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Abstract: Technological development and market expansion offer an increased avail-
ability of resources and computing power on IoT nodes at affordable cost. The edge
computing paradigm allows keeping locally on the edge of the network a part of comput-
ing, while keeping all advantages of the cloud and adding support for privacy, real-time
and network resilience. This can be further improved in IoT applications by flexibly
harvesting resources on IoT nodes, by moving part of the computing tasks related to
data from the edge server to the nodes, raising the abstraction level of the data as-
pects of the architecture and potentially enabling larger IoT networks to be efficiently
deployed and managed, in a stand-alone logic or as a component of edge architecture.
Anyway, an efficient energy management mechanism is needed for battery powered
IoT networks, the most flexible implementations, that dynamically balances task allo-
cation and execution in order to In this paper we present a fuzzy logic based power
management strategy for IoT subsystem that aims at maximizing the duration of the
network by locally migrating part of the computing tasks between nodes. As our goal
is to enable the deployment of semi-autonomic large IoT networks, our proposal does
not rely on external resources for migration control and operates on a local basis to
ensure scalability: at the best of our knowledge, this differentiates our proposal with
respect to similar solutions available in literature.
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1 Introduction

Internet of Things (IoT) is a popular technology that allows pervasive sensing

by low-cost, interconnected devices. On one hand, cost of devices makes them

largely available for many different applications and makes deployments that use

disposable sensors viable, and, on the other hand, enable the implementation of

solutions with significant on-board computing power and resources, so that both

distributed sensing and processing can be performed and distributed resource

control and negotiation can be directly available at the nodes. In edge computing

based systems, part of the computing resources are pushed to the edge of the

network, so that part of the computational logic can be executed closer to the

users or the peripherals that interact with the cloud by means of edge nodes:

similarly, it is possible to exploit the capabilities of IoT nodes to push further

some of the computing and control logic towards the very edge of the overall

infrastructure.

When IoT is used to implement sensor networks, the possibility of pushing

computing and control logic to the sensors allows better flexibility. Both load

balancing and energy management can be performed locally, so that larger sen-

sor networks can be implemented that are resilient with respect to weariness,

energy exhaustion, routing reconfiguration, workload variations, unexpected loss

of connection to the edge server, temporary fragmentation of the sensor network.

A good energy management policy and task migration features, implemented lo-

cally in the sensor network without the need for support or coordination from the

edge server, can provide such resilience and robustness in case of dependability

issues and maximum scalability with minimal additional network traffic.

1.1 Application context

The context in which this solution has to be considered is that of large scale

monitoring systems, to implement applications that benefit of the deployment

of a large number of battery-powered IoT sensors. A first example of such setups

may be provided by environmental monitoring systems, based on the deployment

of heterogeneous sensors in very large wild areas, such as forests, sea zones,

dangerous locations (e.g. contaminated areas), where positioning and replacing

defective nodes is expensive or complex and battery usage must be maximized

to keep the network as much efficient as possible (see [D’Arienzo et al., 2013]).

Another example is provided by emergency management systems, in which the

IoT network is meant to support operations and safety of operators and other

subjects may depend on the lifetime of the network, that allows a real-time situ-

ation about the target locations or physical infrastructures where the emergency

situation arises, such as the case of an extended fire to be managed in a large
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industrial complex or in a skyscraper. This paper applies to IoT and edge com-

puting based emergency management systems as presented in previous works

[Campanile et al., 2020a], [De Arcangelis et al., 2020], [Campanile et al., 2020b]

and [Cavalieri d’Oro et al., 2019].

Our reference architecture consists of two main subsystems: a field subsys-

tem and a high-level services subsystem. The high-level services subsystem is

a common cloud-based application support, running software modules that do

not require real-time, such as data analysis and data mining tools, integration

with other data sources, decision support, alert management, that may bene-

fit of on-demand resources, elasticity and the other advantages provided by the

cloud. The field subsystem is meant to execute data gathering and real-time or

critical computing, and is in turn composed of an edge server and an IoT net-

work: this ensures high responsiveness for essential tasks and low-level activities,

but poses a management problem if IoT network resources are scheduled by the

edge server, limiting its extension, and because nodes may disconnect for battery

exhaustion and continuity of the network may be lost due to arising range gaps.

Our proposal aims at mitigating such limitations by delegating and distributing

workload management to balance energy consumption and node effort.

1.2 Our proposal in brief

In this paper we propose a fuzzy logic based solution for energy management

in IoT-based sensor networks with task migration. The proposed approach acts

locally on close sensors to balance energy usage by task migration and keeping

migrated tasks close to the sensors on which they are originally meant to run,

to minimize additional network traffic and maximize network survivability on

the long term. Sensors operate on a peer-to-peer basis and compensate possible

different on-board resources or available energy by sharing their resources with

close nodes that are in need by making them available, on a voluntary basis,

for task offloading. The approach is transparent with respect to higher level

workload reconfigurations and adaptive, as the used variables for decisions are

battery charge status, CPU workload, memory usage and resource requirements

of the task to offload, and a fifth implicit variable, that is the distance between

the sensors that are negotiating the offload operation. The implementation is

kept simple, with a minimal number of member functions per variable and a low-

cost defuzzification method, so that the impact on node resources is affordable.

The effectiveness of the proposed solution is shown by a simulation of a proof-

of-concept logical implementation that provides the energy levels evolution over

time, given a network setup and a task distribution.

At the best of our knowledge, this is the first proposal of an approach of

this kind, as other proposals in literature about fuzzy logic based approaches

for energy management in IoT involve the edge server. We believe that this is a
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promising theme, worth of investigation, with potentially relevant development

both on the methodological level and the application level, as it allows improving

the resiliency of IoT and edge systems with a natively distrubuted and scalable

approach.

This paper is organized as follows: next Section 2 presents related work;

Section 3 presents the energy model for the system; Section 4 describes the design

of our fuzzy approach; in Section 5 the results of a proof-of-concept simulation-

based testing campaign are provided and analyzed, together with the description

of the reference algorithm for offloading management; conclusions follow.

2 Related work

The amount of data consumed by mobile devices has grown exponentially, par-

tially due to the rise of IoT. For this reason, many efforts have been directed

towards methods for mitigating the congestion and strain on the network, gener-

ally by introducing various strategies of offloading, or by bringing the data and

computations closer to the devices themselves through edge and fog computing.

From the infrastructural point of view, [Shu et al., 2010] proposed an adap-

tive connection scheme for WSN to dynamically adjust the transmission radius

and data generation rate, considering the interaction among physical, network

and transport layers. [Pal, 2015] adopts a resource-constraint mobile device to

efficiently access cloud-based applications to extend mobile cloud platforms by

opportunistic networks.

Energy efficiency is a classical limit: in [Marin and Dobre, 2013] a solution

based on a contextual search among mobile devices is proposed to select an an

opportunistic on-the-fly offloading execution of mobile applications in a hybrid

cloud. [Yang et al., 2014] presents an experimental study on performances and

energy trade-offs in mobile systems, focusing on mobile database applications,

showing that the energy consumption has a dynamic connection with perfor-

mances. In [Ciobanu and Dobre, 2018] the Drop Computing paradigm, a novel

offloading technique, is proposed to increase processing speed, reduce deploy-

ment costs and lower mobile device battery consumption: it exploits the crowd

of mobile nodes belonging to users and edge devices as opportunities to of-

fload data and computations. Energy saving in mobile environments has been

addressed also by implementing energy harvesting [Wang et al., 2017] and mo-

bile edge computing [Feng et al., 2017] techniques, where IoT devices offload

the computation tasks to edge devices such as the base stations, access points

or smart devices within their reach. Exploiting edge device resources, offload-

ing can reduce computing latency, save battery and enhance security for com-

puting intensive IoT systems. Selection of candidate edge devices for offload-

ing is coped in [Dinh et al., 2017], [Bi and Zhang, 2018] and [Sun et al., 2019].
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Fading and interference problems in offloading connections are considered in

[Wang et al., 2017]. [Mao et al., 2016] proposes a mobile offloading scheme based

on Lyapunov optimization to minimize the worst-case expected computation

cost. In [Xu et al., 2017] an online learning based selection method is proposed,

considering energy harvesting and the power consumption model: anyway, these

assumptions may not be practically applied for IoT devices, especially with mul-

tiple edge candidates. In [Min et al., 2019] a computation offloading framework

based on reinforcement learning [Sutton and Barto, 2018] is proposed for IoT

devices, considering harvesting models with no knowledge of the mobile edge

model, computing latency and energy consumption model to select edge de-

vices, to compute the quota of tasks to be offloaded, exploiting the idea that

each offloading decision is made in accordance to the radio transmission rate

of each IoT-edge link in the previous time slot, the predicted renewable energy

harvesting model and the current battery level of the IoT device.

In [Xu et al., 2017] an efficient reinforcement learning based resource man-

agement algorithm is proposed to optimize the on-the-fly workload offloading

rate toward cloud and edge servers to minimize service latency and opera-

tional costs. The computation offloading strategies include the application of

Q-learning techniques, to derive the optimal offloading rates and to reduce

the attack rate of smart attackers at IoT devices [Xiao et al., 2016], and to

achieve optimal offloading and reduce response time in edge-based offloading

[Zhang et al., 2016]. Q-learning, Dyna-Q and post decision state techniques are

applied to malware detection offloading in order to improve the detection perfor-

mance without being aware of trace generation and channel models in dynamic

radio environments.

In [Ko et al., 2017] the conditions of computation offloading are explored;

a workload measurement model based on DMIPS (Dhrystone Millions of In-

structions per Second) is used and the energy related behaviors with or without

offloading are compared. The main aim of this study consists in proposing a

double computation offloading technique that offloads from wearable devices to

smartphones and further offloads to cloud servers. Three experimental scenarios

are proposed, to measure the energy consumption for each wearable or smart

device and to analyze energy efficiency of this decision model.

As an alternative to the use of deep learning models, several fuzzy-based ap-

proaches have been introduced in recent years to improve energy management

in WSN and IoT. Fuzzy logic is capable of making real-time decisions, even with

incomplete information, and since fuzzy logic based systems can handle the lin-

guistic rules in a natural way, they are particularly suitable in several contexts,

such as WSNs and IoTs applications. Moreover, fuzzy systems can be used by

combining different parameters and rules, that may produce an optimal result.

The use of rule-based fuzzy logic controllers (FLC) enables the implementation
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of multicriteria control strategies. For instance, the use of smart techniques for

setting and tuning FLC can improve the energy savings in a WSN. For this rea-

son, the FLC, based on linguistic rules instead of inflexible reasoning, can be the

right choice to describe a mechanism for energy saving to prolong the lifetime of

network nodes [Collotta et al., 2017]. In [Li et al., 2017] an approach integrating

an analytic hierarchical process with a fuzzy comprehensive evaluation method is

applied to an IoT-based industrial energy management systems (EMS), aiming to

fully evaluate the operational level of energy intensive equipment. The main con-

tribution provided by this work consists in introducing a functional framework

for indexing and evaluating the operational level of industrial energy-intensive

equipment (e.g., manufacturing processes) in an IoT-based EMS architecture. In

[Basic et al., 2019] some side effects of introducing computation offloading by us-

ing edge computing are analyzed, in particular for latency-sensitive applications

and compute-intensive tasks. To ensure non-intermittent services in case of user

mobility, most approaches accelerate the handoff transfer time but do not reduce

its frequency. Moreover, the handoff mechanisms used in cellular networks do not

consider computing workload, so cannot be applied to edge offloading. Further,

considering dense edge deployment, optimal offloading edge node selection is

vital: the authors proposed a fuzzy logic based selection algorithm considering

bandwidth, CPU speed and latency and consider perceived response time with

respect to the closest or highest bandwidth node. They also perform an eval-

uation of their proposed approach by offloading directed acyclic graph models

of real-world mobile applications. The results they obtained seem to show that

a significant reduction in the application response time and monetary cost of

execution can be obtained, by controlling the number of handoffs among edge

nodes.

3 Energy consumption model and offloading costs

In the field of research regarding IoT low-power devices, facing off the issues

related to the energy consumption model is of paramount importance. Following

[Enokido et al., 2014], in this paper the Simple Power Consumption model (SPC)

is used. In the SPC model, a computing node consumes the maximum electric

power maxE if at least one application process is performed; otherwise, if it is

in idle state, it consumes the minimum electric power minE (Fig.1). Despite its

simplicity, this model, due to the low number of processes running on low-power

nodes, suits well to the purpose of analysis [Oma et al., 2018]. However, the total

execution time is affected by the number of processes running on the same node;

the consequence is that energy consumption depends on the execution time of

all processes.

The Offloading costs must also be taken in account, because of the limited
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Figure 1: Simple Power Consumption (SPC) Model

battery capacity of nodes. There are two types of costs in offloading operations:

Time Cost (TC) and Energy Cost (EC).

The TC relates to the time necessary to transmit the whole task from a

node to another. According to [Xu et al., 2020], TC may be computed using the

following formula:

TC = D/Rate ∗ ZD2 (1)

where D is the data size of the task to migrate, Rate is the data rate of

the network connection, and ZD is the shortest path between transmitter and

receiver nodes (ZD=1 if nodes communicate directly each other). As evident

in Formula 1, TC is strongly influenced by the number of nodes to cross for

the communication between the sender and receiver nodes; thus, the routing

algorithm plays a primary role in order to maintain TC low.

EC represents the energy consumed by a single node because of the task

offloading, and is composed by two different contributes: the energy consumed

in the communication (Ek) and the surplus of energy consumed by the node due

to the task which perform migration (Et).

EC = Ek + Et (2)

Ek is computed for a single node with the following Formula [Xu et al., 2020]:
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Ek = ek +D/Rate ∗B (3)

where ek is the baseline energy consumption of the data transmitter and B

is the power needed by the transmitting section of the network interface of the

node; it is to be noted that B depends on the distance between the communica-

tion partners.

The energy associated with the task which performs migration (Et) is:

Et = maxE ∗ TC (4)

in which TC is described in Formula 1. Substituting as in 2, EC is computed

as follows:

EC = ek +D/Rate ∗ (B +maxE ∗ ZD2) (5)

Is to be also noticeable that the same amount of energy EC is consumed

by: i) the transmitting node; ii) the receiving node; iii) all intermediate nodes

involved in communication.

The study summarized in this section reached a result, the evaluation of

the energy consumed in migration (EC, Formula 5), that will be used, when our

research will come in a more mature, as a benchmark to perform the cost-benefit

analysis of task migration, and also to optimize the weight used in the fuzzy logic

part of the algorithm.

Formula 5 puts into evidence that the energy consumed by a single node

depends on three parameters that need to be taken into account to minimize the

migration EC: i) the size D of the data to be exchanged to provide migration;

ii) the shortest path ZD (Formula 1) between transmitter and receiver nodes,

that depends on routing algorithm; iii) the power B needed for data transmission

(Formula 3), that depends on the distance between the partners of communica-

tion.

With regard to the minimization of data size, the commonly used technique

for this purpose is data compression, but this technique is well-known to be

very time-consuming (i.e. energy consuming, in our model) and at first glance

it does not seem to be effective in terms of cost-benefit for the energy saving

environment that is investigated in this paper.

The second parameter depends on the chosen routing algorithm; routing is

outside the scope of this introductory paper, and will be considered in the next

steps of our research.

The third parameter depends on the distance between sender and receiver

node; this parameter is taken into account in the algorithm proposed in this

paper.
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rized in Table 1.

Mamdani Sugeno

Strenghts

Can be used with Multiple

Output systems

Well suited to human input

Widely used in Decision

Support Systems

Works well with optimization and

adaptive techniques

Low computational load

Widely used in Control Systems

Less prone to data noise

Weaknesses
High computational load

More prone to data noise

Only used with Single Output

systems

Table 1: Strenghts and weaknesses of Mamdani and Sugeno type of inference

systems

The choice for our inference system has fallen on Sugeno type. This decision

depends on its low computational load and for its reduced sensitivity to data

noise. Due to this choice, there is no member function in the defuzzifier step.

In case of Sugeno FIS, crisp output is obtained using a weighted average of the

consequent rules [Hamam and Georganas, 2008].

Generally speaking, the weight to be used in the FIS can be optimized by

using various algorithms, including artificial neural networks. Since this is an

initial step in finding a full-featured effective and simple offloading algorithm,

the choice is to refrain from using weights in the output computation (i.e., all

rules have weight equal to 1) at this stage of our research.

4.1 Variables

The approach is based on 4 fuzzy variables plus an additional one. The 4 con-

sidered fuzzy variables are:

– battery level (in terms of percentage of residual charge of the IoT node);

– CPU workload (in terms of current average percentage of IoT node CPU load

over the last epoch of the algorithm, as sensed by the hardware meters);

– memory usage (in terms of percentage of total memory currently used on

the IoT node);

– resource requirements of the task to be offloaded (in terms of size in MB,

from 0 to 1000 MB).

This choice is motivated on the basis of a health vs collaborativeness model:

each IoT node has to balance selfishness (keeping as much as possible its own
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battery level high and its CPU and memory free to survive as long as possi-

ble) and collaborativeness (offering help to neighbours by trading part of its

resources, to avoid becoming isolated from the rest of the sensor network be-

cause its neighbours die for battery exhaustion, or asking for help when battery

is going to be exhausted soon or too fast).

Tasks belong to two sets: low level tasks, that cannot be offloaded because

they manage the node or the sensing hardware or integration with the sensor

network, and high level tasks, that deal with data integration, preprocessing,

computing, network management or other business logic operations, that can be

freely offloaded to other nodes.

The battery level variable is modeled by means of 4 member functions,

namely Idle, Low, Medium and High, that are represented in Fig. 3. The CPU

workload is modeled by means of 3 member functions, namely Low, Medium and

High, that are represented in Fig. 4. The memory usage is modeled as well by

means of 3 member functions, namely Low, Medium and High, that are repre-

sented in Fig. 5. Finally, task requirements are modeled by means of 3 member

functions too, namely Low, Medium and High, that are represented in Fig. 6.

Figure 3: Member functions for battery level

4.2 System behavior

In the following, we consider all IoT nodes to be identical, with no loss of gen-

erality, for sake of clarity. We consider as reference IoT node an Arduino based

unit, in order to make the scale of available resources clear.

All decisions about scheduling and offloading are taken on-line and indepen-

dently by each node, according to a negotiation cycle. The offloading negotiation
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Figure 4: Member functions for CPU workload

Figure 5: Member functions for memory usage

cycle is run periodically by each node, with a period that depends on the needs

of the application (e.g. considering the frequency of sensing operation or the

volume of produced information or the variability of the high level application

running by the task spanning on the sensor network, or the frequency of high

level operations ordered by the edge node to the sensor network). Each run is

an epoch for the network energy management subsystem.

At the beginning of each epoch, each node evaluates:

1. if it can volunteer for offloading according to its on-board available resources

and its workload;

2. if it needs to ask other nodes for offloading;
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Figure 6: Member functions for task requirements

3. if in need, which of the neighbor nodes is the best candidate for offloading a

task, according to the result of the cycle that they announced to the sensor

network in the first step and to the additional variable, that is the distance

between it and the best choice offload target neighbor node, that affects the

energy needed for transmitting the task and perform further communica-

tions.

The result of the evaluation is another variable, with three possible values,

namely No Offloading, Maybe O, OK Offloading, that respectively stand for not

available for offloading, volunteering for offloading if no other best choice, vol-

unteering for offloading.

The resulting inference system presents 36 possible selection rules, that can

be evaluated with a low computing cost with the chosen member functions (a

trapezoidal shape).

5 Case study

The simulated architecture is in Fig. 7. The reference configuration of the IoT

network that has been assumed for our tests is structured, for the sake of simplic-

ity, on a grid topology, characterized by an equal distance between adjacent nodes

in each row and column. Each node can directly communicate with all neighbors

in each direction, including every possible direction and distance (reachable by

the connection), in order to negotiate task offloads: in the figure, each arrow

depicts one of the possible partners for offloading for a node chosen as example.

Each IoT node is composed of several layers: a hardware layer, including all

sensors as well (HW/Sensing), a operating system layer, also managing network-

ing (OS/Networking), an Energy Management layer implementing the strategy
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Figure 7: General network and node configuration

proposed in this paper and an Application Layer that basically consists of all

the tasks that implement computing that may be offloaded. This organization

has been designed to minimize the overhead of offloaded tasks that use local

sensors, as the related communications happen between OS/Networking layers

of the two involved IoT nodes, at the lowest layer possible.

In order to perform preliminary tests, a simulation campaign has been con-

ducted in an instance of this simplified environment. The campaign must be

intended as a proof-of-concept test, rather than as a test on real data, and is

meant to test and tune the algorithm and to verify the rules of the FIS.

The used simulator is MATLAB, due to the simplicity of the related Fuzzy

Logic Toolbox. The simulation environment is detailed in Table 2.

Simulator
MATLAB ver. 9.8

Fuzzy Logic Toolbox ver. 2.7

Hardware Sony Vaio Ultrabook SVP123A1CM

Operating System MS Windows 10 Enterprise 2015 LTSB Version 10.0, 64 bit

CPU Intel Core i5 4200 CPU @ 1.60 GHz

Memory 4 GB

Table 2: Simulation environment

The test campaign for this preliminary study is implemented as follows:

– all nodes are arranged in a square shape;
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– each node is located at the same distance (10m) from each row and column

neighbor;

– all the tasks to be migrated are LARGE (1MB);

– in the startup phase, the battery level is set to the maximum charge, and

the computational load and memory occupation are set to a random value to

account for variability in local behavior and minor configuration and setup

differences;

– at the end of each epoch, the values of the battery level is decremented by

an estimated value, while computational load and memory occupation are

incremented or decremented depending on the migration operations.

The test algorithm is described in pseudo-code in Listing 1.

1 Battery_Level = FULL
2 Computational_Load = rand()
3 Memory_Occupation = rand()
4 Task_Dimension = LARGE
5

6 While(true)
7

8 Offloading = FIS(Battery_Level , Computational_Load ,
Memory_Occupation , Task_Dimension)

9

10 for i in NUM_NODES
11 Send_Offloading_Status(MY_NUMBER , i, Offloading)
12 Offloading_Status[i] = Get_Offloading_Status(i)
13 end for
14

15 // First step: determining the need of overloading for
a node

16 if Battery_Level <= MEDIUM_BATTERY_LEVEL then
17 if Computational_Load >= HIGH_LOAD .OR.

Memory_Occupation >= HIGH then
18 set Need_Offloading = TRUE
19 Send_Node = Search_Node ()
20 // set the variables for next epoch
21 Memory_Occupation = Memory_Occupation - LARGE
22 Computational_Load = Computational_Load - q *

LARGE
23 Battery_Level = Battery_Level - maxE * 300
24 endif
25 endif
26

27 // wait 5 minutes
28 wait (300)
29

30 end while

Listing 1: Migration management algorithm
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The test was conducted with different setups characterized by an increasing

number of nodes (4, 8, 16, 32, 64, respectively), and using the described algo-

rithm with and without the task migration feature: in the first run tasks are not

migrated, while in the second run tasks are migrated. Each run ends when all

battery are exhausted. Multiple runs have been executed for each setup. Figure

8 presents the maximum discharge time in each case, comparing the runs with

or without migrations enabled. The showed values concern the average discharge

time of the last surviving IoT node over multiple runs of each case.

Figure 8: Average maximum discharge time for the simulated cases

Not surprisingly, the impact of task migration is as much appreciable as the

number of nodes grows. In fact, the discharge time of all batteries grows when

the number of nodes grows.

The evolution of migrations requests versus time is also a relevant aspect

to be examined. In Figure 9 the number of migration requests, the number of

successful migrations and the number of rejected migrations are shown for the

32 nodes case. In the beginning of the simulation, batteries are all fully charged

and there is no migration request. When batteries are all almost exhausted, all

requests are rejected.

As can be seen in Figure 9, the algorithm proposed works quite well in

successfully migrating tasks between nodes, except when the battery level is

very low in all nodes, as could be expected. Moreover, the algorithm is not in

operation for much of the time (when the battery level is high). This means that,

in the algorithm proposed, the integration of features such as task balancing or
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Figure 9: Number of Migration requests (Nodes=32)

load forecasting may result in a positive impact in order to reach the goal of

energy consumption minimization.

In Figure 10 the spatial distribution of migrated tasks is showed. When a

task may be successfully migrated, it is also interesting to see if the destination

node is close or far. Successfully migrated tasks are divided into three categories

according to the distance at which the node they are migrated to (”Distance=1”

labels the tasks that have been migrated to an adjacent node, ”Distance=2”

labels the tasks that have been migrated to a node that is adjacent to an adjacent

node, ”Other” labels tasks that have been migrated on all other nodes).

Results show that the algorithm achieves the objective of maintain low the

distance between sender and receiver. In fact, the number of tasks migrated in

a node with Distance ¿ 2 is very low in all cases.

6 Conclusions and future work

In this paper we presented a preliminary analysis of a fuzzy-based algorithm to

implement an energy optimization management technique for battery-powered

IoT nodes based on peer-to peer task migrations in edge computing IoT systems.

Results show that our solution, that is easily implemented on IoT nodes with

low requirements, provides improvements with no need of support by an edge

server that are worth further investigations with more detailed models. We be-

lieve this direction can achieve significant results in terms of increased resilience

of large scale IoT and edge systems, due to the inherently distributed and au-

tonomic approach. Future work, that is already ongoing, is planned along three
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Figure 10: Destination of Migrated Tasks

directions: the first is based on removing simplification hypotheses, e.g. including

the effects of routing strategies and of data compression algorithms according

to target application scenarios; the second is focused on the adoption of a more

detailed energy model, with reference to literature and to actual experimental

hardware that is being acquired; the third is oriented to the implementation of

the overall strategies in the application fields that have been explored in our

previous publications.
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