
CAUCE: Model-driven Development of Context-aware
Applications for Ubiquitous Computing Environments

Ricardo Tesoriero, José A. Gallud, María D. Lozano, Víctor M. R. Penichet
(University of Castilla-La Mancha, Albacete, Spain

[ricardo.tesoriero, jose.gallud, maria.lozano, victor.penichet]@uclm.es)

Abstract: In order to develop context-aware applications for ubiquitous computing
environments we have defined an MDA approach that defines three layers of models. The first
layer captures the conceptual characteristics of the application. This layer defines three
complementary points of view of the system that are used to build the task, space and social
views of the system. The second layer defines the software characteristics of the application.
It is composed by three new complementary points of view of the system that are used to build
the referential space, the information flow and the entity context views of the system. Finally,
the third layer defines the deployment environment of the system according to the views
generated by the second layer.

Keywords: context awareness, ubiquitous computing, model-driven architectures
Categories: D.2.2, D.2.6, D.2.11, D.2.13

1 Introduction

The definition of context-aware applications (CAA) s has evolved through the time.
At the beginning, the difference between context-aware and location-aware
applications was fuzzy. Most CAAs were location-aware applications [Want R. et al.,
1992, Adams N. et al., 1993, Want R. et al., 1995].

Nowadays, location-aware applications may be considered a subset of CAAs
because location is just a characteristic of the application context [Schmidt A. et al.,
1999b, Schmidt A. et al., 1999a, Dey A. K. and Abowd G. D., 2000, Dey A. K.,
2001].

A characterization of CAAs is exposed in [Schmidt A., 2002] where a feature-
space working model was defined. This model defines two types of context
characteristics: the human factors and the physical environment.

On the one hand, the characteristics that are related to human factors are divided
into three categories: the information on the user (knowledge of habits, emotional
state, bio-physiological conditions …), the user's social environment (co-location of
others, social interaction, group dynamics…) and the user's tasks (spontaneous
activity, engaged tasks, general goals…).

On the other hand, the characteristics that are related to the physical environment
are also divided into three categories: location (absolute position, relative position, co-
location…), infrastructure (surrounding resources for computation, communication,
task performance…) and physical conditions (noise, light, pressure…).

Finally, the working model defines a feature that affects all these characteristics,
the time.

Journal of Universal Computer Science, vol. 16, no. 15 (2010), 2111-2138
submitted: 31/1/10, accepted: 28/7/10, appeared: 1/8/10 © J.UCS

Thus, this characterization represents the conceptual features of CAAs. However,
in order to develop a system we have to take into account some features that are not
directly related to CAAs features, these features are the software characteristics of the
system.

These characteristics are mainly affected by the concept of ubiquitous computing
environment (UCE) and Calm Technology [Weiser M. and Brown J. S., 1997].
Therefore, from the software point of view, a context-aware system (CAS) running in
an UCE is not defined by a single application running stand alone, it is rather
composed of a set of applications that exchange information as a distributed system.

Besides, although most of these systems are usually implemented by client-server
architecture, they are not restricted to this architecture. Therefore, these systems do
not follow a fixed architecture like other systems, such as Web applications. Even
more, these systems are usually deployed in heterogeneous platforms, too. It means
that the same application may be deployed in different platforms, even at the same
time, according to the device that will run it.

The connectivity is also a key factor to board because not all devices are
connected in the same way. The way devices are connected is tied to their
capabilities. For instance, remote controls employ IrDA technology; PDAs and
mobile phones may be connected via Bluetooth or Wi-Fi; portable computers or
micro PCs use Wi-Fi networks; and smaller devices, such as RFID readers, may use
wired connections, such as USB or RS232 links. Thus, connectivity affects the way
information is transported from one device to another, resulting in different software
implementations of the application according to the application deployment.

Thus, the problems we have to face in order to develop a CAS for UCEs can be
summarized as:

1. The generation of multiple CAAs to be deployed on heterogeneous
platforms of hardware and software.

2. The development of these applications embraces different aspects of the
system (i.e. the social, spatial and behavioural) that are difficult to
express from a single point of view.

3. The generation of a cooperative environment where entities of the
system are able to exchange information in order to carry out system
goals.

A MDA approach provides:
1. The possibility of defining software that is not tied to a platform, many

applications can be deployed in different platforms due to the separation
of the platform independent and specific models.

2. The possibility of defining software from different points of view, each
view provides designers the ability to conceive software from different
perspectives through the definition of different metamodels for each
view of the system.

3. The use of model transformation provides designers with the ability to
turn models that capture the conceptual views of the system into
computational models that define how software artefacts interact with
each other.

2112 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Therefore, due to the conceptual and software characteristics of CAAs for UCEs,
the model-driven architecture (MDA) is the most suitable strategy to board the
development of these applications.

The article begins exposing the motivation for the improvement of the
development of CAAs for UCEs in Section 2. Then, it performs an analysis of current
approaches in Section 3. Afterwards, Section 4 introduces the CAUCE methodology
and explores the three layers that define it. Once the methodology was described, a
case of study is presented to demonstrate the utility of the approach in Section 5.
Finally, we expose conclusions and future work in Section 6.

2 Motivation

According to Weiser, CAA in UCE are an evolution of desktop computing and soon,
these applications will be as usual as windows based interfaces are now for desktop
applications.

Nowadays, mobile devices are very popular and affordable to almost any person
in any developed society in the world (i.e. mobile phones are so popular that it is not
easy to find someone who does not use it).

Besides, mobile phones have evolved; they also play the role of engagement
book, address book, photo and video cameras, etc. Even more, tendencies point out
that more and more functionality is being introduced into these devices as time goes
by. Examples of this situation are Smart phones. They are the fusion of a PDA
(Personal Digital Agenda) and a mobile phone allowing users to provide mobile
communication to most popular desktop applications, turning these devices into real
mobile offices.

This tendency was also encouraged by communication infrastructure
improvements that have been really impressive for the last decades, leading us to
think that in the near future these devices will be connected from almost everywhere
in the whole world. One of the most relevant examples following this line is the Wi-Fi
connectivity for entire cities.

Thus, communication and mobile device evolution provide software engineers
with new scenarios that were unconceivable shot time ago when users were in front of
a desktop computer. This technology provides users the ability to interact with the
surrounding environment through these devices, instead of interacting with the
computer. Thus, the environment becomes a key element to be explored when
considering these types of applications.

The environment is an important part of the application context. Therefore, the
development of CAA will face a huge market in the near future.

One of the most difficult obstacles to sort when developing these applications is
the device capability to sense the environment, for instance, position, orientation,
movements, etc. However, at the present these technological barriers are becoming
invisible as time goes by. Actually, there are commercial products which allow users
to get new information from the environment by being fused with some devices like
GPSs, accelerometers, etc. These features provide developers with new resources to
exploit.

Communication is also evolving concerning mobile devices. At first, mobile
phones employed analogue lines to set up the communication. Later on, digital

2113Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

technologies were applied. All these technologies were able to transport voice.
However, they are actually able to communicate using several digital technologies. It
is not strange to come across popular devices that support Bluetooth, Wi-Fi or IrDA
communication facilities able to provide information exchange between desktop or
portable computers and other mobile devices.

On the one hand, this technology, which is part of daily life, is not being fully
exploited by actual software applications. On the other hand, context aware
applications can take advantage of this technology to improve the calmness of
applications in ubiquitous computing environments. Therefore, this work proposes a
methodology to develop context-aware applications for ubiquitous computing
environments using the MDA approach.

3 Motivation

The goal of this section is presenting a review most relevant related work to our
proposal.

These works can be categorized into three groups according to the approach they
use to board the problem:

1. Ontology Driven Development [Georgalas N. et al., 2007, Chen H. et al.,
2003a, Chen H., 2003]

2. MDA using MOF [de Farias C. R. G. et al., 2007, Vale S. and Hammoudi S.,
2008, Almeida J. P. A. et al., 2006]

3. MDAs on UML Profiles [Prezerakos G. N. et al., 2007, Carton A. et al.,
2007]

3.1 Ontology-driven development

This section shows the most representative approaches to cope with the development
of CAAs for UCEs based on ontologies.

3.1.1 Model-driven approach for ontology-based CAA development

A case study is developed using an ontology-based model-driven approach in
[Georgalas G. N. et al., 2007] based on previous works like those exposed in [Brown
P. J. et al., 1997, Kumar S. et al., 2000, Dey A. K. et al., 2001, Wang X. H. et al.
2004, Ou S. et al., 2006].

It exposes a model transformation mechanism for the generation of CAAs jointly
with a case study on a context-aware pervasive service scenario that explains in deep
detail how the proposed approach works in practice.

This work presents the development of CAAs following a defined sequence of
steps introducing high-level concepts from the software perspective of the system.

However, from the conceptual point of view, some characteristics, such as task
dependency and roles have not been taken into account.

3.1.2 Model-driven approach for ontology-based CAA development

In [Chen H. et al., 2003b, Chen H. et al., 2003a] a foundation ontology expressed in
the Web Ontology Language (OWL) is defined to build a context-aware pervasive

2114 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

computing framework known as CoBrA. CoBrA is an agent-based architecture for
supporting context-aware computing in intelligent spaces [Chen H., 2003]. From the
conceptual point of view, the CoBrA ontology models the basic concepts of people,
agents, places, and presentation events in an intelligent meeting room environment
introducing the notion of location as part of the model.

However, it does not express the relationship between tasks (i.e. task dependency)
neither role dynamics. Finally, it provides a centralized solution that leads to a fixed
architecture.

3.2 MDA using MOF

This section shows the most representative approaches to cope with the development
of CAAs for UCEs based on MDA using MOF.

3.2.1 A MOF metamodel for the development of context-aware mobile
applications

The MOF metamodel for the development of context-aware mobile applications
proposed on [de Farias C. R. G. et al., 2007] was structured according to the Core and
Service views of the system. This approach provides a contextual model that is
independent from the application domain.

However, it does not provide high level abstraction elements to express
conceptual characteristics. For instance, it does not provide concepts such as task, task
dependency, space, role, and so on. From software characteristics perspective, it does
not take into account architectural or deployment issues, because it is only based on
the SOA architecture.

3.2.2 Context independence in distributed CAA

A proposal that encourages the context independence in distributed CAAs using a
model-driven approach is exposed in [Vale S. and Hammoudi S., 2008]. It presents
five sets of viewpoint concepts for distributed software development: the Enterprise
viewpoint (focused on the business domain and processes), the Computation
viewpoint (describing the implementation details), the Information viewpoint
(defining information semantic, representation and constraints), the Engineering
viewpoint (focused on distributed characteristics of the system) and the Technology
viewpoint (defining the target platform and hardware elements).

However, this approach does not provide high-level abstraction elements to
express conceptual characteristics. Besides, although this proposal is quite complete
from the software characteristics point of view, it is based on fixed service oriented
architecture.

3.2.3 MDD of context-aware services

A model-driven design trajectory for context-aware services consisting of three levels
of models with different degrees of abstraction and platform independence is defined
in [Almeida J. P. A. et al., 2006]. This work divides the development in two phases
(preparation and service creation phase). Besides, the modelling process is also

2115Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

divided into service specification, platform - independent service design and platform
specific service-design.

However, this approach does not provide high-level abstraction elements to
express conceptual characteristics; it only defines low-level abstraction concepts, such
as, events, queries and actions. Thus, although tasks may be modelled as services,
task dependencies, roles or location issues are not taken into account.

3.3 MDAs on UML Profiles

This section shows the most representative approaches to cope with the development
of CAAs for UCEs based on MDA using UML Profiles.

3.3.1 Model-driven composition of context-aware web services using
ContextUML and Aspects

A model-driven composition of context-aware web services using aspects is exposed
in [Prezerakos G. N. et al., 2007]. It argues that the interaction between the end-user
and the service can be adapted to contextual parameters without affecting the overall
goals related to the service logic. This proposal decouples core service logic from
context handling by adopting the model-driven architecture (MDA) approach in the
design phase and the Aspect Oriented Programming (AOP) [Elrad T. et al., 2001]
during coding.

However, this approach does not provide high-level abstraction elements to
express conceptual characteristics. For instance, it provides services, instead of
entities or tasks. From the software characteristics point of view, the solution is
focused on Web applications, so it does not provide a suitable solution for UCEs due
to the lack of deployment features.

3.3.2 Aspect-oriented MDD for mobile context-aware computing

A combination of aspect-oriented development techniques and model-driven
development (MDD) is presented in [Carton A. et al., 2007] as an approach to
develop CAAs for UCEs. This paradigm provides a set of techniques to modularize
crosscutting behaviour.

Main disadvantage of this approach is the lack of support for high-level
abstraction elements to express conceptual characteristics.

Thus, to cope with all deficiencies detailed in previous approaches we propose
the definition of a MDA based on MOF based on three levels of abstraction to:

1. Describe CAA conceptual characteristics from the task, space and social
point of view.

2. Describe CAA software characteristics in terms of entities that exchange
information.

3. Describe CAA deployment environment.

2116 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

4 The CAUCE methodology

Due to the development weaknesses of the existing approaches described in Section 3
we have described the CAUSE proposal depicted on Figure 1. This figure divides the
development process into three layers.

The analysis layer is related to the Computation Independent Model (CIM) of the
MDA. It provides developers with the ability to represent the conceptual
characteristics of CAAs exposed in [Schmidt A. et al., 1999b]. These characteristics
are represented by three different points of view. Each point of view is represented by
the task, the space and the social metamodels defined in the Essential Meta Object
Facility (EMOF) [OMG, 2004] and the Object Constraint Language (OCL) [OMG,
2006].The combined models represent the conceptual view of the system.

The information layer is related to the Platform Independent Model (PIM) of the
MDA. It provides developers with the ability to represent the software characteristics
of CAAs (deployment, architecture and communication). These characteristics are
represented by three different points of view. Each point of view is represented by the
information flow, referential space and entity context metamodels defined in EMOF
and OCL. The combined models represent the software view of the system.

In order to convert the conceptual representation of the CAA into a software
representation of the system, a multi-model transformation is used. This
transformation is defined using the Atlas Transformation Language (ATL) [Bzivin J.
Jouault F. and Valduriez P., 2008]. It “interprets”' the model that is the result of
merging the analysis layer models and turns them into a set of models conforming
information layer metamodels.

In order to turn the PIM into source code we have defined the Mapping
metamodel that defines the Platform Specific Model (PSM) of the system. Thus, the
set of models conforming to the information layer models jointly with the Mapping
model are turned into source code through a multi-model to text transformation
defined using the MOFScript language [Eclipse Foundation, 2009].

Figure 1: The CAUCE overview

2117Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

4.1 The computation independent model

This layer is a bridge between requirements and the analysis phase of traditional
development processes. The goal of this layer is the provision of modelling tools to
capture conceptual features of CAAs defined in [Schmidt A. et al., 1999b]. Therefore,
three metamodels have been defined to accomplish this goal.

• The task metamodel defines the set of tasks and the relationships among
them that any entity in the system is able to perform.

• The social metamodel defines the social environment of the entities in
the system. Therefore this metamodel is directly related to the social
environment, entity task and entity information characteristics of the
CAAs.

• The space metamodel defines the physical environment of the entities in
the system. Therefore this metamodel is directly related to the physical
conditions, infrastructure and location characteristics of the CAAs.

The core of the CIM is defined by the task metamodel. It combines the
information of the social and space models into the task environment defining a
temporal relationship. This relationship is achieved through regular expressions that
relate both, the social and space models to the task model. These regular expressions
provide developers with the ability to define conditions that are used to restrict the
task execution to entities according to contextual facts. The combination process is
depicted in Figure 2.

4.1.1 The task model

According to [Dey A. K., 2001], a system is context-aware if it uses context to
provide relevant information and/or services to the user, where relevancy depends on
the user's task. This definition highlights the importance of two main concepts: task
and entity. An entity represents any element that influences the system behaviour in
any way. On the other hand, a task represents a work to be performed by an entity in
order to fulfil a set of goals.

Figure 2: The CAUCE Computation Independent Model

2118 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Next, we describe the main concepts that the task metamodel is able to represent:
• The task dependency is related to the order tasks must be performed. For

instance, some tasks are required to be performed before performing
others; and some tasks may be performed currently.

• The task synchronization is related to task coordination to accomplish
some goal. In highly distributed and dynamic environments, as
ubiquitous computing are, it is a key issue.

• The work session is a period of time during which a group of entities
collaborate to fulfil system goals; for instance, a chat session.

• The entity is an autonomous element that performs tasks to fulfil system
goals. For instance, a browser session may be considered as an entity
session.

The representation of these concepts is based on Petri Nets [Desel J. and Juhàs G.
2001, Peterson J. L., 1981, Petri C. A., 1962] and Workflows [WfMC, 1996] where
transitions represent tasks and places define the state of the system according to the
state of the system entities.

The basic pattern to build task models is depicted in Figure 3. The most relevant
entities of the task metamodel are depicted in Figure 4. Finally, an example of the
domain specific language for this metamodel is depicted on Figure 14 in Section 5.

Figure 3: A task model sample

Figure 4: The task metamodel basic structure

2119Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

4.1.2 The social model

According to [Schmidt A., 2002] the user information, the social environment and the
user tasks are key characteristics of CAAs.

From our perspective, users interact with the system through some kind of device
that, at least, turns physical stimulus into data that is interpreted by the system or
physical actions that modifies the environment. Therefore, we base the social
metamodel on a simplified version of the Organizational Structure Diagram (OSD)
defined in [Penichet V. M. R., 2007].

Thus, this metamodel defines the following basic concepts:
• The role concept is related to the identification of a set of entity

characteristics avoiding the reference to a particular entity. It is the
analogous of “role concept” described in [Sunagawa E. et al., 2006,
Kozaki K. et al., 2005] or the “Role” described in [Penichet V. M. R.,
2007].

• The instance concept is related to the capability to represent an
individual entity in a working session. This concept is analogous to the
“Individual” actor described in [Penichet V. M. R., 2007].

• The instantiation represents the relationship between a role and an
instance defining instance characteristics. It is close related to the “is-a”
relationship defined by [Sunagawa E. et al., 2006, Kozaki K. et al.,
2005] or the “plays” relationship defined by [Penichet V. M. R., 2007].

• The specialization represents relationships between roles that have
“similar” sets of characteristics. If two roles, A and B are related through
a Specialization from A to B, then B has the same characteristics of A,
and therefore it is able to perform tasks performed by A. This concept is
related to the “part-of” relationship defined by [Sunagawa E. et al.,
2006, Kozaki K. et al., 2005] or the “hierarchy” relationship defined by
[Penichet V. M. R., 2007].

The representation of these concepts is defined by a graph-based DSL where
nodes represent roles and instances, and edges represent instantiations and
specializations. The social metamodel is depicted in Figure 5.

Finally, an example of the domain specific language for this metamodel is
depicted on Figure 16 in Section 5.

4.1.3 The space model

The space concept is a key issue to take into account in CASs. Thus, the space
concept is used to characterize entity locations. Besides, system infrastructure is
usually located somewhere in order to be used. Physical conditions are usually bound
to a physical space, too. Finally, the time is a crucial issue to take into account in
order to track entity activities.

2120 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Figure 5: The social metamodel

Therefore, the main concepts to be modelled by this metamodel are the following:
• The positioning reference provides a generic way to position entities into

the space. Thus, the expression of entity position may be boarded by
different approaches: absolute, relative and even hybrid.

• The time is a key issue to position autonomous entities. From our point
of view, the position is related to both location and time.

• The space granularity provides a natural an implicit location reference
defined physical contention of spaces. For instance, if we are able to
locate an entity into a room, we are able to locate the building it is
location, just by the physical containment of spaces.

• The space characteristics define common features in a set of spaces that
are not physically related. For instance, we may relate spaces by
functionality (i.e. bathrooms), or by arbitrary attributes (i.e. a VIP zone).

The representation of these concepts is defined by a graph-based DSL where
nodes represent spaces, and edges represent relationships among them.

Two types of spaces were defined: physical and virtual spaces. While physical
spaces represent real world spaces, virtual spaces are usually used to characterize
those spaces that do not have a physical relationship.

Besides, three types of relationships have been defined: physical containment,
space grouping and space generalizations. Physical containments represent the
physical space structure; for instance, a floor of a building is composed by rooms.
Space grouping is used to represent the containment of that are not physically related;
for instance, “hot spots” on user interfaces. Finally, space generalizations are used to
define spaces with common features. For instance, a virtual space can be used to
define the V.I.P. rooms of a building.

The space metamodel is depicted in Figure 6.
Finally, an example of the domain specific language for this metamodel is

depicted on Figure 15 in Section 5.

2121Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Figure 6: The space metamodel

4.2 The platform independent model

This layer represents the CAS characteristics captured in the CIM in terms of
computation artefacts defines by a set of metamodels. Therefore, the goal of this layer
is the provision of modelling tools to represent the context of an entity from the
software point of view.

According to [Schilit B. et al., 1994, Schilit B. and Theimer M., 1994, Dey A. K.,
2001] the CAAs for UCEs may be modelled as entities that exchange information,
and affect and are affected by the environment. Thus, entities are a key concept
addressed by this approach.

In order to model entities, two set of views have been defined: the inter-entity and
intra-entity views.

On the one hand, the inter-entity views are defined by the information flow and
referential space views of the system. The information flow view provides a
description of the inter-entity communication. It is focused on how entities exchange
information among each other. In addition, the referential space view describes the
entity instance dependence. It is focused on relationships among entities, such as the
referential knowledge and the existence.

On the other hand, the inter-entity views are defined by the entity context and
entity core views of the system. The entity context view describes how the entity
perceives the environmental. It is focused on the situations, and the conditions that
define them, that affect the entity perception of the environment.

Finally, the entity core view defines the business logic of the entity. This
metamodel is not boarded by our approach because it depends on the entity business
domain. This metamodel is the most important the extension point of the

2122 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

methodology because it provides designers the ability to adapt the context to any
business domain.

Figure 7: The CAUCE Platform Independent Model

The Figure 7 depicts the relationships among the views of the CAUCE PIM.

4.2.1 The information flow model

The information flow model expresses the communication among entities in the CAS.
Therefore, the main goal of this metamodel is the description of the information flow
among entities of the system.

The modelling approach was inspired by the producer--consumer view of CAAs
proposed in [Zimmer T., 2004]. Thus, entities consume information produced by the
environment and produce information that is consumed by the environment.

The main addressed by this metamodel are the following:
• The entity represents an active component of the system that is able to

perform system tasks in order to carry out system goals. An entity is able
to both, produce and consume information flows.

• The information flow is the representation of the communication
between entities. Information flows define a source and a target entity.
The source entity produces the information and the target entity
consumes it.

• The data delivery is related to how information is delivered to the
entities through the information flows. As the idea of entity from the
information flow perspective is related to a type of entity, data delivery
defines whether the information is delivered to a particular entity (an
instance) or to the set of them belonging to the same type (a role).

• The data definition of an information flow describes the structure of the
information that is being transported by the information flow.

The Domain Specific Language (DSL) is based on the Data Flow Diagrams DFD

[Yourdon E., 2006, Stevens W. et al., 1974] and the UML Communication Diagram
[Fowler M., 2003, OMG, 2005].

2123Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

The information flow metamodel is depicted in Figure 8.
Finally, an example of the domain specific language for this metamodel is

depicted on Figure 18 in Section 5.

Figure 8: The information flow metamodel

4.2.2 The referential space model

The referential space model expresses referential dependencies between entities.
Therefore, the goal of this view is the definition of the runtime environment of the
entity context in CASs for UCEs.

Thus, the model describes the dependency between entities, i.e. a button depends
on the panel it is contained.

The basic concepts behind this model are:
• The Entity Reference is a reference to a type of entity (defined by the

information flow view). Thus, an entity type may be referenced several
times in the referential space view.

• The Referential Space is used to define a runtime environment where
entities share a referential space. It is also used to define the referential

2124 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

dependencies of a set of entities. A work session is a typical example of
referential space because a set of entities are allocated when the session
starts and de-allocated when it finishes.

• The referential dependency defines a relationship between an entity
reference and a referential space. When a referential space is de-
allocated, all entity references related to it are de-allocated too.

• The reference cardinality is an attribute defined by a referential
dependence. It defines the amount of entity references in the referential
space. Thus, relationships may be defined as ONE-TO-ONE, ONE-TO-
MANY and MANY-TO-MANY.

The referential space metamodel is depicted in Figure 9.

Figure 9: The referential space model

Figure 10: The information processing mechanism of the entity context model

2125Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Finally, the notation used to represent these concepts is closely related to UML
Class diagrams [OMG, 2005].

An example of the domain specific language for this metamodel is depicted on
Figure 17 in Section 5.

4.2.3 The entity context model

The entity context model defines the context representation from the entity core point
of view. Thus, the goal of the entity context metamodel is the description of the
context that an entity is able to perceive from the environment.

The main concepts addressed by this view of the system are:
• The independent context feature allows an independent definition of the

entity context from the entity core domain. Thus, system and context
functionalities are defined separately.

• The situation defines the set of relevant states of the entity that are
relevant to the entity core and the entity context. Thus, the entity context
is defined in terms of situations that are expressed as conditions bounded
to the entity context state. There are five types of conditions according to
the aspect of the context to be defined:

1. The task conditions are defined in terms of regular expressions
that describe task dependency in the system

2. The social conditions are also defined in terms of regular
expressions. They describe aspects of the entity, such as the
role of the entity in the system, cooperation issues, etc.

3. The space conditions are defined in terms of regular
expressions too. They describe spatial conditions, such as the
location of the entity, co-location (jointly with the social
expression), etc.

4. The data expressions define the information passing among
entities.

5. The logic expressions are usually coupled to data expressions
because they allow the definition of first order logic conditions
bounded to information defined by the data expressions.

• Information flows are processed by entities. Thus, entities are able to
“sense” the information flows that are contextualized according to the
entity context state.

• The data definition allows designers to define the structure of the
information that is exchanged by information flows are defined in terms
of regular expressions.

The Figure 10 depicts the conceptual mechanism of how the entity context works.

The system is composed by entities that may play the role of sensors, actuators or

both of them. While entities that are able to “perceive” environmental changes are
known as sensors (E1), entities that are able to “modify” the environment are known
as actuators (E2).

2126 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

-context

1

-entity

1

+matches(entrada flow : InformationFlow)

ContextSituation
-name : string

+satisfies(entrada flow : InformationFlow) : bool

ContextCondition

-situation

1

-conditions*

SensingContextCondition ContextMemoryCondition
-expression

+flow()

InformationFlow
-name : string
-id : int

+incomingFlow(entrada flow : InformationFlow)
+ongoingFlow(entrada flow : InformationFlow)

ContextAwareEntity
-id : int
-name : string

-source

1

-ongoingInformationFlows

*

-target

1

-incomingInformationFlows

*

+incoming(entrada flow : InformationFlow)
+ongoing(entrada flow : InformationFlow)

EntityContext

-context

1

-situations*

EntityCore
-entity 1-core

1

BroadcastInformationFlow

PointToPointInformationFlow Data
-data

*

-flow1

DataDefinition-definition

1

OutputData

-data

1

VaraibleDataDefinition
-name : string

-variables

*

UnaryOperationDataDefinition -parent

1

-param1-informationFlow 1

+match(entrada expression : string) : bool
+update(entrada expression : string)

ContextMemory
-name : string

DictionaryMemory

-memory

1 HolderMemory

-context1

-state*

StackMemory

+execute()

ContextAction
-expression

-situation1

-actions

*

-memory1

-action

1

LogicMemory

TimeMemory

Figure 11: The entity context metamodel

Thus, sensors capture situations from the environment through a set of conditions
(C1, C2, C3 and C4 defined by E1). When a situation arises, it modifies the entity
context information and notifies the core. Eventually, the core may produce an
information flow (Information Flow) that is consumed by other entities (i.e. E2).

In order to contextualize the Information Flow according to E2 context
perception, a situation is defined through a set of conditions (C1, C2, C3 and C4
defined by E2). This situation is notified to the code of E2 acting on the environment
consequently.

The entity context metamodel is depicted in Figure 11.
Finally, an example of the domain specific language for this metamodel is

depicted on Figure 17 in Section 5.

4.3 The platform specific model

The last layer in the model is defined by the platform specific model. As the
computational representation was defined in the platform independent model, this
model specifies the deployment environment of the system based on the platform
specification.

In order to define the information related to the platform and the deployment
layout the mapping metamodel model was defined.

2127Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

The main goal of the mapping metamodel is the definition of the deployment
environment and the platform specification of the system. It defines two types of
elements:

1. Mapping elements (devices and connections)
2. Definition elements (protocols, media, operation systems or

programming languages).
Mapping elements assign physical representations to computational elements

defined in the PIM. Entities are assigned to devices that provide them the runtime
environment to perform their tasks. In addition, information flows are assigned to
connections that provide them communication among devices.

In order to define platform issues, protocols and media are assigned to
connections; and operating systems and programming languages are assigned to
devices. Thus, both connections and devices can be turned into source code through a
model-to-text transformation.

The deployment metamodel is depicted in Figure 12
Finally, an example of the domain specific language for this metamodel is

depicted on Figure 18 in Section 5.

5 The case of study
To show the utility of the methodology, a set of CASE tools that support the creation
and edition of models conforming to the metamodels defined in Section 4 was
developed.

Figure 12: The deployment metamodel

2128 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Figure 13: The light controller scenario

These tools were developed as Eclipse Plugins using the Eclipse Modelling
Framework (EMF) and Graphical Modelling Framework (GMF).

The demonstration is based on the definition of all models regarding the “Light
controller” system. This system is a domotic application that allows users to set the
light intensity within a room using the axial movement of electronic blinds avoiding
the use of artificial light (for energy saving reasons).

Figure 13 exposes the application scenario where we have two rooms and three
blinds on each room.

The system is composed by three main actors: the PDA that provides users the
ability to change the light intensity of the room he/she is in, the blinds that should be
able to turn according to the light intensity the user has set and the actual light
intensity of the room, and the light sensors (one for each room) that is in charge of
perceiving the light within the room.

5.1 The computational independent model

The computation independent model is depicted in Figure 14, Figure 15 and Figure
16.

It is composed by three models:
• The social model is depicted in Figure 16. It describes the entities that

are part of the system (PDAs, Blinds and LightSensors)
• The space model is depicted in Figure 15. It defines the space scenario

with two rooms (RoomA and RoomB) which contains all the blinds
(Blind1 to Blind6) and sensors (LightSensorA and LightSensorB).
Although the SetButton is the only control that is explicitly modelled,
the model includes the representation of the remaining PDA controls
through the PDAControl virtual space.

• The task model is depicted in Figure 14. It defines two cooperative
tasks:

2129Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

1. The SetLightIntensity between the PDA and the group of blinds
that is co-located with the PDA

SP: aPDA(release, SetButton), aPDA(Action,
PDAControl)*, aPDA(enter, Room),
Blind(enter,Room)

2. The GetLightIntensity between the blinds and the light sensor

that is co-located in the room.

SP: (aLightSensor(enter, Room), Blind(enter,
Room)) + (Blind(enter, Room),
aLightSensor(enter, Room))

Figure 14: The light controller task model

2130 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Figure 15: The light controller space model

Figure 16: The light controller social model

Figure 17: The light controller referential space model

2131Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Figure 18: The light controller information flow model

5.2 The platform independent model

The platform independent model is depicted in Figure 17, Figure 18 and Figure 19. It
is composed by three models:

• The referential space model is depicted in Figure 17. It describes the
inter-entity relationships in terms of referential spaces. Thus, the system
is composed by three spaces or applications: the PDA (PDASpace), the
BlindManager and the Room. These applications are composed by
smaller interrelated components. The relationship among these
components is described by the information flow model.

• The information flow model is depicted in Figure 18. It describes the
inter-entity relationships in terms of information flows. The information
flow can be seen from:

1. The PDA perspective; it has to notify the blinds the
illumination level for a room. To perform this task, it receives
the information from three entities:

 The SetButton is used by the user to set the
illumination level in the room.

 The LightIntensityEntity gets the illumination level
value from the user interface of the PDA.

 The LocationManager returns the PDA location from
the GPS entity.

Moreover, it sends this information to the blind manager in
order to update the desired illumination level for the room.

2. The Blinds perspective; they have to check the desired
illumination level for the room and adjust themselves
automatically to match the user request. To perform this task,
they receive the actual illumination level from the LightSensors
and the desired illumination level from the BlindManager (via
broadcasting). Thus, they have all the information to calculate
their position.

2132 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

• The entity context model is depicted in Figure 19. It describes the intra-
entity structure. The model exposes the context logic of all entities
defined in the system that supports the interaction between the
environment and the core model of the application.

Figure 19: The light controller entity context model

2133Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Figure 20: The light controller deployment model

5.3 The platform specific model

The platform specific model defined for this application is based on a Microsoft
platform. The Figure 20 shows the characteristics of the system.

The deployment model embraces three devices:
• The PDA defines a runtime container for the entities that are related to

the mobile device (PDA, GPS, PDAControl, SetControl,
LightIntensityEntity).

• The Server defines a runtime container for the blind and location
managers. They are defined as service providers.

• The Blind defines the runtime container for the blinds and the light
sensors.

The connections (PDAServer and BlindServer) among devices use 802.11 as
communication protocol and TCP/IP transport and address protocol.

6 Conclusions and future work

This work exposes a methodology to develop CAAs for UCEs based on a MDA.
The architecture is divided into three layers of models: CIM, PIM and PSM. The

CIM model defines three types of models conforming the social, task and space
metamodels. These metamodels provides designers with the ability to represent CAA
features defined by [Schmidt A. et al., 1999b].

Once the CAS is characterized, a computational model is defined in terms of the
information flow, the referential space and the entity context metamodels.

Models conforming to these metamodels are part of a PIM and most of the
information they represent is derived from the CIM through a multi-model
transformation defined in ATL.

2134 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

Thus, the software representation of the system can be customized by the
modification of these models. After defining the PIM, the mapping metamodel
defines the deployment platform of the system by creating the PSM of the application.

A model-to-text transformation gathers the PIM jointly with the mapping model
and turns them into source code. This code is part of an abstract architecture that is
supported by the platform.

Due to space restrictions, the article describes just a small example of the
expressive power of the methodology to define CAA characteristics. However, on
[Tesoriero R., 2009] there are three full examples where all the characteristics defined
by [Schmidt A. et al., 1999b] are exposed.

Therefore, this methodology addresses the development of CAAs from different
points of view defining different layers of metamodels according to the abstraction
level the developer of the application has to address.

As future work, we are currently developing the adaptation between the abstract
architecture and a set of production frameworks.

We are also working on the generation of verification code from the post
conditions of the simple tasks. Besides, although the consistency of models is checked
using OCL restrictions, a coherence mechanism to make a set of models consistent
through OCL restrictions is under construction.

Finally, we are defining a simulator program based on Petri Nets properties in
order to check the liveness and other characteristics of the system.

Acknowledgements

This project has been partially supported by the Spanish Science and Innovation
Ministry TIN 2008-06596-C02-01 CENIT MIO! Project (CENIT-2008 1019).

References

[Adams N. et al., 1993] Adams, N., Gold, R., Schilit, B., Tso, M. and Want, R.: “The ParcTab
Mobile Computing System”; Proc. 4th Workshop on Workstation Operating Systems (WWOS-
IV), IEEE, Napa U.S., 1993, 34-39.

[Almeida J. P. A. et al., 2006] Almeida, J. P. A., Iacob, M.-E., Jonkers, H. and Quartel, D.:
“Model-Driven Development of Context-Aware Services”; Proc. Distributed Applications and
Interoperable Systems, Lect. Notes Comp. Sci. 2025, Springer, 2006, 213-227.

[Brown P. J. et al., 1997] Brown, P. J., Bovey, J. D. and Chen, X.: “Context-aware
Applications: from the Laboratory to the Marketplace”; IEEE Pers. Comm. 5 (4), October
1997, 58-64, http://www.cs.kent.ac.uk/pubs/1997/395.

[Bzivin J., Jouault, F. and Valduriez, P., 2008] Bzivin, J., Jouault, F. and Valduriez, P.: “The
Atlas Transformation Language ATL”, 2008, http://ralyx.inria.fr/2003/Raweb/atlas/uid10.html.

[Carton A. et al., 2007] Carton, A., Clarke, S., Senart, A. and Cahill, V.: “Aspect-Oriented
Model-Driven Development for Mobile Context-Aware Computing”; Proc. 1st International
Workshop on Software Engineering for Pervasive Computing Applications, Systems, and
Environments IEEE Computer Society, Washington DC, USA, 2007, 5.

[Chen H., 2003] Chen, H.: “An Intelligent Broker Architecture for Context-Aware Systems”;
PhD thesis, University of Maryland Baltimore County.

2135Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

[Chen H. et al., 2003a] Chen, H., Finin, T. and Joshi, A.: “An ontology for context-aware
pervasive computing environments”; Knowl. Eng. Rev.,Cambridge University Press, 18(3),
2003, 197-207.

[Chen H. et al., 2003b] Chen, H., Finin, T. W. and Joshi, A.: “Using OWL in a Pervasive
Computing Broker”; Proc. the Workshop on Ontologies in Agent Systems at the 2nd
International Joint Conference on Autonomous Agents and Multi-Agent Systems, Cranefield,
S., Finin, T. W., Tamma, V. A. M. and Willmott, S. (eds) , 73, Melbourne, Australia, July
2003, 9-16.

[de Farias C. R. G. et al., 2007] de Farias, C. R. G., Leite, M. M., Calvi, C. Z., Pessoa, R. M.
and Filho, J. G. P.: “A MOF metamodel for the development of context-aware mobile
applications”; Proc. ACM Symposium on Applied Computing, ACM, New York USA, 2007,
947-952.

[Desel J. and Juhàs G., 2001] Desel, J. and Juhàs, G. (eds.): “What is a Petri net? Informal
answers for the informed reader”; Unifying Petri Nets. Lect. Notes Comp. Sci. 2128, Springer,
2001, 1-27.

[Dey A. K. et al., 2001] Dey, A., Abowd, D., G. and Salber, D.: “A Conceptual Framework and
a Toolkit for Supporting the Rapid Prototyping of Context-Aware Applications”; Human-
Computer Interaction, 16 (2/4), 2001, 97-166.

[Dey A. K., 2001] Dey, A. : “Understanding and Using Context”; Pers. Ubiq. Comp., 5, 2001,
4-7.

[Dey A. K. and Abowd G. D., 2000] Dey, A. K. and Abowd, G. D.: “Towards a Better
Understanding of Context and Context-Awareness”; Proc. Workshop on The What, Who,
Where, When, and How of Context-Awareness, as part of the 2000 Conference on Human
Factors in Computing Systems, Thea Turner and Gerd Szwillus and Mary Czerwinski and
Fabio Peterno and Steven Pemberton (eds.) Georgia Institute of Technology, The Hague, The
Netherlands, April 2000.

[Eclipse Foundation, 2009] The Eclipse Foundation: “MOFScript”.
http://www.eclipse.org/gmt/mofscript/

[Elrad T. et al., 2001] Elrad, T., Filman, R. E. and Bader, A.: “Aspect-Oriented Programming”;
Comm. ACM, 44 (10), October 2001, 29-32.

[Fowler M., 2003] Fowler, M.: “UML Distilled: A Brief Guide to the Standard Modeling
Object Language”; Object Technology Series, 3rd edition, Addison-Wesley, 2003.

[Georgalas N. et al., 2007] Georgalas, N., Ou, S., Azmoodeh, M. and Yang, K.: “Towards a
Model-Driven Approach for Ontology-Based Context-Aware Application Development: A
Case Study”; Proc. 4th International Workshop on Model-Based Methodologies for Pervasive
and Embedded Software, IEEE Computer Society, Washington DC, USA, 2007, 21-32.

[Kozaki K. et al., 2005] Kozaki, K., Kitamura, Y. and Mizoguchi, R.: “Developing Ontology-
based Applications using Hozo”; Proc. 4th International Conference on Computational
Intelligence, Calgary Canada, 2005, 273-277.

[Kumar S. et al., 2000] Kumar, S., Cohen, P. R. and Levesque, H. J.: “The Adaptive Agent
Architecture: Achieving Fault-Tolerance Using Persistent Broker Teams”; Proc. 4th
International Conference on Multi-Agent Systems, IEEE Computer Society, 2000, 159–166.

[OMG, 2004] The Object Management Group: “Meta Object Facility (MOF) 2.0 Core Final
Adopted Specification”; (Mar. 2004) http://www.omg.org/cgi-bin/doc?ptc/03-10-04.

2136 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

[OMG, 2005] The Object Management Group: “UML Version 2.0”, July 2005,
http://www.omg.org/spec/UML/2.0/

[OMG, 2006] The Object Management Group: “Object Constraint Language (OCL)
Specification, Version 2.0”, 2006,
http://www.omg.org/technology/documents/spec_catalog.htm.

[Ou S. et al., 2006] Ou, S., Georgalas, N., Azmoodeh, M., Yang, K. and Sun, X.: “A Model
Driven Integration Architecture for Ontology-Based Context Modelling and Context-Aware
Application Development”; Proc. 2nd European Conference on Model Driven Architecture -
Foundations and Applications, Rensink, A. and Warmer, J. (eds), Lect. Notes Comp. Sci. 4066,
Springer, Bilbao Spain, July 2006, 188–197.

[Penichet V. M. R., 2007] Penichet, V. M. R.: “TOUCHE (Task-Oriented and User-Centred
Process Model for Developing Interfaces for Human-Computer-Human Environments)”; PhD
thesis, University of Castilla-La Mancha, Spain, 2007.

[Peterson J. L., 1981] Peterson, J. L.: “Petri Net Theory and the Modeling of Systems”;
Prentice–Hall Inc., 1981.

[Petri C. A., 1962] Petri, C. A.:“Kommunikation mit Automaten”; PhD thesis, University of
Bonn, Bonn, Germany.1962 (In German)

[Prezerakos G. N. et al., 2007] Prezerakos, G. N., Tselikas, N. D. and Cortese, G.: “Model-
driven Composition of Context-aware Web Services Using ContextUML and Aspects”; Proc.
International Conference on Web Services, IEEE Computer Society, Utah, USA, July 2007,
320-329.

[Schilit B. et al., 1994] Schilit, B., Adams, N. and Want, R.: “Context-Aware Computing
Applications”; Proc. Workshop on Mobile Computing Systems and Applications, IEEE, Santa
Cruz, US, 1994.

[Schilit B. and Theimer M., 1994] Schilit, B. and Theimer, M.: “Disseminating Active Map
Information to Mobile Hosts”; IEEE Network, 8(5), 1994, 22-32.

[Schmidt A., 2002] Schmidt, A.: “Ubiquitous Computing - Computing in Context”; PhD thesis,
Lancaster University, UK, 2002.

[Schmidt A. et al., 1999a] Schmidt, A., Adoo, K. A., Takaluoma, A., Tuomela, U., Laerhoven,
K. and Van De Velde, W.: “Advanced Interaction in Context”; Proc. 1st International
Symposium on Handheld and Ubiquitous Computing, Springer Verlag, 1999, 89-101.

[Schmidt A. et al., 1999b] Schmidt, A., Beigl, M. and Gellersen, H.-W.: “There is more to
context than location”; Computers & Graphics, 23(6), 1999, 893-901.

[Stevens W. et al., 1974] Stevens, W., Myers, G. and Constantine, L.: “Structured Design”;
IBM Systems Journal, 13, 1974, 115-139.

[Sunagawa E. et al., 2006] Sunagawa, E., Kozaki, K., Kitamura, Y. and Mizoguchi, R.: “Role
Organization Model in Hozo”; Proc. of 15th International Conference on Knowledge
Engineering and Knowledge Management Managing Knowledge in a World of Networks, Lect.
Notes Art. Int., 4248, Podebrady, Czech Republic, October 2006, 67–8.

[Tesoriero R., 2009] Tesoriero, R.: “CAUCE: Model-driven Development of context-aware
applications for ubiquitous computing environments” PhD thesis, University of Castilla-La
Mancha, Spain, December 2009.

2137Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

[Vale S. and Hammoudi S., 2008] Vale, S. and Hammoudi, S.: “Towards context independence
in distributed context-aware applications by the model driven approach”; Proc. 3rd
InternationalWorkshop on Services integration in pervasive environments, ACM, New York
USA, 2008, 31-36.

[Wang X. H. et al., 2004] Wang, X. H., Gu, T., Zhang, D. Q. and Pung, H. K.: “Ontology
Based Context Modeling and Reasoning using OWL”; Proc. International Conference on
Pervasive Computing and Communication, IEEE, 2004, 18-22.

[Want R. et al., 1992] Want, R., Hopper, A., Falcao, V. and Gibbons, J.: “The Active Badge
Location System”; Tran. on Inf. Syst., ACM, 10 (1), January. 1992, 91-102.

[Want R. et al., 1995] Want, R., Schilit, B. N., Adams, N. I., Gold, R., Petersen, K., Goldberg,
D., Ellis, J. R. and Weiser, M.: “An Overview of the ParcTab Ubiquitous Computing
Experiment”; Pers. Comm., IEEE, 2, (6), December 1995, 28-43.

[Weiser M. and Brown J. S., 1997] Weiser, M. and Brown, J. S.: “The Coming Age of Calm
Technology”; Beyond Calculation: The Next Fifty Years of Computing, Denning, P. J. and
Metcalfe, R. M. (eds.), Copernicus, 1997, 75-85.

[WfMC, 1996] The Workflow Management Coalition: “Workflow Management Coalition
Terminology and Glossary (WFMC-TC-1011)”; Brussels, 1996.

[Yourdon E., 2006] Yourdon, E.: “Just Enough Structured Analysis”; Yourdon Press, 2006.

[Zimmer T., 2004] Zimmer, T.: “Towards a Better Understanding of Context Attributes”; Proc.
PerCom Workshops, IEEE Computer Society, 2004, 23-27.

2138 Tesoriero R., Gallud J.A., Lozano M.D., Penichet V.M.R.: CAUCE ...

