Extract global variables values
9: Call ExtractVarValue(variable.Name, variable.RVA,

10: variable.DataType, T askSpace)
11: end for
12: for each thread in P ID .ThreadListHead do
13: //Identify the stack region for each thread
14: ebp thread:T cb:T rapF rame:Ebp
15: i 0
16: while ebp is Found do
17: F un F unctionsInfo [i]
18: //Extract Local variables values for each called function
19: Call ExtractVarValue(Fun.variable.Name, Fun.variable.RVA,
20: Fun.variable.DataType, T askSpace)
21: ebp OldEbp
22: i i+1
23: end while
24: end for

(c) It inspects the VAS of the application by looking up the information
parsed out of the PDB �le. The data types of the variables is crucial in
the process of extracting their values.

5. Variable-Value mapping table will then be reported. Algorithm 2 explains
the process of extracting the values of the variables out of the memory.

5 Experimentation and Results

In this Section, we design experiments to validate our methodology. Then, we
present an experiment with a real world application.

We proceed with the following procedure:

812 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Algorithm 2 The outline of extracting variables' Values
1: procedure ExtractVarValue (Name; RV A; DataT ype; TaskSpace)
2: if DataT ype is Primitive then
3: Interpret(format, T askSpace.Read(RV A,length))
4: else
5: LeafTypeInfo DataT ype:LeafT ype
6: //Parsing Info from PDB.TPI stream depends on the LeafT ype
7: for each variable in LeafT ypeInfo do
8: //Update variable Info
9: variable:RV A variable:of fset + RV A

10: Call ExtractVarValue(variable.Name, variable.RVA,
11: variable.DataType, T askSpace)
12: end for
13: end if
14: end procedure

{ We develop an application that has speci�c constructs to verify the ability
to extract the values of these constructs out of memory. This is done ina
development environment that consists of Microsoft Windows 7 and Visual
Studio 2017.

{ The application's PDB �le is taken so it will be used as an input to our
plugin in the investigation environment. In addition, the exe �le is taken to
the production environment, which is a VirtualBox virtual machine (VM)
that runs Microsoft Windows 7 and has 2GB of memory.

{ The exe �le is executed in the production environment.

{ The memory in the production environment is captured into a dump � le. We
make sure that the application is active (i.e., not terminated) at the memory
capture time. We take the memory dump into the investigation environment.

{ We run our Volatility plugin in the investigation environment. The me mory
dump and the PDB �le are given to the plugin as inputs.

{ The plugin produces variable-value output for the tested application.

Figures (2-7) show code snippets that highlight the constructs we want to
investigate. Below that is the parsed information and RVA computation.

5.1 Example 1

Figure 2 shows an example of declaring primitive data type variables in the
global scope. The primitive data types include boolean, character, integer,
oat

813Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Figure 2: Example 1 (primitive data types).

and double data types. Step A in the parsing stage extracts the information of
the global stream of a PDB �le.

In step A of Figure 2, the �rst column, S GDATA32, indicates that this
symbol is a global variable. The second bracketed column is used in the virtual
address computation. The left part of it (here 0004) refers to the PE section
header number that contains this global variable. As mentioned in Section3.2,
the global variables are stored in the.data section in the PE �le. By referring
to the section header stream in the PDB �le, we can get the full details about the
PE section headers associated with the variables. The relative virtual address
of the .data section can be extracted from the section header information. As
shown in step B of Figure 2, it is (0x25000). The right side of the second column
is the variable o�set into the .data section. To get the RVA of a variable, its
o�set is added to the RVA of the section it resides in. The third column is the
type of the variable and the last column is the variable name. The VA address
of the global variable can be obtained by adding its computed RVA to the base

814 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

address of the application (task.Peb.ImageBaseAddress).

Figure 3: Example 2 (struct data type).

5.2 Example 2

Figure 3 shows an example of de�ning astruct data type (named Product) and
declaring a global variable of this type (Product1). The de�ned struct has four
members that consist of an array of characters, integer, double and
oat data
types, respectively. The data members are given values in the mainfunction.
As explained before, the global information is obtained from the PDB's global
stream (step A). However, unlike the primitive data types where the whole in-
formation can be obtained from the global stream, in the non-primitive data
type more steps are needed. First, a reference address from the global stream
is taken (0x114e) and indexed in the TPI stream to get the full information of
the variable (step C(1)). To access the struct's members, the reference address
(0x114d) is followed as shown instep C(2). Each member has an o�set within
the struct itself. Consequently, the RVA of each member is computed by adding
its o�set, the struct's o�set (taken from step A), and the VA of .data section

815Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

(taken from step B). The computed RVAs are listed in the �gure. The VA of each
member is computed by adding its RVA with the base address of the running
application. All the values of the struct' members were successfully extracted
out of memory.

5.3 Example 3

Figure 4: Example 3 (array of objects).

Figure 4 shows an example of de�ning an array of objects in the global scope.
The process of identifying the details of a non-primitive data type variable is
already explained in Example 2. However, in this example more complexity is
added. Investigating an array of objects creates more lookup stages in theTPI
stream as shown in the �gure. A reference to the array is looked up. We continue
to analyze the �rst element of the array and then its members. All the values of
the objects in the array were successfully extracted.

816 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Figure 5: Example 4 (class inheritance).

5.4 Example 4

In this example, we add one more layer of complexity by using the concept of
class inheritance. Figure 5 shows an example of de�ning a class variable with
inheritance. As explained in the previous examples, the informationof global
variables are shown in the parsing stage (steps A and B in Figure 5). The S1
is a variable of a non-primitive data type. Thus, in step A, the type of non-
primitive variable is given by a reference address (0x1005). Therefore, we have
to analyze the reference address from the TPI stream to get more information.

In step C(1) of Figure 5, the parsed information of the reference address
(0x1005) indicates that the variable is de�ned from a class data type (LF CLASS)
and its name isStudent. To get more information of the class members, the ref-
erence address (0x1004) is followed as shown instep C(2). It shows the class
members' names, types and o�sets. It also indicates that the class inherits from
another class by de�ning it as LF BCLASS. The reference address to the base

817Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

classPerson is (0x1003). Following the reference address (0x1003) we obtain the
base class's information as shown insteps C(3) and C(4). Finally, step C(5)
shows the information of the Person class's members along with names, types
and o�sets.

The RVA of each class member is computed by adding its o�set (step C(2)
and step C(5)), the variable's o�set (step A), and the RVA of .data section
(step B). The target VA addresses of a variable can be obtained by adding its
RVA to the base address of the target application. Interestingly, all the values
of the class members were successfully extracted.

5.5 Example 5

Figure 6: Example 5 (local variables).

In Figure 6, local variables are created in di�erent functions. All inf ormation
about the functions and their local variables are obtained instep B. Local vari-
ables and function arguments are placed in positions relative to theebp's value

818 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

of the function frame. The value of the ebp can be obtained using our Volatility
plugin by accessing (thread.Tcb.TrapFrame.Ebp). The RVA of an argu-
ment is computed by adding its o�set to the value of the ebp register.The RVA
of a local variable is computed by subtracting its o�set from S FRAMECOOKIE
(0xFFFFFFFC). Then, the result is subtracted from the ebp value. The following
formula is used to compute the RVAs of local variables:

RVA = ebp - (oxFFFFFFFC - o�set) - 0x4
All the values of the local variables were successfully extracted.

Figure 7: Example 6 (pointers).

5.6 Example 6

Figure 7 shows an example of using local direct and indirect pointers. The direct
pointer LocPtr has T 32PINT4 data type, which indicates a pointer variable.
In this case, its value is �rst de-referenced and then used as another reference
to access the variable that it points to. The indirect pointer LocPtrToPtr has a
reference data type that needs to be looked up in the TPI stream �rst. Then,

819Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

it continues as we did in the direct pointer case. All values were successfully
extracted.

5.7 Values Extraction

Volatility provides the capability to access the memory space of the target pro-
cess throughtask.get process address space() API. The base address
of a process is di�erent for each run because of the Address Space LayoutRan-
domization (ASLR) feature adopted by Microsoft Windows OSes. ASLR is a
security feature that makes predicting memory addresses more di�cult, making
hackers' job much harder. Fortunately, we can obtain the base address of apro-
cess with Volatility's help by accessingtask.Peb.ImageBaseAddress . The
base address of the process is added to the RVA of a variable to compute the
absolute VA of it.

By now, we are able to obtain the VA of the variables and we only need
to extract their values out of memory. The byte representation of the variables
depends on their data type. For example, variables might have di�erent sizes in
memory. The integer variable reserves 4 bytes in memory while double variable
reserves 8 bytes. In addition, the format of integer is di�erent from that of double
or
oat. We also take care of the byte order of variables (Endianness) to obtain
their values correctly.

Extracting local variables' values is more challenging because the call stack
should be traced carefully. Tracing the stack trace can be achieved byfollowing
the chain of the current and stored values of the frame pointer register(ebp) and
utilizing the values of the return addresses stored in the stack as well. In order to
do that, we utilized the parsed symbol records to create a table of all functions
in the application. The table contains functions' names, start addresses, and
limit addresses. Our plugin traces the stack frames and checks return addresses
against the function table we created for this purpose.

The runtime system manages function calls through the means of a call stack.
Each called function has its own stack frame that is only visible to that function.
Figure 8 shows the stack frame layout. When called, a function pushes its argu-
ments, the return address, the current value of the extended basepointer (ebp)
register, and the local variables into the stack. The function code can access the
arguments and the local variables via the ebp register. The functionsand their
local variables are stored in the symbol records stream in the PDB �le.

More interestingly, our plugin handles multi-threaded applications, where
each thread has its own stack. We only need to identify the stack regionfor each
thread and read its contents accordingly.

In Microsoft Windows, the kernel keeps a process's information ina data
structure that is called EPROCESS. Figure 9 shows the internal structure of
EPROCESS. The ActiveThreads �eld indicates the number of active threads

820 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Figure 8: Call stack layout.

running in the process context. Threads' information is stored in adoubly linked
list structure pointed to by the ThreadListHead pointer. Each element has
a thread structure of type ETHREADas shown in �gure 9. From ETHREADwe
can reach a pointer to KTRAPFRAMEstructure, where we can gain the values
of the stack registers for each thread.

5.8 Experimenting with a real application

We evaluated the e�ectiveness of our plugin against a real world application that
is called Frhed 1.6.0 frhed. It is an open source hex editor. We compiled the
application and got its PDB �le. We ran the application and loaded a picture �le
into it to view its hex values. While the application was running, we dumped the
memory. Our Volatility plugin parsed the PDB �le and utilized its con tents to
analyze the application. Interestingly, we extracted the values of very important
variables about the loaded picture such as its contents, path, name, and size.
Table 1 shows the most useful variables we extracted out of the application.

821Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Figure 9: Threads are chained together in a doubly linked list pointed to by
ThreadListHead

6 Discussion and future work

In this section, we present some limitations of our work and introducefuture
implications. The most common limitation to any memory forensic research is
the volatile feature of memory, where data vanishes when a device is turned
o�. However, this does not stop investigators from leveraging the invaluable
information that resides in memory in case a device is found to be running at
the acquisition time.

In our approach, the debugging information of applications must be provided.
Some developers might not cooperate to provide such information. In these cases,
current forensic techniques should be utilized. Thus, gettingthe PDB �les of
an application is not guaranteed. However, in certain situations we stillexpect
application developers to cooperate with the investigation agencies andlaw-
enforcement o�cers during the investigation process.

Volatility can analyze all libraries (e.g., DLL �les) that are linked with a

822 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

Table 1: Useful variables extracted out of the Frhed application.

Variable Variable Leaf Type Description
pHexWnd LF POINTER A pointer variable of type

HexEditorWindow class.
It contains information
about the hex editor.

pHexWnd-> �lename LF ARRAY An array variable of type
character. It contains the
path and name of dis-
played �les.

pHexWnd-> DataArray LF CLASS An object variable of
type class SimpleArray. It
holds the �le's data along
with many other proper-
ties.

pHexWnd-> DataArray-
> m pT

T 32PUCHAR(0420) A pointer variable of type
character. It holds the ac-
tual address of where the
contents of the displayed
�le is placed in memory.

pHexWnd-> DataArray-
> m nSize

T INT4(0074) This An integer variable
that indicates the size of
the displayed �le in bytes.

program that is being investigated. The PDB �les of these libraries can also
be obtained to fully investigate the program in question. Furthermore, as a run-
ning example, we investigated C++ applications on Microsoft Windows OS. The
same conceptual idea can also be applied to other programs written in other pro-
gramming languages on other platforms. For example, DWARF debugging �le
format can be used in di�erent operating systems, such as Linux and Unix, to
address requirements of di�erent programming languages such as C++ and For-
tran. This information can be utilized in our plugin in the investigati on process.
Trying applications that are developed using other programming languages and
experimenting with other platforms is a plan for the future.

7 Conclusion

When applications are newly developed or updated, new forensic techniques are
required to evolve to handle the situation. This paper proposed a novel technique
that overcomes the diversity of applications in a uni�ed solution. We leveraged

823Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

the debugging information that is provided by compilers about applications in
the investigation process. We extended Volatility by integrating a new plugin
that is capable of analyzing any application in memory. The experiments we
designed showed that our plugin could extract variables' values out of memory
regardless of their complexity or scope. The work presented in this paper highly
encourages the cooperation between investigation agencies and applicationde-
velopers to combat cybercrimes.

References

[Al-Khaleel et al., 2014] Al-Khaleel, A., Bani-Salameh, D., and Al-Saleh, M. I. (2014).
On the memory artifacts of the tor browser bundle. In The International Conference
on Computing Technology and Information Management (ICCTI M) , page 41. Society
of Digital Information and Wireless Communication.

[Al-Saleh and Al-Sharif, 2013] Al-Saleh, M. and Al-Sharif, Z. (2 013). Ram forensics
against cyber crimes involving �les. In The Second International Conference on Cyber
Security, Cyber Peacefare and Digital Forensic (CyberSec2013), pages 189{197.

[Al-Saleh, 2013] Al-Saleh, M. I. (2013). The impact of the an tivirus on the digital
evidence. IJESDF , 5(3/4):229{240.

[Al-Saleh and Al-Shamaileh, 2017] Al-Saleh, M. I. and Al-Sha maileh, M. J. (2017).
Forensic artefacts associated with intentionally deleted user accounts. IJESDF ,
9(2):167{179.

[Al-Saleh and Al-Sharif, 2012] Al-Saleh, M. I. and Al-Sharif, Z. A. (2012). Utilizing
data lifetime of tcp bu�ers in digital forensics: Empirical study . Digital Investigation ,
9(2):119{124.

[Al-Saleh et al., 2019] Al-Saleh, M. I., Al-Sharif, Z. A., and A lawneh, L. (2019). Net-
work reconnaissance investigation: A memory forensics approach. In 2019 10th In-
ternational Conference on Information and Communication Sy stems (ICICS) , pages
36{40. IEEE.

[Al-Saleh and Jararweh, 2020] Al-Saleh, M. I. and Jararweh, Y. (2 020). Fingerprint-
ing violating machines with in-memory protocol artefacts. International Journal of
Advanced Intelligence Paradigms, 15(4):388{404.

[Al-Sharif et al., 2017] Al-Sharif, Z. A., Al-Saleh, M. I., and A lawneh, L. (2017). To-
wards the memory forensics of oop execution behavior. In 2017 8th International
Conference on Information, Intelligence, Systems & Applic ations (IISA) , pages 1{6.
IEEE.

[Al-Sharif et al., 2018] Al-Sharif, Z. A., Al-Saleh, M. I., Alaw neh, L. M., Jararweh,
Y. I., and Gupta, B. (2018). Live forensics of software attacks on cyber{physical
systems. Future Generation Computer Systems.

[Al-Sharif et al., 2019] Al-Sharif, Z. A., Al-Saleh, M. I., Jararw eh, Y., Alawneh, L.,
and Shatnawi, A. S. (2019). The e�ects of platforms and languag es on the mem-
ory footprint of the executable program: A memory forensic approach. Journal of
Universal Computer Science, 25(9):1174{1198.

[Al-Sharif et al., 2015] Al-Sharif, Z. A., Odeh, D. N., and Al-Sal eh, M. I. (2015). To-
wards carving pdf �les in the main memory. In The International Technology Man-
agement Conference (ITMC2015), pages 24{31.

[Beebe and Dietrich, 2007] Beebe, N. and Dietrich, G. (2007). A new process model
for text string searching. In IFIP International Conference on Digital Forensics ,
pages 179{191. Springer.

[Beebe and Clark, 2007] Beebe, N. L. and Clark, J. G. (2007). Digital forensic text
string searching: Improving information retrieval e�ectiveness b y thematically clus-
tering search results. Digital investigation , 4:49{54.

824 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

[Broadwell et al., 2003] Broadwell, P., Harren, M., and Sastry, N. (2003). Scrash: a
system for generating secure crash information. In Proceedings of the 12th conference
on USENIX Security Symposium - Volume 12, SSYM'03, pages 19{19, Berkeley, CA,
USA. USENIX Association.

[Bugcheck, 2006] Bugcheck, C. (2006). Grepexec: Grepping executive objects from
pool memory. In Proc. Digital Forensic Research Workshop.

[Chow et al., 2004] Chow, J., Pfa�, B., Gar�nkel, T., Christophe r, K., and Rosenblum,
M. (2004). Understanding data lifetime via whole system simula tion. In Proc. 13th
USENIX Security Symposium.

[Chow et al., 2005] Chow, J., Pfa�, B., Gar�nkel, T., and Rosenb lum, M. (2005).
Shredding your garbage: reducing data lifetime through secure deallocation. In
Proceedings of the 14th conference on USENIX Security Symposium - Volume 14,
SSYM'05, pages 22{22, Berkeley, CA, USA. USENIX Association .

[Cohen, 2017] Cohen, M. (2017). Scanning memory with yara. Digital Investigation ,
20:34{43.

[Cohen and Metz, 2014] Cohen, M. and Metz, J. (2014). Ms
pdb parser. https://github.com/google/rekall/commit/
89f4f2832d99eac3b783b02ce9025806eaca6bd8.

[Cohen, 2015] Cohen, M. I. (2015). Characterization of the win dows kernel version
variability for accurate memory analysis. Digital Investigation , 12:S38{S49.

[Dolan-Gavitt, 2007] Dolan-Gavitt, B. (2007). The vad tree: A p rocess-eye view of
physical memory. digital investigation , 4:62{64.

[Dolan-Gavitt, 2009] Dolan-Gavitt, B. (April 2009). Add suppo rt for
inactive hiber�les to hibinfo volatilityfoundation/ volatili ty@552c1d8.
https://github.com/volatilityfoundation/volatility/commit/
552c1d813b05a0bf8d3d1ec1f64b3ba5f98403cc.

[Engler et al., 2001] Engler, D., Chen, D. Y., Hallem, S., Chou, A ., and Chelf, B.
(2001). Bugs as deviant behavior: a general approach to inferring errors in sys-
tems code. In Proceedings of the eighteenth ACM symposium on Operating systems
principles, SOSP '01, pages 57{72, New York, NY, USA. ACM.

[Farmer and Venema, 2004] Farmer, D. and Venema, W. (2004). Forensic Discovery.
Addison Wesley Professional.

[Gar�nkel et al., 2004] Gar�nkel, T., Pfa�, B., Chow, J., and Ros enblum, M. (2004).
Data lifetime is a systems problem. In Proceedings of the 11th workshop on ACM
SIGOPS European workshop, EW 11, New York, NY, USA. ACM.

[Graziano et al., 2013] Graziano, M., Lanzi, A., and Balzarotti , D. (2013). Hypervi-
sor memory forensics. In International Workshop on Recent Advances in Intrusion
Detection, pages 21{40. Springer.

[Hausknecht et al., 2015] Hausknecht, K., Foit, D., and Buri�c , J. (2015). Ram data
signi�cance in digital forensics. In 2015 38th International Convention on Infor-
mation and Communication Technology, Electronics and Micr oelectronics (MIPRO) ,
pages 1372{1375. IEEE.

[Inc, 2017] Inc, G. (2017). Rekall memory forensic framework. http://www.
rekall-forensic.com/ .

[Inoue et al., 2011] Inoue, H., Adelstein, F., and Joyce, R. A. (2011). Visualization in
testing a volatile memory forensic tool. Digital Investigation , 8(Supplement):S42{
S51.

[Lapso et al., 2017] Lapso, J. A., Peterson, G. L., and Okolica, J. S. (2017). Whitelist-
ing system state in windows forensic memory visualizations. Digital Investigation ,
20:2{15.

[Law et al., 2010] Law, F., Chan, P., Yiu, S.-M., Tang, B., Lai , P., Chow, K.-P., Ieong,
R., Kwan, M., Hon, W.-K., and Hui, L. (2010). Identifying vola tile data from mul-
tiple memory dumps in live forensics. In IFIP International Conference on Digital
Forensics, pages 185{194. Springer.

825Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

[Ohana and Shashidhar, 2013] Ohana, D. J. and Shashidhar, N. (2013). Do private
and portable web browsers leave incriminating evidence?: a forensic analysis of resid-
ual artifacts from private and portable web browsing sessions. EURASIP Journal on
Information Security , 2013(1):6.

[Okolica and Peterson, 2010] Okolica, J. and Peterson, G. L. (2010). Windows oper-
ating systems agnostic memory analysis. Digital investigation , 7:S48{S56.

[Okolica and Peterson, 2011] Okolica, J. and Peterson, G. L. (2011). Extracting the
windows clipboard from physical memory. digital investigation , 8:S118{S124.

[Olajide et al., 2009] Olajide, F., Savage, N., et al. (2009). Application level evidence
from volatile memory. Journal of Computing in Systems and Engineering, 10:171{
175.

[Otsuki et al., 2018] Otsuki, Y., Kawakoya, Y., Iwamura, M., M iyoshi, J., and Ohkubo,
K. (2018). Building stack traces from memory dump of windows x64. Digital Inves-
tigation , 24:S101{S110.

[Pshoul, 2017] Pshoul, D. (2017). community/dimapshoul at m aster volatilityfounda-
tion/community github. https://github.com/volatilityfoundation/community/
tree/master/DimaPshoul .

[Pulley, 2013] Pulley, C. (2013). Github - carlpulley/volat ility: A collection of volatility
framework plugins. https://github.com/carlpulley/volatility .

[Qawasmeh et al., 2019] Qawasmeh, E., Al-Saleh, M. I., and Al-Sharif, Z. A. (2019).
Towards a generic approach for memory forensics. In 2019 Sixth HCT Information
Technology Trends (ITT) , pages 094{098.

[Said et al., 2011] Said, H., Al Mutawa, N., Al Awadhi, I., and Guimaraes, M. (2011).
Forensic analysis of private browsing artifacts. In 2011 International Conference on
Innovations in Information Technology , pages 197{202. IEEE.

[Schreiber, 2001] Schreiber, S. B. (2001).Undocumented Windows 2000 secrets: a pro-
grammer's cookbook. Addison-Wesley Longman Publishing Co., Inc.

[Schuster, 2006] Schuster, A. (2006). Searching for processes andthreads in microsoft
windows memory dumps. digital investigation , 3:10{16.

[Schuster, 2008a] Schuster, A. (2008a). The impact of microsoft windows pool alloca-
tion strategies on memory forensics. Digital Investigation , 5, Supplement(0):S58 {
S64. The Proceedings of the Eighth Annual DFRWS Conference.

[Schuster, 2008b] Schuster, A. (2008b). The impact of microsoft windows pool alloca-
tion strategies on memory forensics. Digital Investigation , 5:S58{S64.

[Solomon et al., 2007] Solomon, J., Huebner, E., Bem, D., and Sze?ynska, M. (2007).
User data persistence in physical memory. Digital Investigation , 4(2):68 { 72.

[Sylve et al., 2017] Sylve, J. T., Marziale, V., and Richard III , G. G. (2017). Modern
windows hibernation �le analysis. Digital Investigation , 20:16{22.

[Walters, 2007] Walters, A. (2007). The volatility framework: Vo latile memory artifact
extraction utility framework.

[Walters and Petroni, 2007] Walters, A. and Petroni, N. L. (2007) . Volatools : In-
tegrating volatile memory forensics into the digital investiga tion process. Digital
Investigation , pages 1{18.

826 Al-Saleh M.I., Qawasmeh E., Al-Sharif Z.: Utilizing ...

