
Metamodeling the Structure and Interaction Behavior of
Cooperative Component-based User Interfaces

Luis Iribarne, Nicol�as Padilla, Javier Criado
(Applied Computing Group, University of Almeria, Spain

f luis.iribarne, npadilla, javi.criado g@ual.es)

Cristina Vicente-Chicote
(Department of Information Technology and Communications

Technical University of Cartagena, Spain
cristina.vicente@upct.es)

Abstract: In Web-based Cooperative Information Systems(WCIS), user groups with
di�erent roles cooperate through specialized interfaces. Cooperative interaction and
user interface structures are usually rather complicated, and modeling has an impor-
tant part in them. Model-Driven Engineering (MDE) is a software engineering discipline
which assists engineers in abstracting system implementations by means of models and
metamodels. This article describes an interactive, struct ural metamodel for user in-
terfaces based on component architectures as a way to abstract, model, simplify and
facilitate implementation. The paper also presents a case study based on an Environ-
mental Management Information Systems (EMIS), where three actors (a politician, a
GIS expert, and a technician) cooperate in assessing natural disasters.
Key Words: MDE, component-based development, user interfaces, user interaction,
cooperative systems
Category: D.2, H.4, H.5

1 Introduction

In a more open and changing world, where information globalization and the
knowledge society are spread on the Internet, modernWeb-based Cooperative In-
formation Systems(WCIS) must be
exible and easily adaptable and extendable.
They must also be accessible and manipulable at runtime by di�erent people or
groups of people with common interests located in di�erent places. There has
recently been special interest in information globalization by providing systems
with a common vocabulary through ontologies and Web semantics. Much atten-
tion has also focused on standardizing the way in which information is retrieved
from the Web using powerful search engines based on ontologies and intelligent
software agents. Nevertheless, WCIS user interfaces (as well as the knowledge
they manage) are still being built based on traditional software development
paradigms without taking into account the main criteria of g lobalization: they
have to be distributed, open and changeable.

In this scenario, our research interest lies in providing a solution for coopera-
tive user interfaces that operate in Web-based collaborative information systems.

Journal of Universal Computer Science, vol. 18, no. 19 (2012), 2669-2685
submitted: 30/3/12, accepted: 6/9/12, appeared: 1/11/12 ã J.UCS

There are many di�erent reasons. Firstly, Web-based information systems are
the most widespread and commonly used systems in distributed social inter-
action (for instance, social networks). Secondly, they allow non-compiled Web
user interfaces, easily interchangeable at runtime. Thirdly, and particularly, our
methodological proposal gives aComponent-Based Development(CBD) solution
to cooperative component-based gadget/widget-type user interfaces. iGoogle1

gadgetsare a good example of interface-components, andEnvironmental Man-
agement Information Systems(EMIS) [El-Gayar and Fritz, 2006] [Iribarne, 2010]
are a good example of social interaction. For instance, a wide range of �nal users
and actors (such as politicians, technicians or administrators) cooperate with
each other and interact with the system for decision-making, problem-solving,
etc. In this kind of system, user groups (who often have di�erent roles) cooperate
through distributed user interfaces, where interaction between di�erent elements
involved in the system (e.g., actors, roles, tasks, interaction rules, etc.) is usually
highly complex. Due to the variety of social interaction, interfaces must adapt
to the needs of users and/or groups of users who cooperate. Cooperative user in-
terfaces must be able to be dynamically regenerate at runtime depending on the
type (individual or collective) and the purpose (management, technical purpose,
etc.) of interaction.

Furthermore, our methodology pursues evolutionary user interfaces: change-
able and adaptable to user needs at runtime2. Such evolution is caused by co-
operative interaction between users (and/or groups) and the user interface (UI).
As a solution to this approach (i.e., cooperative, evolutionary Web component-
based user interfaces), our proposal is inspired byModel-Driven Engineering
(MDE) principles [Schmidt, 2006], especially runtime models, model evolution
and model transformation. It uses models and metamodels to abstract the dy-
namic behavior of user interfaces and user interaction.Interaction is one of the
metamodels used by the methodology, where the elements of the cooperative
user interface are de�ned at a high level (i.e., mainly groups, actors, roles, chore-
ographies, tasks and interface-components).

But this methodology is appropriate only for certain types of user-interfaces:
(a) Component-based interfaces . We consider the UI a collection of interface-
components with dependencies (functional, interaction, visual or temporal de-
pendences, among others). An example of component interface is the iGoogle in-
terface, made up of interface portions (or \gadgets") that together form the UI;
(b) COTS (commercial o�-the-shelf) UI components : commercial UI compo-
nents developed by third-parties, available in public repositories and accessible
by traders [ISO, 2004] [Iribarne et al., 2004] for UI architecture con�guration.
Here, the UI is considered component architecture; (c) Interfaces should beself-

1 http://code.google.com/apis/gadgets/
2 http://www.ual.es/acg/soleres/jism

2670 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

recon�gurable . The UI should be able to adapt itself to the user. Our aim is
therefore not to work with complex UI or interface-components. We use only
WIMP interfaces, simple UI made up of graphical elements such as Windows,
Icons, Menus and Pointers(WIMP) [Almendros and Iribarne, 2008]; and �nally,
(d) our methodology is suitable forWIS interfaces , i.e., Web-based information
system interfaces. WIS user interfaces do not need to be compiled environments,
which justi�es even more speci�cally the suitability of thi s solution to these
(Web) interfaces.

The rest of the article is structured as follows. Next section introduces back-
ground research work used by our approach. Section 3 describes an example as
a guideline used throughout the article. Section 4 describes the interaction and
structural metamodels, and an example of their use. Section5 describes some
related studies, and �nally, some conclusions and future work are presented.

2 Background

The work presented in this paper is based on previous research work for au-
tomatic composition of user interfaces [Iribarneet al., 2010]. In this sense, the
proposed methodology is based on an model-driven engineering (MDE) approach
to model evolution [Mens, 2008] by considering the interface architectural
models able to evolve atruntime [Blair et al., 2009]. We do this in two stages
[Criado et al., 2010]: (a)model transformation and (b) regeneration(by trading).
The starting user interface is treated like a set of models. Amodel is an instance
of a metamodel, which sets the rules and elements describingthe system. Our
system is built on the basis of two metamodels (Figure 1): thearchitectural
metamodel (AMM), and the runtime component metamodel (RT CMM). The
former de�nes the component architecture by describing component structure
and behavior, while the latter models the user interface element composition
and their concrete component references.

The architectural metamodel is divided into three subsets: the structural
metamodel (SM), the visual metamodel (V M) and the interaction metamodel
(IM). The former metamodel describes composition dependencies between com-
ponents through connection ports (i.e., provided and required interfaces). The
visual metamodel models visual component behavior (open, close, show, hide
components, etc.) by means of a state machine. The interaction metamodel
models user-interaction behavior and describes the structure of interaction tasks
that users may execute in the system (roles, tasks associated with those roles,
choreography, etc.). The architectural model is used as input for the transforma-
tion process, and the transformer implements evolution. Asinput, it uses a set
of rules that de�ne transformer behavior, and the current architectural model
(AM i), including the interaction model (IM i). As output, the transformer cre-
ates a new architectural model (AM j) with its corresponding interaction models.

2671Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

The transformation process operates when certain events occur in the system.
Such events report on changes that have been made (for instance, interaction
between user interfaces, time interval ful�llment, intera ction with a component,
etc.), a�ecting the component architecture.

The runtime component models are regenerated from the new architectural
models obtained as previously stated. In this vein, a trading service (trader)
[ISO, 2004][Iribarne et al., 2004] calculates the best con�guration for satisfying
the architectural requirements, starting from abstract component requirements
and a set of concrete components in repositories linked to the trader. The result
is a runtime component model (RT CM) that will be processed to show the �nal
user interface. The regeneration process and the runtime component models are
out of the scope of this paper.

Transformation diagram

!"#$%&'"()"

 *+",-+,"#. /)+#('0).

1,.)%

1,$+2() 3'(4'$)$+
/)+#('0).

1,$+2() 3'(4'$)$+
/'0). 2

Transformation

Regeneration

 !"#$%&"'(!)
*#"%+(,#-)

.#/'!'"'(!)0$&1'"#&"2$#)*(,#- !))3"$2&"2$%-)*(,#-')

 !"#$%&"'(!)
*(,#- ')

42!"'+#)5(+6(!#!")
*#"%+(,#-)

42!"'+#)5(+6(!#!")
*(,#- 7)

)3"$2&"2$%-)*#"%+(,#-)

 !"#$%&"'(!)
*#"%+(,#-)

.#/'!'"'(!)0$&1'"#&"2$#)*(,#- !))3"$2&"2$%-)*(,#-7)

 !"#$%&"'(!)
*(,#- 7)

0$&1'"#&"2$%-)*#"%+(,#-)

0$&1'"#&"2$%-)*(,#-') 0$&1'"#&"2$%-)*(,#-7)

8'92%-)
*#"%+(,#-)

8'92%-)
*#"%+(,#-)

8'92%-)
*(,#- ')

8'92%-)
*(,#- 7)

%:9"$%&")
&("9;#")

$#6(9'"($<)

&(!&$#"#)
&("9;#")

$#6(9'"($<)

0$&1'"#&"2$%-)*#"%+(,#-)

Figure 1: A model transformation for user-interface evolution

This article only explains the interaction (IM) and structural (SM) meta-
models in the model evolution methodology (interface), using a case study as
an example of interaction based on anEnvironmental Management Information
System(EMIS), in which three actors (a politician, a GIS expert, and a tech-
nician) cooperate in assessing natural disasters. The interaction metamodels in-
clude groups of actors and their interaction choreographies (protocol) as de�ned
by activities and tasks. In the structural metamodel, the user interface is de�ned
by components, ports and connectors to describe user interface component archi-
tectures. More information about how the model evolution and transformation
are interrelated with their structure and interaction mode l, and how the run-time
component model (RTCM) is generated can be found at [Criadoet al., 2010] and
[Iribarne et al., 2010].

2672 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

3 A simple running example

In this section we examine a simple example which we employ asa guide through-
out the article to assist in explaining the behavior of the interaction and struc-
tural metamodels. User actions in a cooperative task are identi�ed. The case
study is related to a typical cooperative decision-making task in an EMIS for
assessing natural disasters. This cooperative task assesses damage caused by a
catastrophe in a particular land area (for instance, a wooded area). Three users
with three di�erent roles take part in this task, a politicia n, a GIS expert, and
an evaluator.

Figure 2: User interfaces handled by actors

2673Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

sd User_Interaction

sd Politc_GUI sd Expert_GUI sd Evaluator_GUI

33: notify report finalization 32: send evaluation report

31: compose report

30: make evaluation report

28: return expert messages

29: return evaluator messages

27: write messages

25: write messages

26: exchange info

24: exchange info

23: notify expert to chat
22: start chat with expert

21: solicite chat with expert

20: examine damage assessment 19: show damage assessment

18: send analysis info

12: show histogram info

9: show map info

17: send analysis info

16: send analysis info 15: compose analysis

14: make damage analysis

13: examine histogram info

10: send image data

8: send analysis data
7: send analysis data

6: notify evaluator

5: start evaluation subtask

11: examine map info

4: notify expert

3: start analysis subtask
2: introduce analysis data

1: start damage evaluation

Politician

MapReportMa...DataMa...P_GUI ReportCr...DamageEva... ChatAnalysisMa... ChatHistogram Eva_GUIExp_GUI

EvaluatorExpertGIS

F
igure

3:
U

ser
interaction

sequence
diagram

(user-interaction
view)

2674
Iribarne L., P

adilla N
., C

riado J., V
icente-C

hicote C
.: M

etam
odeling ...

An example of the three user interfaces handled by each of thethree ac-
tors (politician, expert and evaluator, in this order) is shown in Figure 2. The
politician's interface (on the left) has two components, aninformation manager
(DataManager) and a report generator (ReportManager). The Expert's interface
has four interface components, a geographic map viewer, a histogram viewer, an
analysis generator and online chat (used to communicate with the evaluator
for decision-making). The Evaluator's interface has threemore interface compo-
nents: a report generator, a damage evaluator and online chat. A
ow diagram
of the interaction between users and between them and the user interface com-
ponents is shown in the Figure 3.

Brie
y, the interaction sequence takes place in four steps.Firstly, there is
a politician (PoliticianRole) who is interested in making a damage assess-
ment and, therefore, he/she is the only user who can initiatethe cooperative
task. To make the impact study, the politician needs two assessments, one by
a GIS expert who makes a technical evaluation, and the other an economic as-
sessment based on the technical evaluation. Secondly, there is a GIS technician
(ExpertGISRole) who is in charge of analyzing the a�ected areas in order to
classify the types of soil, damaged infrastructure, the size of each area a�ected
and so on. Thirdly, there is an administrator (EvaluatorRole) who makes an
economic estimate of the a�ected soil, damaged infrastructure, etc. based on the
information provided by the expert. Finally, the politicia n makes his �nal report
based on the information prepared and coordinated in the cooperative process
described above.

4 The interaction and structural metamodels

This section describes the cooperative user interface interaction and structural
metamodels. Figure 4 shows the proposal architectural metamodel (see Figure 1
again) with its three parts: (a) Interaction metamodel section (IM), (b) Struc-
tural metamodel section (SM), and (c) Visual metamodel section (V M). The
interaction models groups of actors and their interaction protocols through activ-
ities and tasks. The user interface structure is modeled using components, ports
and connectors. The visual metamodel is described by a statemachine, which is
not explained here as it is out of the scope of this article. The interaction and
structural metamodel sections are described separately below.

4.1 Interaction metamodel

The interaction metamodel conceptually describes the structure of the cooper-
ative system, based on roles (Role) and groups (Group) of actors. The actors
interact with user interface components by means of the structural metamodel
Componentconcept (de�ned below).

2675Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

StructuralModel

InterfaceService

Component

ComplexComponet SimpleComponent

ConnectorPort

Provided

Required

SimpleComponentDefinition

InteractionBehaviour

VisualBehaviour StateMachine

InteractionActivity

InteractionModel

Artefact

Group

Actor

Role Task

TaskUnit

CooperativeTask

NonCooperativeTask

InfoExchangeObject

Choreography

Step

SubTask

TaskAction
TaskUnitStepTaskStep

-type : controlType

ControlStep

-InitialStep
-FinalStep
-ForkStep
-JoinStep
-MergeStep
-DecisionStep

<<enumeration>>
controlType

ArchitecturalModel

0..*

1

1..*

0..*
1..*

0..*

1..*
isPlayed

plays

0..*

1

1isDescribedIn

0..*

1..*

0..*

objectFlow

0..* 0..1

actorGUI

1 interface

1 endA

0..1

1

1..*0..*

0..*

controlFlow

source

1

0..* affect

1..*

1..*

0..*

0..*

subComponents

1

task

0..1

0..*

0..*

subTaskUnit

1 taskUnit

1..*

1 endB

1

definition

Visual metamodel

Structural metamodel

Interaction metamodel

Figure 4: The architectural metamodel

Each actor (Actor) has at least one associated role. Each role is made up
of a set of tasks which make it possible to identify the activities carried out by
actors who have the same system role. Any task can be interrupted by another
one at a speci�c time. There are two types of tasks,CooperativeTask and
NonCooperativeTask. Both are modeled similarly, considering that cooperative
tasks have some conceptual and implementation restrictions, such as that at least
two actors may take part (with the same or di�erent role). Eac h task in turn, is
made up of task units (TaskUnit). A task unit can be a subtask or an action. A
SubTaskis a set of task units (actions or new subtasks). TheAction is an atomic
task, so, it cannot be decomposed into di�erent actions. All these actions are
related to the actors who use such actions and to the artifacts which the actors
interact with. The artifacts used in our system are the interface components.

Each task and subtask always has a choreography associated.The choreog-
raphy models the steps necessary for task or subtask execution. There are three
di�erent steps. Firstly, TaskUnitStep is used to model invocation of a task unit,
and consequently, it relates subtasks or actions within thesame task or in dif-
ferent tasks. Secondly,TaskStep is used to model invocation of a new task, and
lastly, ControlStep is used to add control
ow capacities, of which there are
several. On one hand,DecisionStep is used to implement a selection of steps
among a group of possible steps.MergeStepjoins control
ows (equivalent to OR
in logic), ForkStep creates several concurrent control
ows starting from only

2676 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

one control
ow, and JoinStep joins the control
ows that are dependent on each
other (equivalent to AND in logic). Finally, InitialStep and FinalStep delimit
the sequence of steps to be followed in the choreography. Both TaskUnitStep
and TaskStep can use theInformationExchangeObject concept. This object
contains the information exchanged between activities.

We have also set up OCL constraints to improve interaction model construc-
tion. The main constraints speci�cally refer to the de�niti on of choreography
steps and their relationships through ControlFlow and Source roles from the
re
exive association of the Step concept.

Rule #1 (Context Step): The following restriction operates on the \Step" con-
cepts and means that one step cannot be connected to another.

inv: self.controlFlow->forAll(c | c.id <> self.id) (1)

Rule #2 (Context ControlStep): This other restriction operates on \Control-
Step" concepts and means that a �rst step can only be connected to ForkStep ,
TaskStep or TaskUnitStep :

inv: self.type = controlType::InitialStep implies(
self.controlFlow->forAll(c | c.oclAsType(ControlStep) .type =

controlType::ForkStep or c.oclIsTypeOf(TaskStep) or
c.oclIsTypeOf(TaskUnitStep)))

(2)

Rule #3 (Context ControStep): Finally, the following restriction also functions
on concepts of the \ControlStep" type and means that aForkStep has an input
connection and two or more outputs.

inv: self.type = controlType::ForkStep implies(
(self.source->size()=1) and (self.controlFlow->size() >=2))

(3)

Figure 5 shows a diagram describing the relationships between users as well
as their activities for cooperative task execution. The �gure shows an instance
(or model) of the interaction metamodel as a guiding example. To draw the
model we have used a representation adapted from the UML activities diagram.
To help read it, each symbol has been stereotyped with the corresponding con-
cept (element) in the metamodel. The activity starts as soonas the politician
starts the DamageEvaluationTasktask. As shown above, all tasks and subtasks
have a choreography, begin with theInitialStep control-
ow, and �nish with
FinalStep .

The DamageEvaluationTask choreography includes three steps (not count-
ing InitialStep and FinalStep). On one hand, a TaskUnitStep enables the
politician to introduce the basic data necessary for assessment, providing some
information about the study area, infrastructure, etc. Next is a ForkStep . This

2677Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

DamageEvaluation

<<CooperativeTask>>
DamageEvaluationTask <<SubTask>>

GeographicalAnalysisSubTask

<<SubTask>>
EvaluationSubTask

<<NonCooperativeTask>>
GeographicalAnalysisTask

<<NonCooperativeTask>>
EvaluationTask

<<InfoExchageObject>>
AnalysisData

<<InfoExchageObject>>
AnalysisInformation

<<InfoExchageObject>>
EvaluationData

<<InfoExchageObject>>
EvaluationReport

<<TaskAction>>
SendAnalysisData

<<TaskAction>>
ReceiveAnalysisInformation

<<TaskAction>>
SendEvaluationData

<<TaskAction>>
ReceiveEvaluationReport

<<TaskAction>>
ReceiveAnalysisData

<<TaskAction>>
AnalysisGIS

<<TaskAction>>
SendInformation

<<TaskAction>>
ReceiveEvaluationData

<<TaskAction>>
Evaluation

<<TaskAction>>
SendReport

<<TaskAction>>
InputData

<<TaskStep>>

<<TaskStep>>

<<Role>>
PoliticianRole

<<Role>>
ExpertGISRole

<<Role>>
EvaluatorRole

Figure 5: An instance scenario of the interaction metamodel

step allows two subtasks to be initiated, the GeographicalAnalysisSubtask ,
which identi�es appropriate actions for geographical analysis of the study area,
and the EvaluationSubtask , which identi�es actions for damage assessment.
By initiating both subtasks, the two users a�ected are kept informed in a coop-
erative task. Both have their own choreography as describedbelow.

Finally, JoinStep synchronizes the two subtasks initiated in the previous
step, and until both subtasks are executed, the following step in the choreogra-
phy, which �nishes with the cooperative task in our example, cannot be carried
out. The choreography of the GeographicalAnalysisSubtask has three steps
(again not counting InitialStep and FinalStep). The �rst is execution of the
GeographicalAnalysisTask , which is done by a user in theGISExpert role.
This user has COTS gets components (not described here) thatallow him to
manipulate or visualize maps to carry out his activity. The second step enables
the expert to send data (AnalysisData) so he can begin his activity. Finally,
the subtask choreography ends by executingReceiveAnalysisInformation , al-
lowing the user to receive the analysis made by the GIS expert. As described
below, this information is necessary for theEvaluationSubtask .

The choreography of theEvaluationSubtask also has three steps. The �rst
one is used for theEvaluationTask , which pertains to the EvaluatorRole . The
second one sends the information necessary to make the appropriate assessment.

2678 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

The third receives the analysis made by the expert. The subtask �nishes when
this action has been carried out. Finally, the model shows the speci�c choreogra-
phies of the non-cooperativeGeographicalAnalysisTask and EvaluationTask
tasks. Without going into further detail, the �rst task is ca rried out by the
ExpertGISRole user to make the geographical analysis of the area a�ected by
the catastrophe. The second one is carried out by anEvaluatorRole user to
make a damage assessment from the information provided by the GIS expert.

4.2 Structural metamodel

The structural metamodel which describes the elements of a user interface com-
ponent architecture following the \ component/port/connector " model is shown
in Figure 4. The main concept of the metamodel is theComponentelement,
which can be simple (SimpleComponent) or complex (ComplexComponent). The
functionality of a component is de�ned by its ports (Port), which are interfaces
from which the services are described. There are two types ofports, Provided
and Required . The �rst de�ne the services the component provides (o�ers),
and the second the services which the component requires to be able to function
(together). The dependencies between components are set bythe Connector con-
cept. A connector joins two components by two dual ports (provided/required).
A complex component (ComplexComponent) may be comprised of two or more
components (which in turn may be complex or simple). Complexcomponents
are treated the same way as a simple component (with ports andconnectors).
Furthermore, a component may have a de�ned interaction behavior in the inter-
action model associated with it through the InteractionBehaviour concept.

Figure 6 shows an instance of the structural metamodel for the guide ex-
ample. This �gure shows the three user interfaces for the three actors in the
example (seen above in Figure 2), one for the politician (at the top), another for
the GIS expert (on the left) and another for the evaluator (on the right). The
diagram shows the internal dependencies between components in each user in-
terface and also between interface components. A UML component diagram was
used to draw the model of the instance in the �gure, using a graphical notation
for the \capsule/port/connector" model. The components are drawn with a box
or capsule and labeled with the stereotype<<component>>which requires the
metamodel Componentconcept. At this level, only the name of the component
is shown inside a capsule (the box). For example,/datM:DataManager means
that datM is an instance of the base componentDataManager. A port mediates
the interaction of the capsule with the outside world. Ports carry out proto-
cols, which indicate the order in which the messages are sentbetween connected
ports. For instance, the +datMProv:MapDatanotation is a port called datMProv
and a protocol calledMapData. The MapData~notation represents the dual pro-
tocol. Ports are provided with a mechanism for a capsule to specify the input

2679Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

 !"#$"%&%'((
Evaluator_GUI

 !"#$"%&%'((
ExpertGIS_GUI

 !"#$"%&%'((
Politician_GUI

 !"#$"%&%'((
/chatEv:Chat

 !"#$"%&%'((
/repCreator:ReportCreator

 !"#$"%&%'((
/dmgEv:DamageEvaluator

 !"#$"%&%'((
/chatExp:Chat

 !"#$"%&%'((
/analysisM:AnalysisMaker

 !"#$"%&%'((
/hist:Histogram

 !"#$"%&%'((
/map:Map

 !"#$"%&%'((
/repM:ReportManager

 !"#$"%&%'((
/datM:DataManager

 !"#$%$

 !"#$%$&

 '($%')*

 +$,-./)
 +$,-./)&

 '($%')* '($%')*

 !"#$%$

 '($%')*

 !"-./)&

 !"-./)&

 012%)-./)&

 012%)-./)&

 !"-./)

 +$,#$%$

 +$,#$%$

 !"#$%$&

 3.$45212-./)& 3.$45212-./)&

 3.$45212-./)

 3.$45212-./)

 '($%')*&

 !"678&

 !"678&

 012%-./)
 +$,-./)

 !"67,

 '($%')*& '($%')*&

 +$,#$%$& +$,#$%$&

 +$,-./)&

 !"67, 91.$467,& 91.$467,&

 '($%')*&

:;<3.$45212+$=7>

:;<+$,

:;<>7,'>7$%)>?>)"

:;<#$*$@7!"$4A$%)>

:;<B($%!"?>)"

:;<B($%!"678

:;<#$*$@7!"$4A$%)>

:;<'($%

:;<'($%

:;<B($%!C,678

:;<'($%

:;<012%)@>$*

:;<'($%

:;<B($%!C,?>)"

:;<$.$45212+

:;<(12%?>)"

:;<+$,

:;<012%)@>$*

:;<+$,

:;<#$%$+$.$@7>

:;<*$,?>)"

:;<*$,678

:;<#$%$+$.$@7>

:;<D*@!"
:;<67,)>%'>7$%)>

:;<D*@!"678

:;<>7,+?>)"

:;<D$%+?>)":;<#$%$+$.$@7>

:;<67,)>%+$.$@7>

:;<>7,+678

:;<67,)>%'>7$%)>

:;<D$%+678

:;<3.$45212+$=7>

:;<D$%+?>)" :;<#$%$+$.$@7>

:;<67,)>%+$.$@7>:;<67,)>%+$.$@7>

:;<#$%$+$.$@7>

 !"678&

 !"678&
:;<>7,'>7$%)>?>)"

:;<67,)>%'>7$%)>

 !"-./)&
:;<#$*$@7!"$4A$%)>:;<#$*$@7!"$4A$%)>

:;<D*@!"

:;<B($%!C,678:;<'($%

:;<#$%$+$.$@7>

 +$,-./)&
:;<*$,?>)"

Structural Model

Figure 6: An instance of the structural metamodel with three user interfaces

and output interfaces. In our approach, the output interface notation (the small
white box) is used to describe the component interfaces provided, and we use
the input interface notation (the small black box) to describe the component
interfaces required. Finally, connectors capture the key communication rela-
tionships between capsules. They are represented by means of lines that join
two dual ports (provided/required, white/black).

For component composition, the ports provided (white-box) by the result-
ing container \parent" component would be all those that int ernally provide
their contained components, and the required ports (black-box) would be those
required that are not internally covered by those provided. For example, the
Evaluator interface is a complex component made up of another three compo-
nents. As may be observed, the services provided by parent components (the
interface) are the same ones that are provided by the child components (with
a di�erent name). In such cases, the connector between the ports is the \use"
type (shown in the diagram by a dashed line) denoting that oneoutput port
\ uses the behavior of another internal one." Something similar occurs in the

2680 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

case of ports required by a complex component. Note that the required port,
+DamageEvaluator:Evinfo of the /dmgEv:DamageEvaluator component is al-
ready covered by the port o�ered by the /repCreator:ReportCreator compo-
nent through its port providing +DamageEvaluator:EvInfo .

As in the interaction metamodel, it has also been necessary to include OCL
rules for some of the structural metamodel elements to improve the semantics
not established by the metamodel itself. Thus, for example,it was necessary to
include a rule to preset the types of connectors between ports: dual connectors
(provided/required) and use connectors (provided/provided or required/required).

Rule #4 (Context Connector): The ends that connect a Connector are di�er-
ent types (Provided-Required or Required-Provided) when they connect compo-
nents from the same parent, and they are the same type (Provided-Provided or
Required-Required) when they connect parent components with children and vice
versa.

inv: self.endA.oclIsTypeOf(Provided) and
self.endB.oclIsTypeOf(Provided) implies (

(self.endA.parent.parent.parent = self.endB.parent.pa rent)
or (self.endA.parent.parent = self.endB.parent.parent. parent))

inv: self.endA.oclIsTypeOf(Required) and
self.endB.oclIsTypeOf(Required) implies (

(self.endA.parent.parent.parent = self.endB.parent.pa rent)
or (self.endA.parent.parent = self.endB.parent.parent. parent))

inv: self.endA.oclIsTypeOf(Provided) and
self.endB.oclIsTypeOf(Required) implies (

self.endA.parent.parent = self.endB.parent.parent)

inv: self.endA.oclIsTypeOf(Required) and
self.endB.oclIsTypeOf(Provided) implies (

self.endA.parent.parent = self.endB.parent.parent)

(4)

Rule #5 (Context Connector): The interfaces pertaining to ports associated by
a connector have to be the same type.

inv: self.endA.port_interface = self.endB.port_interfa ce (5)

Rule #6 (Context Component): The root element \StructuralModel" is the only
component that can be de�ned without any port; the rest have to have at least
a \Provided" port.

2681Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

inv: self.oclIsTypeOf(StructuralModel) implies
self.ports->size()>=0

inv: not(self.oclIsTypeOf(StructuralModel)) implies (
(self.ports->size()>=1)
and (self.ports->exists(p | p.oclIsTypeOf(Provided))))

(6)

5 Related Work

In Cooperative Information Systems (CIS), models play an important role, es-
pecially in the user-interface (UI) �eld. In this type of sys tem, where groups
of users (with di�erent roles) cooperate through distribut ed UI, and interac-
tion between di�erent elements involved in the system (e.g., actors, roles, tasks,
interaction rules, etc.) is usually highly complex, Collaborative Software Engi-
neering (CSE) [Mistrik et al., 2010] andModel-Driven Engineering (MDE) could
represent a solution for modeling UI [Obrenovic and Starcevic, 2005] and coop-
erative interaction [Bourguin et al., 2001]. There are many model-based propos-
als for modeling UI in the literature (e.g., IDEAS, OVID, WIS DOM, UMLi,
etc.); see [P�erez-Medinaet al., 2010] for a survey. The use of models to repre-
sent UI assists designers in their construction, conceptualization and visualiza-
tion [Clerck et al., 2005]. Some references use an MDE perspective for Web-based
UI, as in [Chavarriaga and Macia, 2009] and [Angelaccioet al., 2009], although
they do not consider cooperative interaction models. Otherproposals, such as
in [Guerrero et al., 2008] present a metamodel for designing the various UI in
a work
ow information system which integrates some di�erent interaction ele-
ments, such as process, task, domain, job, among others. However, that proposal
does not de�ne an interaction metamodel for cooperative WebUI either.

On the other hand, there are model-based approaches for userinterface de-
velopment depending on interaction models. For example, in[Engel 2010] the
author describes a task model-based framework for the automatic user interface
creation and code generation. In [Bodganet al., 2008] authors present a inter-
action metamodel based on human communication called discourse metamodel.
Furthermore, the discourse models are used to facilitate the automatic user in-
terface generation and their associated behaviour. These proposals are di�erent
from ours because we focus on task interaction between actors and components
with the goal of modeling this information about the cooperative system, which
is used as part of the adapting and evolutionary methodology.

Component-Based Software Development (CBSD) approaches for the design
and implementation of GUIs are also increasing quickly. Some articles present a
combined MDE and CBSD approach for modeling both structure and behavior
of component-based software architectures [Alonsoet al., 2008], which is what

2682 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

we have done for the development of our GUI architectural models. MDE also
plays an important role in collaborative systems. In [Gallardo et al., 2008] the
authors propose an awareness metamodel that conceptualizes collaborative sys-
tems for modeling activities. The proposal distinguishes �ve metamodel views:
(a) work group view, (b) actions view, (c) workspace view, (d) domain view,
and (e) awareness mechanisms view. Cooperation among userstakes place in the
\workspace" view, which represents the user interface. [Hawryszkiewycz, 2005]
proposes a collaborative metamodel for de�ning collaborative work practices.
Nevertheless, none of the aforesaid proposals considers aninteraction model for
cooperative interfaces or choreographies among groups of users. In our case, we
model them through state machines de�ned in the metamodel itself.

6 Conclusions and future work

Globalization of information and the knowledge society involve the use of varied
(and sometimes complicated) social interaction which requires more collabo-
rative Information Systems. Environmental Management Information Systems
(EMIS) [El-Gayar and Fritz, 2006] [Iribarne, 2010] are a good example of social
interaction, in which a wide range of �nal users and actors (such as politicians,
technicians and administrators) cooperate with each otherand interact with
the system for decision-making, problem-solving, etc. In this type of system,
groups of users (who often have di�erent roles) cooperate through distributed
user interfaces, where interaction between di�erent elements involved in the sys-
tem (e.g., actors, roles, tasks, interaction rules, etc.) is usually highly complex.
Due to the variety of social interaction, interfaces must adapt to the needs of
users and/or groups of users who cooperate. Cooperative user interfaces must be
able to dynamically regenerate at runtime depending on the type of interaction
(individual or collective) and the purpose of interaction (management, techni-
cal purpose, etc.). However, cooperative user interfaces (especially inWeb-based
Cooperative Information Systems(WCIS), such as some EMIS) (as well as the
knowledge they manage) are still being built based on traditional software devel-
opment paradigms without taking into account the main crite ria of globalization:
they have to be distributed, open and changeable. This implies that WCIS user-
interfaces should be modeled according to the type of cooperative interaction,
purpose (political, management, technical purpose, etc.)and structure.

In this article we present interaction and structural metamodels as part of
an evolutionary model methodology for cooperative user interfaces. This pro-
posal is inspired by basic principles ofModel-Driven Engineering (MDE), par-
ticularly runtime models, model evolution and model transformation. The pro-
posed interaction metamodel uses six basic concepts: groups, actors, rules, chore-
ographies, tasks and components, and the structural metamodel is based on

2683Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

a component/port/connector" model. We also present an interaction scenario
for decision-making in environmental impact assessment, common in GIS (Geo-
graphical Information Systems), to explain the main concepts of both metamod-
els and some instances obtained from them. The example scenario models the
interaction of three users with three di�erent roles (a poli tician, an expert and
an evaluator) in a cooperative task. The interaction and structural metamodels,
and the example described in this paper are a part of the SOLERES system, an
Environmental Management Information System(EMIS) [Iribarne, 2010].

In our future work, we want to develop a graphical tool using the Eclipse
Graphical Modeling Framework (GMF, www.eclipse.org/gmf/) for easy cre-
ation of new scenarios, such as instances (models) of the interaction metamodel.
Our models are currently written directly in XMI and manuall y drawn as activity
and object diagrams using Visual Paradigm for Eclipse. We are also interested in
studying possible change detection and variability in the interaction and struc-
tural metamodels by means of automated co-evolution mechanisms and meta-
model adaptation [Cicchetti et al., 2008] [Wachsmuth, 2007]. We are presently
working on development of a simulation tool for reproducing user interaction
behavior with user interface components by generating random or programmed
events to check the models and metamodels.

Acknowledgments

This work was funded by the EU (ERDF), the Spanish Ministry of Science and
Innovation (MICINN) under the TIN2010-15588 and TRA2009-0309 Projects
(http://www.ual.es/acg), the JUNTA de ANDALUC �IA (proyectos de exce-
lencia) under grant the TIC-06114 project, and also by Ingenieros Alborada,
(http://www.ingenierosalborada.es).

References

[Almendros and Iribarne, 2008] Almendros, J., Iribarne, L. : \An extension of UML for
the modeling of WIMP user interfaces"; J. Vis. Lang.&Comp., 19(6):695{720, 2008.

[Alonso et al., 2008] Alonso, D., Vicente-Chicote, C., Barais, O.: \V3Stu dio: A
component-based architecture modeling language"; In 15th IEEE Int. Conf. and
Work. on the Eng. of Comp. Based Systems, pages 346{355. IEEE, 2008.

[Angelaccio et al., 2009] Angelaccio, M., Krek, A., D'Ambrogio A.: \A model-dr iven
approach for designing adaptive Web GIS interfaces"; LNGC, pp 137{148, 2009.

[Blair et al., 2009] Blair, G., Bencomo, N., France, R.B (eds.): \Models@Run.Time";
Special Issue, Computer, IEEE Computer Society, 2009.

[Bodgan et al., 2008] Bogdan, C., Falb, J., Kaindl, H., Kavaldjian, S., Pop p, R., Ho-
racek, H., Arnautovic, E., Szep, A.: \Generating an abstrac t user interface from a
discourse model inspired by human communication"; In 41st H awaii Int. Conf. on
System Sci., pages 36{45. IEEE, 2008.

[Bourguin et al., 2001] Bourguin, G., Derycke, J.C., Tarby, J.C.: \Beyond th e inter-
faces, co-evolution inside interactive systems: A proposal founded on the activity
theory"; In Proc. of the Human Computer Interaction 2001, Sp ringer, 2001.

2684 Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

[Chavarriaga and Macia, 2009] Chavarriaga, E., Macia, J.A. : \A model-driven ap-
proach to building modern semantic Web-based user interfaces"; Advan. in Eng.
Soft. 40, 1329{1334, 2009.

[Cicchetti et al., 2008] Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio , A.: \Au-
tomating co-evolution in model-driven engineering"; EDOC , pp. 222-231, 2008.

[Clerck et al., 2005] Clerck, T., Luyten, K., Coninx, K.: \DynaMo-AID: A de sign pro-
cess and a runtime architecture for dynamic model-based user interface develop-
ment"; Eng. Human Computer Inter. and Interactive Systems, pages 7795, 2005.

[Criado et al., 2010] Criado, J., Vicente-Chicote, C., Padilla, N., Iriba rne, L.: \A
Model-driven approach to graphical user interface runtime adaptation"; Mod-
els@Run.Time, CEUR-WS Vol 641, pages 49-59, 2010.

[El-Gayar and Fritz, 2006] El-Gayar, O., Fritz, B.D.: \Envi ronmental management in-
formation systems (EMIS) for sustainable development: A co nceptual overview";
Comm. of the Assoc. for Inf. Syst. 17(1):34, 2006.

[Engel 2010] Engel, J.: \A model-and pattern-based approach for development of user
interfaces of interactive systems"; In 2nd ACM Symp. on Eng. Interactive Comp.
Systems, pages 337{340. ACM, 2010.

[Gallardo et al., 2008] Gallardo, J., Crescencio, B., Redondo, M.A.: \Devel oping col-
laborative modeling systems following a model-driven engineering approach"; OTM
2008 Workshops, LNCS 5333, pp. 442{451, 2008.

[Guerrero et al., 2008] Guerrero, J., Lemaigre, C., Gonzalez J.M., Vanderdonckt, J.:
\Model-driven approach to design user interfaces for work
 ow information systems";
Journal of Universal Computer Science 14(19):3160{3173, 2008.

[Hawryszkiewycz, 2005] Hawryszkiewycz, I.T.: \A metamode l for modeling collabora-
tive systems"; Jour. of Comp. Inf. Systems, 5(3):63{72, 2005.

[Iribarne et al., 2004] Iribarne, L., Troya, J.M., Vallecillo, A.: \A tradin g service for
COTS components"; The Computer Journal. 4, 3, pp. 342{357, 2 004.

[Iribarne et al., 2010] Iribarne, L., Padilla, N., Criado, J., Asensio, J.A. , Ayala, R.:
\A Model Transformation Approach for Automatic Compositio n of COTS User
Interfaces in Web-Based Information Systems"; Informatio n Systems Management.
27, 3, pp. 207{216, 2010.

[Iribarne, 2010] Iribarne, L.: \SOLERES project: A spatio- temporal information sys-
tem for the enviromental management based on neural-networks, agents and soft-
ware components"; TR, jspTIN2010; http://www.ia.urjc.es/jspTIN2010/ .

[ISO, 2004] ISO: \Information Technology | Open Distribute d Processing | Trading
Function: Speci�cation"; ISO/IEC 13235-1, ITU-T X.950.

[Mens, 2008] Mens, T.: \Introduction and roadmap: History a nd challenges of software
evolution"; Software Evolution, pp. 1{11, Springer, 2008.

[Mistrik et al., 2010] Mistrik, I., Grundy, J., Hoek, A., Whitehead, J.: \Co llaborative
software engineering"; Springer book, ISBN: 978-3-642-10293-6, 2010.

[Obrenovic and Starcevic, 2005] Obrenovic, Z., Starcevic, D.: \Model-driven develop-
ment of user interfaces: Promises and challenges"; Eurocon(1-2):1259{1262, 2005.

[P�erez-Medina et al., 2010] P�erez-Medina, J.L., Dupuy-Chessa, S., Front, A.: \ A sur-
vey of model driven engineering tools for user interface design. Task models and
diagrams for user interface design"; LNCS 4849, pp. 84{97, 2010.

[Schmidt, 2006] Schmidt, D.: \Model-driven engineering"; Comp. 39(2):25{31, 2006.
[Wachsmuth, 2007] Wachsmuth, G.: \Metamodel adaptation an d model co-

adaptation; ECOOP 2007, LNCS 4609, pp. 600{624, 2007.

2685Iribarne L., Padilla N., Criado J., Vicente-Chicote C.: Metamodeling ...

