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Abstract: Plethora of ensemble techniques have been implemented and studied in
order to achieve better classi�cation results than base classi�ers. In this paper an
algorithm for integration of decision trees is proposed, which means that homogeneous
base classi�ers will be used. The novelty of the presented approach is the usage of the
simultaneous distance of the object from the decision boundary and the center of mass
of objects belonging to one class label in order to determine the score functions of
base classi�ers. This means that the score function assigned tothe class label by each
classi�er depends on the distance of the classi�ed object from t he decision boundary and
from the centroid. The algorithm was evaluated using an open{sou rce benchmarking
dataset. The results indicate an improvement in the classi�cat ion quality in comparison
to the referential method { majority voting method.
Key Words: distance to decision boundary, classi�er integration, ensemble of classi-
�ers
Category: Topic I.5.2 - Design Methodology

1 Introduction

The supervised classi�cation algorithm builds a mathematical model based on
training data [Jordan and Mitchell, 2015]. This model is used to make predic-
tions or decisions for a new object, in general, not belonging to the training
set. Thus, the �nal e�ect of the recognition system uses the previously learned
model to indicate the class label to the new object. In this general scenario, a
classi�er maps a feature space into a class label space. This mapping process
can be decomposed into three stages. The �rst is to determine the value of the
scoring function. The second one is the calibration of the scoring function, and
the last is the conversion of the calibrated scoring function into a class label. For
example, the scoring function of a linear SVM classi�er is the object's distance
from the decision boundary. Then, Platt scaling [Platt et al., 1999] computes the
probability that a given object belongs to a particular class label.

The purpose of a classi�er calibration is an approximation of the predicted
scores to the actual probabilities. The calibration converts the scores function
into probabilities, or more precisely transforms classi�er outputs into values
that can be interpreted as probabilities. The calibration methods canbe gen-
erally divided into two groups: parametric and non-parametric methods. The
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sigmoidal transformation maps the score of a classi�er to a calibrated proba-
bility output as was proposed by Platt [Platt et al., 1999]. The non-parametric
methods are based on binning [Zadrozny and Elkan, 2001] or isotopic regres-
sion [Zadrozny and Elkan, 2002].

Ensemble methods (an ensemble of classi�ers EoC) [Giacinto and Roli, 2001],
[Ponti Jr, 2011], [Przyby la-Kasperek and Wakulicz-Deja, 2017] are a popular ap-
proach in building a classi�cation model that is more stable and a modelthat
uses a set of many individual classi�ers (base learners) and combine them to
classify new data [Le et al., 2013], [Rokach, 2010]. The main concept behind the
ensemble technique is to create a classi�cation method that outperforms every
one of the base classi�ers and, as it was previously mentioned, the outputs of
the base classi�ers can be used in a variety of ways to determine thedecision of
a classi�ers committee.

The impact of distance from the decision boundary in boosting algorithms
which are examples of EoC have been proposed. An emphasis function in which
the �rst term takes large values for patterns with large quadratic error, and
the second term increases for objects that lie close to the decision boundary is
presented in paper [G�omez-Verdejo et al., 2010]. The emphasis function that bal-
ances also the contribution of the error and the distance to the decision boundary
is considered in [Ahachad et al., 2017].

In this paper we present the concept of a scoring function which depends on
the distance of the object from the decision boundary of a given base classi�er
and the centroid de�ned by the center of mass of objects belonging to oneclass
label. The advantage of the proposed method is therefore the dependence of the
scoring function on two coe�cients: the distance from the decision boundary
and the distance from the class label centroid. Experimental studies concern a
classi�ers committee built from heterogeneous base classi�ers which are decision
trees.

Given the above, the objectives of this work are the following:

{ A proposal of a new score function that uses location of the cluster centroids
de�ned by the class label and distance to the decision boundary de�ned by
a base classi�er.

{ The use of the proposed score function in an ensemble of homogeneous de-
cision tree classi�ers.

{ A new experimental setup to compare the proposed algorithm with the ma-
jority voting and random forest methods.

This paper is organized as follows: Section 2 presents the necessary terms of
the classi�cation. The proposed method for the calculation of the score function
for decision trees is presented in Section 3. In the next sections experimental
studies are discussed. Finally, some conclusions are presented.
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2 Basic concept of classi�cation

The recognition algorithm 	 maps the feature spaceX � Rd to the set of class
labels 
 = f ! 1; ! 2; : : : ; ! C g according to the general formula:

	 : X ! 
: (1)

For the feature vector x 2 X , that represents the recognised object Equation (1)
can be written as

	 (x) = ! c: (2)

The Equation (2) represents the so-called abstract level of the base classi�er
output [Kuncheva, 2014]. This level represents the information that the classi-
�er 	 assigns the unique class label! c to a given recognized objectx, i.e. the
output of the base classi�er indicates uniquely the class label [Deyet al., 2014],
[Przyby la-Kasperek and Wakulicz-Deja, 2017]. The other most commonly used
type of the classi�er output is the score function that addresses thedegree of
assigning the class label to the given recognized objectx. An example of such a
representation of the output is a posteriori probability returned by Bayes clas-
si�er [Bloch, 1996], [Ho et al., 1994].

Let us assume thatK (k 2 f 1; 2; : : : ; K g) di�erent decision trees 	 1; : : : ; 	 K

are used to solve the classi�cation task. These decision trees are thebase clas-
si�ers for the considered case of EoC. If allK base classi�ers are equal con-
tribution to make the �nal decision of EoC and the abstract level is consid-
ered, then the majority vote rule can be applied [Fechner and Keller, 2004],
[Mohandes et al., 2018]. This method allows counting base classi�ers outputs
as a vote for a class and assigns the input pattern to the class with the greatest
count of votes. It is de�ned as follows:

	 MV (x) = arg max
! c

LX

k=1

I (	 k (x) = ! c); (3)

where I (�) is the indicator function. This function takes the value equal to 1
when the object described by the feature vectorx is classi�ed to the label ! c,
i.e. when 	 k (x) = ! c.

Another method of combining the base classi�ers is the weighted voting. In
this approach each of the base classi�ers has an allocated weight, which may
depend on the weight coe�cient measured on the learning or validation dataset.
In this approach Equation (3) takes the form:

	 MV (x) = arg max
! c

LX

k=1

wk � I (	 k (x) = ! c); (4)

where wk is a weight of 	 k classi�er.
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If the output of each base classi�er is a score function, Equation (3) can be
expressed as

	 Sum (x) = arg max
! c

LX

k=1

Sf k (! c); (5)

where Sf k (! c) is the score function of 	 k classi�er calculated for ! c class label.
The weighting of Equation (6) takes a form:

	 Sum (x) = arg max
! c

LX

k=1

wk � Sf k (! c): (6)

In the paper [Mao et al., 2015] this form of determining the output of EoC is
called double weighting. This means that EoC takes into account the weight of
each base classi�er and the scoring function, which is treated as a certain weight.

In this article, we propose an algorithm in which weights are not assigned to
base classi�ers, but to an object that is recognised i.e. the weights are de�ned
by the values of the scoring function.

3 Proposed method

Suppose that, the distance from the decision boundary is de�ned as the smallest
distance from an objectx0 that would be assigned a di�erent class by the base
classi�ers. The de�nition can be written formally using the follo wing formula:

dist B (x0; 	 ) = min
x 2 X ;	 (x )6= 	 (x 0 )

(dist (x; x0)) ; (7)

where X denotes the whole classi�cation space, i.e. the cube based on feature
values.

This is a general formula, that works for any classi�cation algorithm. When
the representation of the decision space cannot be described or is di�cult to
describe in terms of analytical functions, the decision space needsto be scanned
in search for the solution. Of course, in the case of decision trees, forany given
x0, the closest point along feature axes needs to be found. The distance from
the centroid is calculated for the centroid with the same label. The centroid's
coordinates are calculated using the training subset.

Formally a score function for the given distance is de�ned as follows:

f (dist; �;  ) = exp( �  (dist � � )2): (8)

In this paper, � parameter of the scoring function for the distance from the
decision boundary is �xed as � B = 0 :5 and for the distance from the centroid
of the class label! { as � ! = 0. This causes the scoring function to achieve
its maximum at 0:5 and minimum at 0 and 1 when scoring the distance from

723Biedrzycki J., Burduk R.: Integration of Decision Trees ...



724 Biedrzycki J., Burduk R.: Integration of Decision Trees ...



Table 1: Combinations of  parameter of the score function (8) examined.

 B  !

20 5
5 5
20 20
10 10

Formally, the proposed classi�cation algorithm can be presented as:

	 � (x; � B ; � ! ;  B ;  ! ) = arg max
! c

KX

k=1

I (	 k (x); ! c)w	 k (x) (10)

The pseudocode of the proposed approach to creating EoC with score func-
tion depends on two coe�cients in geometric space is given in Algorithm1.

Algorithm 1: Classi�cation algorithm based on distance from decision
boundary and centroid of the class label.

Input : K { number of base classi�ers (	 1; 	 2; : : : ; 	 K ), � -
contribution of the distance from the decision boundary to
weight calculation (0 � � � 1), x { the classi�ed object

Output: ! c { the label predicted by the integrated classi�er
1 Scale all features into the range [0; 1].
2 Split the dataset into K + 1 subsets (K for training every base decision

tree and 1 for testing purposes).
3 for k := 1 to K do
4 Determine centroids for each class label using learning subsets.
5 Train a base classi�er 	 k using k-th learning subset
6 Calculate w	 k (x)
7 end
8 return Output the �nal decision of the ensemble classi�er:

	 x = arg max ! c

P K
k=1 I (	 k (x); ! c)w	 k (x)

4 Experimental Setup

In the experiment decision trees as base classi�ers were used and apool of clas-
si�ers consisting of �ve decision trees was created, i.e.K = 5 and EoC consists
of �ve base classi�ers. The decision tree implementation from apache spark was
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utilised. The integration algorithm was implemented in scala. To perform sta-
tistical tests Numpy [Oliphant, 2020 ] and scipy [Jones et al., 2020] were used.

The experiments were conducted using open-source data sets available on
platforms UCI Machine Learning Repository [Dua and Gra�, 2017] and KEEL
Data Set Repository [Alcal�a-Fdez et al., 2011]. For clarity the following abbrevi-
ations for datasets names are used: bio { Biodeg, bup { Bupa, cry { Cryotherapy,
dba { Data banknote authentication, hab { Haberman, ion { Ionosphere, met
{ Ultrasonic owmeter diagnostics, pop { Pop failures, sei { Seismic bumps,
wdb { Breast Cancer Wisconsin (Diagnostic), wis { Breast Cancer Wisconsin
(Original).

For all datasets the feature selection process was performed to indicate two
most informative features [Guyon and Elissee�, 2003], [Rejer, 2015]. In thecase
of the two-dimensional space classi�cation, decision trees can be considered in
the geometric space as �nite sets of rectangular regions with a speci�edclass
label.

Table 2: ACC values and Friedman rank of integrated classi�ers and random
forest for  B = 20 and  ! = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.7150.6580.7420.9150.7170.7360.7770.9150.9380.9060.955 2.73
	 0:3 0.7220.4970.7610.9070.6910.7890.7620.9140.9350.8890.937 3.68
	 0:7 0.7260.5280.7690.9070.7250.7300.7630.9020.9260.9070.953 3.68
	 1:0 0.6920.5820.7580.9210.7420.7460.7130.9130.9270.8880.929 4.09
	 mv 0.7200.5680.7160.9120.7070.7590.7530.9100.9310.9000.935 4.23
	 rf 0.7240.5460.8400.9190.7460.7750.7270.9110.9310.9090.944 2.59

Table 3: MCC values and Friedman rank of integrated classi�ers and random
forest for  B = 20 and  ! = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.435 0.304 0.5140.8280.1710.4170.484 0.000 0.000 0.8010.896 2.73
	 0:3 0.377-0.0260.6050.8150.0720.4600.501 0.000 -0.0030.7730.859 4.09
	 0:7 0.405 0.059 0.5890.8170.0230.4910.524 0.000 0.000 0.8040.890 3.18
	 1:0 0.236-0.0670.5050.8430.0720.4450.437 0.000 0.000 0.7670.841 4.59
	 mv 0.406 0.095 0.4260.8260.0320.4650.488-0.002 0.022 0.7910.853 3.82
	 rf 0.415 0.078 0.6910.8360.1690.5120.468 0.000 -0.0030.8100.876 2.59
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Table 4: ACC values and Friedman rank of integrated classi�ers and random
forest for  B = 5 and  ! = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.7290.6240.8060.9240.6370.7920.7010.9170.9300.9180.961 2.55
	 0:3 0.6850.5930.8000.9100.7230.7690.6240.8990.9330.9010.942 4.41
	 0:7 0.7180.6080.6800.9150.7560.7790.7500.9310.9330.9060.954 2.86
	 1:0 0.7370.4940.7380.9170.7680.7100.6830.9260.9350.8640.928 3.73
	 mv 0.7200.5680.7160.9120.7070.7590.7530.9100.9310.9000.935 4.41
	 rf 0.7240.5460.8400.9190.7460.7750.7270.9110.9310.9090.944 3.05

Table 5: MCC values and Friedman rank of integrated classi�ers and random
forest for  B = 5 and  ! = 5.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.412 0.175 0.6140.8460.0270.5000.387 0.000 -0.0070.8270.917 2.64
	 0:3 0.321 0.145 0.5870.8230.0930.4960.216 0.000 -0.0050.7900.873 4.27
	 0:7 0.403 0.113 0.3230.8300.1930.4900.348 0.000 -0.0030.7930.899 3.59
	 1:0 0.449-0.0100.4770.8380.1260.4280.378 0.000 0.000 0.7100.831 3.91
	 mv 0.406 0.095 0.4260.8260.0320.4650.488-0.002 0.022 0.7910.853 4.09
	 rf 0.415 0.078 0.6910.8360.1690.5120.468 0.000 -0.0030.8100.876 2.50

Table 6: ACC values and Friedman rank of integrated classi�ers and random
forest for  B = 20 and  ! = 20.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.7050.6230.7460.9070.7120.7790.7320.8920.9410.9070.956 3.00
	 0:3 0.7110.5710.8810.9070.6940.7940.6710.8780.9290.8990.959 3.77
	 0:7 0.6980.5200.7210.9030.7120.7710.6330.9140.9340.8930.928 4.86
	 1:0 0.7020.5730.7400.9110.7350.7870.7470.9030.9370.9140.931 2.91
	 mv 0.7200.5680.7160.9120.7070.7590.7530.9100.9310.9000.935 3.77
	 rf 0.7240.5460.8400.9190.7460.7750.7270.9110.9310.9090.944 2.68

To evaluate the proposed methods the following classi�cation measures are
used: average accuracy (ACC) and Matthews correlation coe�cient ( MCC ).
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Table 7: MCC values and Friedman rank of integrated classi�ers and random
forest for  B = 20 and  ! = 20.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.402 0.173 0.4820.8160.2050.4900.454-0.027 0.033 0.8010.897 3.00
	 0:3 0.408 0.081 0.7680.8110.1110.5300.367 0.000 -0.0030.7900.910 3.09
	 0:7 0.327-0.0390.4480.8040.0830.4600.282 0.000 0.000 0.7770.841 5.09
	 1:0 0.203 0.060 0.4700.8220.0300.5180.467 0.000 0.000 0.8170.848 3.73
	 mv 0.406 0.095 0.4260.8260.0320.4650.488-0.002 0.022 0.7910.853 3.55
	 rf 0.415 0.078 0.6910.8360.1690.5120.468 0.000 -0.0030.8100.876 2.55

Table 8: ACC values and Friedman rank of integrated classi�ers and random
forest for  B = 10 and  ! = 10.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.7460.6320.7450.9150.7300.7520.7790.9070.9310.9040.925 3.14
	 0:3 0.7420.6080.7680.9030.7070.7580.6060.9170.9420.9190.932 3.14
	 0:7 0.7340.5280.8480.9140.6930.7810.6430.8890.9280.8950.925 4.32
	 1:0 0.7100.5300.5940.9110.7150.7690.7180.9140.9360.9150.924 4.00
	 mv 0.7200.5680.7160.9120.7070.7590.7530.9100.9310.9000.935 3.86
	 rf 0.7240.5460.8400.9190.7460.7750.7270.9110.9310.9090.944 2.55

Table 9: MCC values and Friedman rank of integrated classi�ers and random
forest for  B = 10 and  ! = 10.

bio bup cry dba hab ion met pop sei wdb wis rank

	 0:0 0.4340.3100.5080.829 0.231 0.4970.592-0.024-0.0040.7970.825 3.59
	 0:3 0.4640.1930.5740.804 0.032 0.5030.209 0.000 -0.0030.8270.845 3.41
	 0:7 0.4350.0540.7050.829-0.0170.5440.294 0.000 0.000 0.7850.839 4.59
	 1:0 0.2630.0590.3580.821 0.074 0.5150.416 0.000 0.000 0.8160.841 3.82
	 mv 0.4060.0950.4260.826 0.032 0.4650.488-0.002 0.022 0.7910.853 3.86
	 rf 0.4150.0780.6910.836 0.169 0.5120.468 0.000 -0.0030.8100.876 2.73

MCC is a more reliable statistical rate which produces a high score only if
the prediction obtained good results in all of the four confusion matrix cate-
gories [Chicco and Jurman, 2020].

As reference classi�ers the majority voting 	 mv and random forest 	 rf EoC
were used.
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voting. Additionally obtained results indicate that the distance from t he centroid
of class label is more signi�cant than the distance from the decision boundary
in case of EoC consisting of decision trees.
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