Journal of Universal Computer Science, vol. 18, no. 19 (2012), 2669-2685
submitted: 30/3/12, accepted: 6/9/12, appeared: 1/1&/T2UCS

Metamodeling the Structure and Interaction Behavior of
Cooperative Component-based User Interfaces

Luis Iribarne, Nicoas Padilla, Javier Criado
(Applied Computing Group, University of Almeria, Spain
f luis.iribarne, npadilla, javi.criado g@ual.es)

Cristina Vicente-Chicote
(Department of Information Technology and Communications
Technical University of Cartagena, Spain
cristina.vicente@upct.es)

Abstract: In Web-based Cooperative Information Systems(WCIS), user groups with

di erent roles cooperate through specialized interfaces. Cooperative interaction and

user interface structures are usually rather complicated, and modeling has an impor-
tant part in them. Model-Driven Engineering (MDE) is a software engineering discipline

which assists engineers in abstracting system implementations by means of models and
metamodels. This article describes an interactive, struct ural metamodel for user in-

terfaces based on component architectures as a way to abstrat, model, simplify and

facilitate implementation. The paper also presents a case sudy based on an Environ-

mental Management Information Systems (EMIS), where three actors (a politician, a

GIS expert, and a technician) cooperate in assessing naturd disasters.

Key Words: MDE, component-based development, user interfaces, user nteraction,

cooperative systems

Category: D.2, H4, H5

1 Introduction

In a more open and changing world, where information globaklation and the
knowledge society are spread on the Internet, moderieb-based Cooperative In-
formation Systems(WCIS) must be exible and easily adaptable and extendable.
They must also be accessible and manipulable at runtime by dérent people or
groups of people with common interests located in di erent gdaces. There has
recently been special interest in information globalizaton by providing systems
with a common vocabulary through ontologies and Web semantis. Much atten-
tion has also focused on standardizing the way in which infamation is retrieved
from the Web using powerful search engines based on ontolags and intelligent
software agents. Nevertheless, WCIS user interfaces (as Weas the knowledge
they manage) are still being built based on traditional software development
paradigms without taking into account the main criteria of globalization: they
have to be distributed, open and changeable.

In this scenario, our research interest lies in providing a slution for coopera-
tive user interfaces that operate in Web-based collaboratie information systems.

2670 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

There are many di erent reasons. Firstly, Web-based information systems are
the most widespread and commonly used systems in distribut social inter-
action (for instance, social networks). Secondly, they allow norcompiled Web
user interfaces, easily interchangeable at runtime. Thirdy, and particularly, our
methodological proposal gives &omponent-Based Developmen{CBD) solution
to cooperative component-based gadget/widget-type usernterfaces. iGooglé
gadgetsare a good example of interface-components, anfinvironmental Man-
agement Information SystemgEMIS) [EI-Gayar and Fritz, 2006] [Iribarne, 2010]
are a good example of social interaction. For instance, a wielrange of nal users
and actors (such as politicians, technicians or administréors) cooperate with
each other and interact with the system for decision-making problem-solving,
etc. In this kind of system, user groups (who often have di elent roles) cooperate
through distributed user interfaces, where interaction baween di erent elements
involved in the system (e.g., actors, roles, tasks, interatbon rules, etc.) is usually
highly complex. Due to the variety of social interaction, interfaces must adapt
to the needs of users and/or groups of users who cooperate. Gperative user in-
terfaces must be able to be dynamically regenerate at runtire depending on the
type (individual or collective) and the purpose (managemer, technical purpose,
etc.) of interaction.

Furthermore, our methodology pursues evolutionary user iterfaces: change-
able and adaptable to user needs at runtimé. Such evolution is caused by co-
operative interaction between users (and/or groups) and tle user interface (Ul).
As a solution to this approach (i.e., cooperative, evolutioary Web component-
based user interfaces), our proposal is inspired byJodel-Driven Engineering
(MDE) principles [Schmidt, 2006], especially runtime modéds, model evolution
and model transformation. It uses models and metamodels to lastract the dy-
namic behavior of user interfaces and user interactioninteraction is one of the
metamodels used by the methodology, where the elements of ¢hcooperative
user interface are de ned at a high level (i.e., mainly groufs, actors, roles, chore-
ographies, tasks and interface-components).

But this methodology is appropriate only for certain types of user-interfaces:
(a) Component-based interfaces . We consider the Ul a collection of interface-
components with dependencies (functional, interaction, ¥sual or temporal de-
pendences, among others). An example of component interfads the iGoogle in-
terface, made up of interface portions (or \gadgets") that together form the Ul;
(b) COTS (commercial o -the-shelf) Ul components : commercial Ul compo-
nents developed by third-parties, available in public repaitories and accessible
by traders [ISO, 2004] [Iribarne et al., 2004] for Ul architecture con guration.
Here, the Ul is considered component architecture; (c) Intefaces should beself-

! http://code.google.com/apis/gadgets/
2 http:/ivww.ual.es/acg/soleres/jism

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2671

recon gurable . The Ul should be able to adapt itself to the user. Our aim is
therefore not to work with complex Ul or interface-componerts. We use only
WIMP interfaces, simple Ul made up of graphical elements suc as Windows,
Icons, Menus and Pointers(WIMP) [Almendros and Iribarne, 2008]; and nally,
(d) our methodology is suitable for WIS interfaces , i.e., Web-based information
system interfaces. WIS user interfaces do not need to be cornted environments,
which justi es even more speci cally the suitability of thi s solution to these
(Web) interfaces.

The rest of the article is structured as follows. Next sectiom introduces back-
ground research work used by our approach. Section 3 desceb an example as
a guideline used throughout the article. Section 4 describethe interaction and
structural metamodels, and an example of their use. Sectiorb describes some
related studies, and nally, some conclusions and future wek are presented.

2 Background

The work presented in this paper is based on previous resedrowvork for au-
tomatic composition of user interfaces [Iribarneet al., 2010]. In this sense, the
proposed methodology is based on an model-driven enginerg (MDE) approach
to model evolution [Mens, 2008] by considering the interface architectural
models able to evolve atruntime [Blair et al., 2009]. We do this in two stages
[Criado et al., 2010]: (a)model transformation and (b) regeneration (by trading).
The starting user interface is treated like a set of models. Amodel is an instance
of a metamodel, which sets the rules and elements describinpe system. Our
system is built on the basis of two metamodels (Figure 1): thearchitectural
metamodel (AMM), and the runtime component metamodel RTCMM). The
former de nes the component architecture by describing conponent structure
and behavior, while the latter models the user interface elment composition
and their concrete component references.

The architectural metamodel is divided into three subsets:the structural
metamodel (SM), the visual metamodel (V M) and the interaction metamodel
(IM). The former metamodel describes composition dependenddetween com-
ponents through connection ports {.e., provided and required interfaces). The
visual metamodel models visual component behavior (open,lase, show, hide
components, etc.) by means of a state machine. The interaatn metamodel
models user-interaction behavior and describes the structre of interaction tasks
that users may execute in the system (roles, tasks associatewith those roles,
choreography, etc.). The architectural model is used as inpt for the transforma-
tion process, and the transformer implements evolution. Asinput, it uses a set
of rules that de ne transformer behavior, and the current architectural model
(AM), including the interaction model (IM ;). As output, the transformer cre-
ates a new architectural model @M ;) with its corresponding interaction models.

2672 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

The transformation process operates when certain events aar in the system.
Such events report on changes that have been made (for instam, interaction
between user interfaces, time interval ful liment, intera ction with a component,
etc.), a ecting the component architecture.

The runtime component models are regenerated from the new a&hitectural
models obtained as previously stated. In this vein, a tradirg service (rader)
[1ISO, 2004][Iribarne et al., 2004] calculates the best con guration for satisfying
the architectural requirements, starting from abstract component requirements
and a set of concrete components in repositories linked to # trader. The result
is a runtime component model RT CM) that will be processed to show the nal
user interface. The regeneration process and the runtime enoponent models are
out of the scope of this paper.

Transformation

0$&1"H#&"2$%-)*#"Yo+(,#-) 0$&1"H#&"28-)*#%0+(,#-)

* -+ [)+#(0). 3'$2&"28%-)"#'%o+(#-)
' V)
). '#"%:(,#»)

L B92%-)
MY H) o HEYok(

0$&1"#8&"28%-)*(# -~~~

081" #8"28%-)*(4-

3"$2&128%-)*(:4- 3"$282$%-)*(:4-

8'92%-) 7y 4598 (1) p(HS%NE"()" >/ 8'929%-) 71598 (1)

NG *(#) NE) NG
Regeneration

g0 3@esr | 2B (4641

7)H#(0). & < o (#)

18450 F(Ag)er

). 2

221)5 (+6(1#1")
*(#)

Figure 1: A model transformation for user-interface evolution

This article only explains the interaction (IM) and structural (SM) meta-
models in the model evolution methodology (interface), usig a case study as
an example of interaction based on arEnvironmental Management Information
System (EMIS), in which three actors (a politician, a GIS expert, and a tech-
nician) cooperate in assessing natural disasters. The intaction metamodels in-
clude groups of actors and their interaction choreographie (protocol) as de ned
by activities and tasks. In the structural metamodel, the user interface is de ned
by components, ports and connectors to describe user intesite component archi-
tectures. More information about how the model evolution ard transformation
are interrelated with their structure and interaction mode |, and how the run-time
component model (RTCM) is generated can be found at [Criadcet al., 2010] and
[Iribarne et al., 2010].

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2673

3 A simple running example

In this section we examine a simple example which we employ asguide through-
out the article to assist in explaining the behavior of the interaction and struc-
tural metamodels. User actions in a cooperative task are id&i ed. The case
study is related to a typical cooperative decision-making ask in an EMIS for
assessing natural disasters. This cooperative task assessdamage caused by a
catastrophe in a particular land area (for instance, a woodd area). Three users
with three di erent roles take part in this task, a politicia n, a GIS expert, and
an evaluator.

£ Politician_GUI BE

“w o

ReportManager =]

AL IET e e e e T e -

£ Evaluator_GUI

DamageEvaluator =]

Initial Damage Assessem:

Figure 2: User interfaces handled by actors

€ ainbi4

MaIA uonoelaluI-1asn) welbelp asuanbas uonoelialul Jasn

sd User_Interaction J

% % P_GUI | DataMa... | | ReportMa... | [Exp_GUI || Map | | Histogram AnalysisMa... | Chat | Eva_GUI || DamageEva... | Chat ReportCr... |
Politician ExpertGIS Evaluator | T T T T T T T T T
sd Politc_GUI) : : sd Expert_GUI } : : : sd Evaluator_GUI J : :
L1 start dampge evalugtibn
{>r_-| | | | | | | | | | | |
| | | | | | | | | | |
P| introducg janalysis pata ! | : : : : : : : : :
3: start analysis subtask
T | | | | | | | |
4| notifyl expert T | | | | | | | |
< -1 -__:_____ T " _:__" = 5: staneqlaluation subta:sk : : : : : :
I T T T T T T I I I
| | 6: nofify evaluaton | | | | | |
(KF——l—————- === t— = ———— t————— F————— F————= ———Tr= | | |
	7:send analysis ¢igta						
r t send analysis data							
I_l	.						
		9:shgw map info					
			.				
			1:0: send image 4ata				
I o							
! 11 exaniine map info ! ! 12: sth histogram i{\fo : : : :							
131 examine histdgram jnfo	':"						
1 1 1 1 1 {>[:]							
	14: makeldamapg analysis ! 1 1 1 1 1						
1 1 1 1 1 1							
: : : 16: %end analysi% info : 15: co}ppos*’ naIys‘s : : :							
T T 17,I d ysi T P							
i		jsend analysisjinfo	g: send analysis info ! !				
T T T T T T							
: : : :20: examine:damage asselfsment : : : 1 19: show da}mage assesdlmem							
: : : : T 21 solid chat wikh expeft : : PO I !							
T T]) T T T T T 2P start chat with expert							
L L J23: nolify expért to chat _: L JI- : :							
<———1 T A 1T T T T T T T T T Zaexchangeinfe T T T T T		251 Write messag%s					
H H H H H H H H H							
' ' 26 plchange info	' ' ' ' !						
! ! ! ! ! ! ! 27: wiite messages	!						
		28: yeturn ekpert messades		I aes			
<___L _____ L J R Y —_——— i R							
			29: returh evaluator messages				
Ke——t 14 ——+————— e At —_———_——_ —_—]d e ——							
					.		
1 1 1 1	30: makejevaluation repgyrt 1 1 1						
T T T T T T T N T T T T							
33: ngtify feport finalization					32: sqnd evaluation feport		
e ———H JRNUE Y A PR Ao t t t t t t t t							
1 1 1 1 1 1 1 1 1 131: compose] report							
	Ll						

¥,9¢

* Bullgpowrela|y ') 81001YyD-31UdIIA ‘' opelD N e|iped ‘] aulequ|

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2675

An example of the three user interfaces handled by each of théhree ac-
tors (politician, expert and evaluator, in this order) is shown in Figure 2. The
politician's interface (on the left) has two components, aninformation manager
(DataManager) and a report generator (ReportManager). The Expert's interface
has four interface components, a geographic map viewer, asgtogram viewer, an
analysis generator and online chat (used to communicate wit the evaluator
for decision-making). The Evaluator's interface has threemore interface compo-
nents: a report generator, a damage evaluator and online chaA ow diagram
of the interaction between users and between them and the usenterface com-
ponents is shown in the Figure 3.

Brie y, the interaction sequence takes place in four steps.Firstly, there is
a politician (PoliticianRole) who is interested in making a damage assess-
ment and, therefore, he/she is the only user who can initiatethe cooperative
task. To make the impact study, the politician needs two assesments, one by
a GIS expert who makes a technical evaluation, and the other a economic as-
sessment based on the technical evaluation. Secondly, theris a GIS technician
(ExpertGISRole) who is in charge of analyzing the a ected areas in order to
classify the types of soil, damaged infrastructure, the sie of each area a ected
and so on. Thirdly, there is an administrator (EvaluatorRole) who makes an
economic estimate of the a ected soil, damaged infrastruatire, etc. based on the
information provided by the expert. Finally, the politicia n makes his nal report
based on the information prepared and coordinated in the coperative process
described above.

4 The interaction and structural metamodels

This section describes the cooperative user interface intaction and structural
metamodels. Figure 4 shows the proposal architectural metaodel (see Figure 1
again) with its three parts: (a) Interaction metamodel section (IM), (b) Struc-
tural metamodel section (SM), and (c) Visual metamodel section (V M). The
interaction models groups of actors and their interaction potocols through activ-
ities and tasks. The user interface structure is modeled usig components, ports
and connectors. The visual metamodel is described by a statemachine, which is
not explained here as it is out of the scope of this article. Tle interaction and
structural metamodel sections are described separately baw.

4.1 |Interaction metamodel

The interaction metamodel conceptually describes the strature of the cooper-
ative system, based on rolesRole) and groups (Group) of actors. The actors
interact with user interface components by means of the strgtural metamodel
Componentconcept (de ned below).

2676 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

ArchitecturalModel

controlFlow

-DecisionStep

TaskStep TaskUnitStep

Figure 4: The architectural metamodel

Each actor (Actor) has at least one associated role. Each role is made up
of a set oftasks which make it possible to identify the activities carried out by
actors who have the same system role. Any task can be interrupd by another
one at a specic time. There are two types of tasks,CooperativeTask and
NonCooperativeTask. Both are modeled similarly, considering that cooperative
tasks have some conceptual and implementation restrictios, such as that at least
two actors may take part (with the same or di erent role). Eac h task in turn, is
made up of task units (TaskUnit). A task unit can be a subtask or an action. A
SubTaskis a set of task units (actions or new subtasks). ThéAction is an atomic
task, so, it cannot be decomposed into di erent actions. All these actions are
related to the actors who use such actions and to the artifacd which the actors
interact with. The artifacts used in our system are the interface components.

Each task and subtask always has a choreography associatetihe choreog-
raphy models the steps necessary for task or subtask execati. There are three
di erent steps. Firstly, TaskUnitStep is used to model invocation of a task unit,
and consequently, it relates subtasks or actions within thesame task or in dif-
ferent tasks. Secondly,TaskStep is used to model invocation of a new task, and
lastly, ControlStep is used to add control ow capacities, of which there are
several. On one hand,DecisionStep is used to implement a selection of steps
among a group of possible stepsviergeStepjoins control ows (equivalent to OR
in logic), ForkStep creates several concurrent control ows starting from only

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2677

one control ow, and JoinStep joins the control ows that are dependent on each
other (equivalent to AND in logic). Finally, InitialStep and FinalStep delimit

the sequence of steps to be followed in the choreography. BotTaskUnitStep

and TaskStep can use thelnformationExchangeObject concept. This object
contains the information exchanged between activities.

We have also set up OCL constraints to improve interaction malel construc-
tion. The main constraints speci cally refer to the de niti on of choreography
steps and their relationships through ControlFlow and Source roles from the
re exive association of the Step concept.

Rule #1 (Context Step: The following restriction operates on the \Step" con-
cepts and means that one step cannot be connected to another.

inv: self.controlFlow->forAll(c | c.id <> self.id) 1)

Rule #2 (Context ControlStep): This other restriction operates on \Control-
Step" concepts and means that a rst step can only be connecte to ForkStep,
TaskStep or TaskUnitStep :

inv: self.type = controlType::InitialStep implies()
self.controlFlow->forAll(c | c.oclAsType(ControlStep) type =
controlType::ForkStep or c.ocllsTypeOf(TaskStep) or
c.ocllsTypeOf(TaskUnitStep)))

Rule #3 (Context ControStep: Finally, the following restriction also functions
on concepts of the \ControlStep" type and means that aForkStep has an input
connection and two or more outputs.

inv: self.type = controlType::ForkStep implies(3)
(self.source->size()=1) and (self.controlFlow->size() >=2))

Figure 5 shows a diagram describing the relationships betwan users as well
as their activities for cooperative task execution. The gure shows an instance
(or model) of the interaction metamodel as a guiding example To draw the
model we have used a representation adapted from the UML actities diagram.
To help read it, each symbol has been stereotyped with the caesponding con-
cept (element) in the metamodel. The activity starts as soonas the politician
starts the DamageEvaluationTasktask. As shown above, all tasks and subtasks
have a choreography, begin with thelnitialStep control- ow, and nish with
FinalStep .

The DamageEvaluationTask choreography includes three steps (not count-
ing InitialStep and FinalStep). On one hand, a TaskUnitStep enables the
politician to introduce the basic data necessary for assessent, providing some
information about the study area, infrastructure, etc. Next is a ForkStep. This

2678 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

<<CooperativeTask>> <<NonCooperativeTask>>
DamageEvaluationTask

<<TaskAction>>
Inputata

<<SubTask>>
GeographicalAnalysisSubTask

<<TaskStep>>

<<TaskAction>>
SendAnalysisData

<<TaskAction>>
ReceiveAnalysisData

<<TaskAction>>
AnalysisGIS
<<InfoExchageObject>>
ReceiveAnalysisinformation Analysisinformation
[<<Taskaction>>
® 7 Sendinformation

. S ®

<<Role>>
PoliticianRole

<<SubTask>> // S

EvaluationSubTask <<NonCooperativeTask>>
w EvaluationTask
<<TaskStep>>
<<TaskAction>>
Dat
<<Role>>

<<TaskAction>>
<<TaskAction>> — ——|~ 4| <<infoExchageObjects> & = — Evaluation EvaluatorRole
ReceiveEvaluationReport \
EvaluationReport \
h
& _ _(<<Taskaction>>
® SendReport

>

<<InfoExchageObject>>
Lol AnalysisData

<<Role>>
ExpertGISRole

<<TaskAction>>

<<TaskAction>>

/ — P
g ReceiveEvaluationData

Object>> :
EvaluationData '3

Figure 5: An instance scenario of the interaction metamodel

step allows two subtasks to be initiated, the GeographicalAnalysisSubtask
which identi es appropriate actions for geographical anaysis of the study area,
and the EvaluationSubtask , which identi es actions for damage assessment.
By initiating both subtasks, the two users a ected are kept informed in a coop-
erative task. Both have their own choreography as describedbelow.

Finally, JoinStep synchronizes the two subtasks initiated in the previous
step, and until both subtasks are executed, the following stp in the choreogra-
phy, which nishes with the cooperative task in our example, cannot be carried
out. The choreography of the GeographicalAnalysisSubtask has three steps
(again not counting InitialStep and FinalStep). The rst is execution of the
GeographicalAnalysisTask , which is done by a user in the GISExpert role.
This user has COTS gets components (not described here) thagdllow him to
manipulate or visualize maps to carry out his activity. The second step enables
the expert to send data (AnalysisData) so he can begin his activity. Finally,
the subtask choreography ends by executingReceiveAnalysisinformation , al-
lowing the user to receive the analysis made by the GIS expertAs described
below, this information is necessary for theEvaluationSubtask .

The choreography of theEvaluationSubtask also has three steps. The rst
one is used for theEvaluationTask , which pertains to the EvaluatorRole . The
second one sends the information necessary to make the appmate assessment.

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2679

The third receives the analysis made by the expert. The subtak nishes when
this action has been carried out. Finally, the model shows tle speci ¢ choreogra-
phies of the non-cooperativeGeographicalAnalysisTask and EvaluationTask
tasks. Without going into further detail, the rst task is ca rried out by the
ExpertGISRole user to make the geographical analysis of the area a ected by
the catastrophe. The second one is carried out by arEvaluatorRole user to
make a damage assessment from the information provided by th GIS expert.

4.2 Structural metamodel

The structural metamodel which describes the elements of aser interface com-
ponent architecture following the \ component/port/connector " model is shown
in Figure 4. The main concept of the metamodel is theComponentelement,
which can be simple SimpleComponenj or complex (ComplexComponent The
functionality of a component is de ned by its ports (Port), which are interfaces
from which the services are described. There are two types gforts, Provided
and Required. The rst de ne the services the component provides (o ers),
and the second the services which the component requires toebable to function
(together). The dependencies between components are set bye Connector con-
cept. A connector joins two components by two dual ports (provided/required).
A complex component ComplexComponeftmay be comprised of two or more
components (which in turn may be complex or simple). Complexcomponents
are treated the same way as a simple component (with ports anadonnectors).
Furthermore, a component may have a de ned interaction behaior in the inter-
action model associated with it through the InteractionBehaviour concept.
Figure 6 shows an instance of the structural metamodel for te guide ex-
ample. This gure shows the three user interfaces for the thee actors in the
example (seen above in Figure 2), one for the politician (at he top), another for
the GIS expert (on the left) and another for the evaluator (on the right). The
diagram shows the internal dependencies between componenin each user in-
terface and also between interface components. A UML compamnt diagram was
used to draw the model of the instance in the gure, using a grghical notation
for the \capsule/port/connector" model. The components are drawn with a box
or capsule and labeled with the stereotype<<component>>which requires the
metamodel Componentconcept. At this level, only the name of the component
is shown inside a capsule (the box). For example/datM:DataManager means
that datMis an instance of the base componenbataManager A port mediates
the interaction of the capsule with the outside world. Ports carry out proto-
cols, which indicate the order in which the messages are sebetween connected
ports. For instance, the +datMProv:MapDatanotation is a port called datMProv
and a protocol calledMapData The MapData~notation represents the dual pro-
tocol. Ports are provided with a mechanism for a capsule to secify the input

2680 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...
1"#$"%&%'(($:|
" Politician_GUI
H<DEWH>) | s0i54$.$@T> = [<D$%+?2>)"
+3,49%38 wHsUse [e g]|igsussser #9638
[]--------- /datM:DataManager [} - e oo]
1,<3.$45212+$=7>
3.$45212-/) 1
I 1"H$"9%68%'((
: /repM:ReportManaﬂer
| <E7)%ST%)> TROTPU%rSS@T> | sg o)
| 67, | | 918467.& 91,9467 &
RO M
;<D$%+678 1<>7,+678 ;<Dj@!"678
1<*$,678 A - " ",
TSNS 3.$45212-./) 167, 1"459%6$
j 1"H$"%8%'((8| |s<drdrswomy 9689 .- g]
| ExpertGIS_GUI 1"678& Evaluator_GUI .._gi
<HS%SHE $@T> ! -‘*Mf;%;%b
+$,#8%$ 1 1"#$"%&%'((l 1 HS%
N |
!"#$"%E%.(($:| Ihist:Histogram : %896 ($:|
/map:Map . I IrepCreator:ReportCreator
5 ! =
29%0)-N& ! B AISAAG%)>
N i Y
DV\I hN | E<HS@TISAAS) <Brer
N <D
ok <(129672)" K6 %>75%)> ') @ 1
oI 1<012%)@>9 012%)-& « rgrse
- R
%6896 Q-] I o R gl
/analysisM:AnalysisMaker <3l-$;4§2_1%+;$=_7i_:;_<§.$45212+ mgEv:DamageEvaluator
3.$45212- /)& 3.$45212-/)&
- i<(3%
S% <B(S%IC,2>)" ' <§(§: /U/f’l'fm (%)
IH$%&%'((e e s B risoen(5]
fehatExp:Chat 8% - - _ _ _i<B(S%IC,678 H<B(SYI) (8% [ehatEv:Chat
(%" (%) (%) ($%)

Figure 6: An instance of the structural metamodel with three user interfaces

and output interfaces. In our approach, the output interface notation (the small

white box) is used to describe the component interfaces praded, and we use
the input interface notation (the small black box) to describe the component
interfaces required. Finally, connectors capture the key communication rela-
tionships between capsules. They are represented by mean$ lines that join

two dual ports (provided/required, white/black).

For component composition, the ports provided (white-box) by the result-
ing container \parent" component would be all those that int ernally provide
their contained components, and the required ports (blackbox) would be those
required that are not internally covered by those provided. For example, the
Evaluator interface is a complex component made up of another three copo-
nents. As may be observed, the services provided by parent ogponents (the
interface) are the same ones that are provided by the child cmponents (with
a di erent name). In such cases, the connector between the pts is the \use"
type (shown in the diagram by a dashed line) denoting that oneoutput port
\uses the behavior of another internal oné. Something similar occurs in the

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2681

case of ports required by a complex component. Note that the equired port,
+DamageEvaluator:Evinfo of the /dmgEv:DamageEvaluator component is al-
ready covered by the port o ered by the /repCreator:ReportCreator compo-
nent through its port providing +DamageEvaluator:Evinfo .

As in the interaction metamodel, it has also been necessaryotinclude OCL
rules for some of the structural metamodel elements to impree the semantics
not established by the metamodel itself. Thus, for examplejt was necessary to
include a rule to preset the types of connectors between post dual connectors
(provided/required) and use connectors provided/provided or required/required).

Rule #4 (Context Connector): The ends that connect a Connector are di er-

ent types (Provided-Required or Required-Provided when they connect compo-
nents from the same parent, and they are the same typeRrovided-Provided or
Required-Required when they connect parent components with children and vice
versa.

inv: self.endA.ocllsTypeOf(Provided) and 4)
self.endB.oclisTypeOf(Provided) implies (
(self.endA.parent.parent.parent = self.endB.parent.pa rent)
or (self.endA.parent.parent = self.endB.parent.parent. parent))

inv: self.endA.ocllsTypeOf(Required) and
self.endB.ocllsTypeOf(Required) implies (
(self.endA.parent.parent.parent = self.endB.parent.pa rent)
or (self.endA.parent.parent = self.endB.parent.parent. parent))

inv: self.endA.ocllsTypeOf(Provided) and
self.endB.ocllsTypeOf(Required) implies (
self.endA.parent.parent = self.endB.parent.parent)

inv: self.endA.ocllsTypeOf(Required) and
self.endB.oclisTypeOf(Provided) implies (
self.endA.parent.parent = self.endB.parent.parent)

Rule #5 (Context Connector): The interfaces pertaining to ports associated by
a connector have to be the same type.

inv: self.endA.port_interface = self.endB.port_interfa ce (5)
Rule #6 (Context Componen): The root element \StructuralModel" is the only

component that can be de ned without any port; the rest have to have at least
a \Provided" port.

2682 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

inv: self.ocllsTypeOf(StructuralModel) implies (6)
self.ports->size()>=0

inv: not(self.oclisTypeOf(StructuralModel)) implies (
(self.ports->size()>=1)
and (self.ports->exists(p | p.oclisTypeOf(Provided))))

5 Related Work

In Cooperative Information Systems (CIS), models play an important role, es-
pecially in the user-interface (Ul) eld. In this type of system, where groups
of users (with dierent roles) cooperate through distributed Ul, and interac-
tion between di erent elements involved in the system (e.g, actors, roles, tasks,
interaction rules, etc.) is usually highly complex, Collaborative Software Engi-
neering (CSE) [Mistrik et al., 2010] andModel-Driven Engineering (MDE) could
represent a solution for modeling Ul [Obrenovic and Starceic, 2005] and coop-
erative interaction [Bourguin et al., 2001]. There are many model-based propos-
als for modeling Ul in the literature (e.g., IDEAS, OVID, WIS DOM, UMLI,
etc.); see [Rerez-Medinaet al., 2010] for a survey. The use of models to repre-
sent Ul assists designers in their construction, conceptui&ation and visualiza-
tion [Clerck et al., 2005]. Some references use an MDE perspective for Web-bdse
Ul, as in [Chavarriaga and Macia, 2009] and [Angelacciet al., 2009], although
they do not consider cooperative interaction models. Otherproposals, such as
in [Guerrero et al., 2008] present a metamodel for designing the various Ul in
a work ow information system which integrates some di erent interaction ele-
ments, such as process, task, domain, job, among others. Hewer, that proposal
does not de ne an interaction metamodel for cooperative WebUI either.

On the other hand, there are model-based approaches for usémnterface de-
velopment depending on interaction models. For example, iMfEngel 2010] the
author describes a task model-based framework for the autoatic user interface
creation and code generation. In [Bodgaret al., 2008] authors present a inter-
action metamodel based on human communication called discose metamodel.
Furthermore, the discourse models are used to facilitate te automatic user in-
terface generation and their associated behaviour. Theserpposals are di erent
from ours because we focus on task interaction between acterand components
with the goal of modeling this information about the cooperaive system, which
is used as part of the adapting and evolutionary methodology

Component-Based Software Development (CBSD) approache®f the design
and implementation of GUIs are also increasing quickly. Sora articles present a
combined MDE and CBSD approach for modeling both structure and behavior
of component-based software architectures [Alonset al., 2008], which is what

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2683

we have done for the development of our GUI architectural moels. MDE also
plays an important role in collaborative systems. In [Gallardo et al., 2008] the
authors propose an awareness metamodel that conceptualizesollaborative sys-
tems for modeling activities. The proposal distinguishes ve metamodel views:
(a) work group view, (b) actions view, (c) workspace view, (d domain view,

and (e) awareness mechanisms view. Cooperation among us¢ages place in the
\workspace" view, which represents the user interface. [Haryszkiewycz, 2005]
proposes a collaborative metamodel for de ning collaboraitve work practices.

Nevertheless, none of the aforesaid proposals considers enteraction model for

cooperative interfaces or choreographies among groups osers. In our case, we
model them through state machines de ned in the metamodel iself.

6 Conclusions and future work

Globalization of information and the knowledge society inwlve the use of varied
(and sometimes complicated) social interaction which reqires more collabo-
rative Information Systems. Environmental Management Information Systems
(EMIS) [El-Gayar and Fritz, 2006] [Iribarne, 2010] are a goal example of social
interaction, in which a wide range of nal users and actors (sich as politicians,
technicians and administrators) cooperate with each otherand interact with
the system for decision-making, problem-solving, etc. In his type of system,
groups of users (who often have di erent roles) cooperate ttough distributed
user interfaces, where interaction between di erent elemats involved in the sys-
tem (e.g., actors, roles, tasks, interaction rules, etc.)s usually highly complex.
Due to the variety of social interaction, interfaces must adapt to the needs of
users and/or groups of users who cooperate. Cooperative usiaterfaces must be
able to dynamically regenerate at runtime depending on the ype of interaction
(individual or collective) and the purpose of interaction (management, techni-
cal purpose, etc.). However, cooperative user interfaceggpecially in Web-based
Cooperative Information Systems(WCIS), such as some EMIS) (as well as the
knowledge they manage) are still being built based on traditonal software devel-
opment paradigms without taking into account the main crite ria of globalization:
they have to be distributed, open and changeable. This impks that WCIS user-
interfaces should be modeled according to the type of coopative interaction,
purpose (political, management, technical purpose, etc.)and structure.

In this article we present interaction and structural metamodels as part of
an evolutionary model methodology for cooperative user intrfaces. This pro-
posal is inspired by basic principles ofModel-Driven Engineering (MDE), par-
ticularly runtime models, model evolution and model transformation. The pro-
posed interaction metamodel uses six basic concepts: grosipactors, rules, chore-
ographies, tasks and components, and the structural metamdel is based on

2684 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

a component/port/connector" model. We also present an interaction scenario
for decision-making in environmental impact assessment,ammon in GIS (Geo-
graphical Information Systems, to explain the main concepts of both metamod-
els and some instances obtained from them. The example scema models the
interaction of three users with three di erent roles (a politician, an expert and
an evaluator) in a cooperative task. The interaction and structural metamodels,
and the example described in this paper are a part of the SOLEES system, an
Environmental Management Information System (EMIS) [Iribarne, 2010].

In our future work, we want to develop a graphical tool using the Eclipse
Graphical Modeling Framework (GMF, www.eclipse.org/gmf/) for easy cre-
ation of new scenarios, such as instances (models) of the eraction metamodel.
Our models are currently written directly in XMI and manuall y drawn as activity
and object diagrams using Visual Paradigm for Eclipse. We ag also interested in
studying possible change detection and variability in the nteraction and struc-
tural metamodels by means of automated co-evolution mechaems and meta-
model adaptation [Cicchetti et al., 2008] [Wachsmuth, 2007]. We are presently
working on development of a simulation tool for reproducing user interaction
behavior with user interface components by generating randm or programmed
events to check the models and metamodels.

Acknowledgments

This work was funded by the EU (ERDF), the Spanish Ministry of Science and
Innovation (MICINN) under the TIN2010-15588 and TRA2009-0309 Projects
(http://lwww.ual.es/facg), the JUNTA de ANDALUC IA (proyectos de exce-
lencia) under grant the TIC-06114 project, and also by Ingeimeros Alborada,
(http://lwww.ingenierosalborada.es).

References

[Almendros and Iribarne, 2008] Almendros, J., Iribarne, L. : \An extension of UML for
the modeling of WIMP user interfaces"; J. Vis. Lang.&Comp., 19(6):695{720, 2008.

[Alonso et al., 2008] Alonso, D., Vicente-Chicote, C., Barais, O.: \V3Stu dio: A
component-based architecture modeling language”; In 15th IEEE Int. Conf. and
Work. on the Eng. of Comp. Based Systems, pages 346{355. IEEE 2008.

[Angelaccio et al., 2009] Angelaccio, M., Krek, A., D'Ambrogio A.: \A model-dr iven
approach for designing adaptive Web GIS interfaces"; LNGC, pp 137{148, 2009.

[Blair et al., 2009] Blair, G., Bencomo, N., France, R.B (eds.): \Models@ Run.Time";
Special Issue, Computer, IEEE Computer Society, 2009.

[Bodgan et al., 2008] Bogdan, C., Falb, J., Kaindl, H., Kavaldjian, S., Pop p, R., Ho-
racek, H., Arnautovic, E., Szep, A.: \Generating an abstrac t user interface from a
discourse model inspired by human communication”; In 41st H awaii Int. Conf. on
System Sci., pages 36{45. IEEE, 2008.

[Bourguin et al., 2001] Bourguin, G., Derycke, J.C., Tarby, J.C.: \Beyond th e inter-
faces, co-evolution inside interactive systems: A proposd founded on the activity
theory"; In Proc. of the Human Computer Interaction 2001, Sp ringer, 2001.

Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ... 2685

[Chavarriaga and Macia, 2009] Chavarriaga, E., Macia, J.A.: \A model-driven ap-
proach to building modern semantic Web-based user interfaces"; Advan. in Eng.
Soft. 40, 1329{1334, 2009.

[Cicchetti et al., 2008] Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio , A.: \Au-
tomating co-evolution in model-driven engineering”; EDOC , pp. 222-231, 2008.
[Clerck et al., 2005] Clerck, T., Luyten, K., Coninx, K.: \DynaMo-AID: A de sign pro-
cess and a runtime architecture for dynamic model-based use interface develop-
ment"; Eng. Human Computer Inter. and Interactive Systems, pages 7795, 2005.

[Criado et al., 2010] Criado, J., Vicente-Chicote, C., Padilla, N., Iriba rne, L.: \A
Model-driven approach to graphical user interface runtime adaptation”; Mod-
els@Run.Time, CEUR-WS Vol 641, pages 49-59, 2010.

[El-Gayar and Fritz, 2006] El-Gayar, O., Fritz, B.D.: \Envi ronmental management in-
formation systems (EMIS) for sustainable development: A co nceptual overview";
Comm. of the Assoc. for Inf. Syst. 17(1):34, 2006.

[Engel 2010] Engel, J.: \A model-and pattern-based approach for development of user
interfaces of interactive systems"; In 2nd ACM Symp. on Eng. Interactive Comp.
Systems, pages 337{340. ACM, 2010.

[Gallardo et al., 2008] Gallardo, J., Crescencio, B., Redondo, M.A.: \Devel oping col-
laborative modeling systems following a model-driven engineering approach”; OTM
2008 Workshops, LNCS 5333, pp. 442{451, 2008.

[Guerrero et al., 2008] Guerrero, J., Lemaigre, C., Gonzalez J.M., Vanderdonckt, J.:
\Model-driven approach to design user interfaces for work ow information systems";
Journal of Universal Computer Science 14(19):3160{3173, 208.

[Hawryszkiewycz, 2005] Hawryszkiewycz, I.T.: \A metamode | for modeling collabora-
tive systems"; Jour. of Comp. Inf. Systems, 5(3):63{72, 2005.

[Iribarne et al., 2004] Iribarne, L., Troya, J.M., Vallecillo, A.: \A tradin g service for
COTS components"; The Computer Journal. 4, 3, pp. 342{357, 2 004.

[Iribarne et al., 2010] Iribarne, L., Padilla, N., Criado, J., Asensio, J.A. , Ayala, R.:
\A Model Transformation Approach for Automatic Compositio n of COTS User
Interfaces in Web-Based Information Systems"; Informatio n Systems Management.
27, 3, pp. 207{216, 2010.

[Iribarne, 2010] Iribarne, L.: \SOLERES project: A spatio- temporal information sys-
tem for the enviromental management based on neural-networks, agents and soft-
ware components”; TR, jspTIN2010; http://www.ia.urjc.es/jspTIN2010/

[ISO, 2004] 1SO: \Information Technology | Open Distribute d Processing | Trading
Function: Speci cation"; ISO/IEC 13235-1, ITU-T X.950.

[Mens, 2008] Mens, T.: \Introduction and roadmap: History a nd challenges of software
evolution"; Software Evolution, pp. 1{11, Springer, 2008.

[Mistrik et al., 2010] Mistrik, 1., Grundy, J., Hoek, A., Whitehead, J.: \Co llaborative
software engineering"; Springer book, ISBN: 978-3-642-1293-6, 2010.

[Obrenovic and Starcevic, 2005] Obrenovic, Z., Starcevic, D.: \Model-driven develop-
ment of user interfaces: Promises and challenges"; Eurocon(1-2):1259{1262, 2005.

[Ferez-Medina et al., 2010] Rerez-Medina, J.L., Dupuy-Chessa, S., Front, A.: \ A sur-
vey of model driven engineering tools for user interface desgn. Task models and
diagrams for user interface design"; LNCS 4849, pp. 84{97, 2010.

[Schmidt, 2006] Schmidt, D.: \Model-driven engineering"; Comp. 39(2):25{31, 2006.

[Wachsmuth, 2007] Wachsmuth, G.: \Metamodel adaptation an d model co-
adaptation; ECOOP 2007, LNCS 4609, pp. 600{624, 2007.

