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Abstract: We apply the graph decomposition method known as rooted level aware
breadth first search to partition graph-connected formal contexts and examine some of
the consequences for the corresponding concept lattices. In graph-theoretic terms, this
lattice can be viewed as the lattice of maximal bicliques of the bipartite graph obtained
by symmetrizing the object-attribute pairs of the input formal context. We find that
a rooted breadth-first search decomposition of a graph-connected formal context leads
to a closely related partition of the concept lattice, and we provide some details of
this relationship. The main result is used to describe how the concept lattice can be
unfolded, according to the information gathered during the breadth first search. We
discuss potential uses of the results in data mining applications that employ concept
lattices, specifically those involving association rules.
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1 Introduction

In order to decompose lattices that appear in a variety of data analysis applica-
tions, we examine a graph-theoretic decomposition method, namely level-aware
breadth first search, and determine some of its connections with lattices. The
key step in connecting this graph-theoretic method with lattices is to relate each
(lattice-generating) binary relation to an undirected bipartite graph. When the
obtained bipartite graph is a connected graph, its lattice of maximal bicliques
can be interpreted as the concept lattice (cf. [Ganter and Wille (99)]) of the bi-
nary relation. This lattice amounts to an organization of the tabular data, which
is used for Knowledge Discovery in Databases [Wille 01, FCA URL], e.g., involv-
ing the examination of concepts, implications and association rules present in
the data. Given the computational complexity and time requirements of associa-
tion rule mining [Agrawal et al. 93] and the connection of association rules with
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the concept lattice [Zaki et al. 98], it is imperative to design efficient algorithms
that can focus their search into potentially interesting regions of the lattice.

An important step of lattice-centered data analysis involves viewing a lattice
on a computer monitor, as hand-calculations are only reasonable in the smallest
of examples – see [Freese, ConExp] for some automated lattice drawing tools.
However, the size of the lattices can grow quickly and this presents two chal-
lenges. The first issue is whether the automated drawing tools can provide a
diagram at all, since the underlying algorithms are often at least quadratic in
the number of concepts. Assuming that a diagram can be created in a reasonable
amount of time, the second issue arises from the observation that hundreds, or
thousands, of concepts in a diagram immediately tax the human viewer’s abil-
ity to absorb information from the diagram. More generally, the concept lattice
computation simply generates too large a number of concepts to easily manage,
regardless of whether the concepts are viewed or not. These complexity concerns
create a need for some control to be exercised with regard to how many con-
cepts are computed at a time, a problem discussed in [Stumme et al. 02] and
[Berry and Sigayret 2-02]. These issues have led us to examine various decom-
position methods, along the lines of [Abello and Korn 02], to apply to the given
input binary relation that is the usual initial datum for the concept lattice con-
struction. In this paper we discuss the Level-Aware Breadth First Search through
the binary relation. We consider some of the theoretical aspects related to the use
of this graph-theoretic decomposition method, specifically to induce partitions
of the corresponding concept lattice. In the sense that we apply graph-theoretic
methods to concept analysis, this work is similar to [Berry and Sigayret 1-02].

An important aspect of this method is that it determines an inexpensively
computed decomposition of the input data (the binary relation), which we foresee
will at times help to organize the computation and search of the concept lattice.
This strategy should be understood in contrast with approaches that use general
properties of the structure of the input data. For example, [Stumme et al. 02]
incorporates the usual support thresholding used in association rule mining into
an algorithm for computing generators (key sets) for frequent closed itemsets,
using a pruning method [Agrawal et al. 93]; the general property used there is
that the set of all key sets is an order ideal of the power set of the attribute
set. In summary, we see the Level-Aware Breadth First Search as one possible
method of offering glimpses of the full concept lattice, by allowing portions of the
lattice to be viewed independently. This paper presents initial structural results,
which we expect will provide support for further advances in this direction.

The outline of the paper is as follows. After introducing some notions from
graph theory and Formal Concept Analysis, we prove the main results regarding
the relationship between the Level-Aware Breadth First Search decomposition of
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a formal context and the concept lattice of that formal context. This is followed
by a description of the manner in which the concept lattice can be computed
and visualized in steps. The final section suggests directions for further research.

2 Definitions

Although some of the definitions appearing throughout this section do not re-
quire that the sets involved be finite, we make a standing assumption that all
sets under consideration are finite.

2.1 Graph Theoretical Notions

In this subsection we introduce the necessary graph theoretical terminology.

Definition: A (loopless) graph G is a pair (V, E) such that V is a nonempty
set and E is a subset of P2(V ), the set of all two-element subsets of V ; elements
of V are called vertices, while elements of E are called edges, and the two vertices
associated with a particular edge are called the endpoints of the edge.

Definition: If x is a vertex in a graph G = (V, E), its neigborhood is

N(x) = {y ∈ V : {x, y} ∈ E }.

The subgraph induced by a subset S of V is the graph GS whose edge set ES

consists of those edges with both endpoints in S.

Definition: A bipartite graph (bigraph) is a graph G = (V, E) for which there
exists a non-trivial partition {VL, VR} of V such that for each e ∈ E,

e ∩ VL �= ∅ and e ∩ VR �= ∅.

In words, V is partitioned into two independent nonempty sets: each edge con-
nects an element in one block of the partition to an element in the other block.
We call VL the set of left vertices, and we call VR the set of right vertices. If E

contains all possible edges between VL and VR, G is called a complete bipartite
graph. A complete bipartite graph GS that is an induced subgraph of G is called
a biclique of G. A biclique is maximal if it is not contained in a larger biclique.

2.2 Formal Concept Analysis Notions

We follow the definitions introduced in [Ganter and Wille (99)], and repeat a
few here, especially when there are graph-theoretical interpretations of interest.

Definition: A formal context is a triple K = (O, A, E) of nonempty sets,
where E ⊆ O × A. If a formal context K satisfies O ∩ A = ∅, then we say it is
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bigraph inducing. The bipartite graph GK of a bigraph inducing formal context
K = (O, A, E) is

GK = (O ∪ A, { {o, a} : oEa }) .

The edge set of the bigraph GK is called the symmetrization of the binary
relation E.

Definition: Given a formal context (O, A, E), for each subset P of O and
for each H ⊆ O×A, we define the operator ( )H on P(O) and P(A), as follows:
for P ⊆ O, let

PH = {a ∈ A : ∀p ∈ P, pHa }
and dually, for B ⊆ A, let

BH = {o ∈ O : ∀b ∈ B, oHb }.

When a formal context K = (O, A, E) is fixed in a discussion, we write P ′ in
place of PE , and B′ in place of BE . Also, P ′′ is shorthand for (P ′)′.

Suppose K is bigraph inducing. Then, using graph terminology regarding the
graph GK , we see that P ′ =

⋂
p∈P N(p), i.e. P ′ is the intersection of the GK-

neigbourhoods of all the elements in P. Further, if both P and P ′ are nonempty,
then P ∪ P ′ is the vertex set of a biclique in the bipartite graph GK . If both
P ′′ and P ′ are nonempty, then the union P ′′ ∪P ′ is the vertex set of a maximal
biclique of GK and every maximal biclique of GK arises this way, for some subset
P of O. Dually, B′ =

⋂
a∈B N(a) is the intersection of the GK -neigbourhoods of

all the elements in B. Similar comments regarding cliques and bicliques of the
bipartite graph GK apply here as well.

The elements of the concept lattice associated with K = (O, A, E) are the
pairs (P, B) ∈ P(O)×P(A) such that P ′ = B and B′ = P ; such pairs are called
concepts of the formal context K, and P is called the extent and B the intent
of the concept. In graph terminology, a formal concept of a bigraph inducing
K with nonempty intent B and nonempty extent P will generate a maximal
biclique with vertex set P ∪ B in the bigraph GK . Let B(K) be the set of all
concepts of the formal context K, ordered by inclusion in the first coordinate,
i.e. (P, B) ≤ (Q, C) if and only if P ⊆ Q. This ordering makes (B(K),≤) a
complete lattice, i.e. a partially ordered set (L,≤) in which every subset of L

has a least upper bound and a greatest lower bound in L. Thus we call the
ordered set (B(K),≤) the concept lattice of K = (O, A, E), and we usually omit
the ordering ≤ and denote the lattice simply by B(K).

Given a formal context K = (O, A, E), if P ⊆ O and B ⊆ A, then the formal
context KP,B = (P, B, E∩(P ×B)) is called a subcontext of K. Each restriction of
either the domain or codomain to a proper subset induces maps between concept
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lattices. In particular, Propositions 31 and 32 of [Ganter and Wille (99)] state
that subsets P ⊆ O and B ⊆ A induce order embeddings

B(KP,A) → B(K), B(KO,B) → B(K) and B(KP,B) → B(K)

such that the first map is
∨

-preserving, the second is
∧

-preserving, and the third
could be given by either mapping,

(X, Y ) 
→ (X ′′, X ′) or (X, Y ) 
→ (Y ′, Y ′′)

but these need be neither
∨

- nor
∧

-preserving. Since our key purpose is to
decompose lattices in practice, a technical goal of this paper is to provide condi-
tions on concepts of subcontexts (determined by the Level-Aware Breadth First
Search) which imply that these operators are simply the identity map on such
concepts. Stated in more intuitive terms, we seek conditions that are sufficient
to ensure that concepts of the subcontext are “real”, i.e. that they are concepts
of the full context K.

2.3 The Undirected Bigraph of a Formal Context

Definition: A formal context K = (O, A, E) is graph-connected provided it is
bigraph inducing and the binary relation E ∪E−1 on O ∪A is connected in the
usual sense, i.e. for all x, y ∈ O∪A, there exists a path from x to y using ordered
pairs from E ∪ E−1.

We observe that if a bigraph inducing formal context K = (O, A, E) is graph-
connected, then the induced bipartite graph GK is connected. If a bipartite graph
is connected, then the partition of its vertex set is unique, so in the case of a
graph-connected formal context K = (O, A, E) such that |O| �= |A|, we can re-
cover K from GK. The important point is that if we induce a bigraph from a for-
mal context, then various standard graph decomposition methods immediately
come to mind and can be considered as a way to work around the complexity
problem that is inherent to the formation of concepts.

2.4 Association Rules: Confidence and Support

We conclude this section with two important functions used in data mining
activity involving association rules [Agrawal et al. 93]. As in Formal Concept
Analysis, the input data involves binary attribute values assigned to a set of
objects, i.e. a formal context. Given a set A of attributes, an association rule is
a pair (X, Y ) (often written X → Y ) with X , Y subsets of A, interpreted to
say “in (some) cases where X holds, Y also holds” (near implication), or “in the
event of X , event Y also occurs” (conditional event).
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Two functions used to formulate evaluation criteria for association rules, and
to control the size of sets of association rules that are created during data mining
activity based on a formal context K = (O, A, E), are confK(−) (confidence) and
suppK(−) (support), given by

confK( (X, Y ) ) =
|X ′ ∩ Y ′|

|X ′| and suppK( (X, Y ) ) =
|X ′ ∩ Y ′|

|O|
Support outputs the percent of overall evidence in the formal context for

which the rule is positively witnessed, while confidence outputs the percent of
those instances in the formal context where the hypothesis holds for which the
conclusion also holds (with the appropriate qualifications, this is clearly condi-
tional probability).

Suppose we consider a grocery shopping context G, where O is the set of
shopping carts observed at checkout and A is the set of items the carts contained
(e.g., cart #141 may have contained beer, diapers, pretzels and milk). If we
consider the rule ”beer → pretzels” and find that

suppG(beer → pretzels) = 0.22 and confG(beer → pretzels) = 0.84

then of all the observed carts, 22% bought both beer and pretzels, and of those
carts that contained beer, 84% of them also contained pretzels.

We define a function CsuppK : B(K) → [0, 1], called the concept support
function, by assigning to each concept D = (P, B) of K = (O, A, E) the value
CsuppK(D) = |P |

|O| . Then the support of an association rule (X, Y ) is the concept
support of the concept generated by X ∪ Y , that is

suppK( (X, Y ) ) = CsuppK((X ′, X ′′)∧(Y ′, Y ′′)) = CsuppK( (X ′∩Y ′, (X ′∩Y ′)′) ) .

Also note that the support of a valid implication X → Y (i.e. an association rule
(X, Y ) with 100% confidence) is the concept support of the concept (X ′, X ′′)
generated by the premise X .

The connection between the computation of concepts and the derivation of
association rules has been observed by many authors, e.g. [Stumme et al. 02,
Zaki et al. 98], and we will provide some observations regarding the connection
of graph decompositions with association rules in a later section.

3 Distance Partitions and Concept Lattices

Formal Concept Analysis includes a variety of decomposition and construction
methods. Many of these constructions are lattice-theoretic or universal-algebraic
in nature and origin. In this section, we discuss a traditional graph-theoretic
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decomposition method that has been successfully applied to provide an overview
of sparse massive data sets [Abello et al. (02)]. After the Breadth First Search
decomposition method on bigraphs is presented, it is then extended to a given
formal context (O, A, E) by applying it to the symmetrization of the binary
relation E. Finally, we present theorems regarding the relationship between the
decomposition of the formal context and the decomposition of the concept lattice.

3.1 Level-Aware Breadth First Search, for a Bigraph

The rooted level-aware breadth first search (abbreviation: LABFS) decomposition
of a connected bigraph fixes a vertex as a root and partitions the vertex set by
graph-theoretic distance from the root. Given a connected bigraph G = (V, F ),
we fix some r ∈ V and consider the function

dr : V → N ∪ {0},

where dr(v) is the graph-theoretic distance from v to r (the minimum path length
from v to r). Now we partition V by setting Li(r) = d−1

r ({i}), for each i ∈ N∪{0}.
Clearly V =

⊔
i∈N∪{0} Li(r), where � denotes disjoint union. The element r is

called the root of the LABFS decomposition, and in general the induced partition
of V will depend on r. While it is always true that L0(r) = {r}, beyond that we
cannot say much more about the partition. There are bigraphs with choices of r

such that V = L0(r) � L1(r) and there are bigraphs with choices of r such that

V =
⊔

i=0,1,2,...,|V |−1

Li(r) ,

where each Li(r) is nonempty. Note that all the partition blocks (and later,
subrelations) that we consider in the sequel are dependent on the choice of r, so
we will write expressions such as L1(r) as L1.

The following statement is easy to prove:

Lemma1. Let G = (V, F ) be a connected bigraph, and let a root r ∈ V be given.
For i ∈ N∪{0}, let Li = d−1

r ({i}) and let Fi = {{u, v} : u ∈ Li, v ∈ Li+1} ∩ F .
Then

1.
V =

⊔

i∈N∪{0}
Li and F =

⊔

i∈N∪{0}
Fi,

2. If G = (V, F ) is a connected bigraph, say, with root r in the right vertex set
VR, then {L2j}j∈N∪{0} is a partition of VR and {L2j+1}j∈N∪{0} is a partition
of VL.
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3.2 LABFS for a Formal Context

From the LABFS partition of the induced connected bigraph GK of a graph-
connected formal context K = (O, A, E), we construct partitions of O and A

and a covering of the binary relation E which will be used to understand large
lattices by suitable smaller lattices.

For the rest of this section, we define r-rooted formal context K to mean that
K = (O, A, E) is a bigraph inducing, graph-connected formal context with dis-
tinguished element r ∈ A, and we let GK be the induced (connected) bipartite
graph, specifically with left vertex set VL = O and right vertex set VR = A, and
with the ordered pairs in E converted to unordered pairs in F = { {o, a} : oEa }.
Given an r-rooted formal context K, the partitions in Lemma 1 induce corre-
sponding partitions of O and A, (via intersection with O and A respectively),
all depending on the fixed choice of root r in A,

O = L1 � L3 � L5 � ... and A = L0 � L2 � L4 � ... ,

and Lemma 1 also implies that the relation E can be expressed via subrelations
of E that are between blocks of the partitions of O and A.

Now, in place of the disjoint edge sets Fi in Lemma 1, we clearly have disjoint
sets Ei of ordered pairs, where

Ei = { (o, a) : o ∈ O, a ∈ A, {o, a} ∈ Fi }

but because of our interest in the concept lattice, we want to further define
subrelations Si of E, for i ∈ N ∪ {0}, by setting

Si = (Li+1 × (Li ∪ Li+2)) ∩ E and Si = ((Li ∪ Li+2) × Li+1) ∩ E

for i even and i odd, respectively. Note that these subrelations will not be disjoint.
We call Si the ith LABFS subrelation of K = (O, A, E).

Consider the following graph-connected formal context C with 30 objects and
10 attributes, presented in tabular form at left in Figure 1. The object names
have the form “o-i”, for object i, and the attribute names have the form “a-j”,
for attribute j. If we choose root “a-1”, and determine the sets corresponding
to the various levels, and also shuffle the objects and attributes in the tabular
presentation to reflect the levels, then the resulting tabular representation of C
is shown at right in Figure 1.

941Abello J., Pogel A.J., Miller L.: Breadth First Search Graph Partitions ...



Figure 1. The formal context C, in LABFS-specific tabular form at right.

At right, in the tabular representation corresponding to the LABFS decom-
position we can read that there are levels L0, L2 and L4 consisting of attributes
and seen grouped in order at the column headings, and levels L1, L3 and L5 con-
sisting of objects, identified by the groupings at the row headings. For example,
L1 is the attribute set {a-7,a-4,a-10,a-8}. Further, the subrelations Ei and Si

are easy to read off from the diagram: the subrelations Si appear as consecutive
rectangles, placed successively from the top left of the diagram down toward
the bottom right, each with a line splitting its interior, indicating that the local
object set (alternatively, local attribute set, depending on parity) is a union of
two levels, namely Li and Li+2 for the appropriate value of i.

In the following Lemma, we summarize the partitions we have established
for a given graph-connected formal context.
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Lemma2. Let K = (O, A, E) be an r-rooted formal context. If, for i ∈ N∪ {0},
we define Li and Si as above, then

A =
⊔

i∈N∪{0}
L2i, O =

⊔

i∈N∪{0}
L2i+1, E =

⊔

i∈N∪{0}
Ei, and E =

⋃

i∈N∪{0}
Si.

3.3 Induced Decomposition of the Concept Lattice

Figure 1 indicates (by example) that we can find concepts of the full context
by looking within three consecutive levels. This section makes this observation
rigorous and provides conditions that are sufficient to compute locally by iden-
tifying concepts of the full context from the list of concepts of a subrelation.
In summary, we establish a connection between the concept lattices of subrela-
tions determined by the LABFS decomposition and the full concept lattice of
the original relation.

Definition: Let K = (O, A, E) be an r-rooted formal context. We say
concept (P, B) ∈ B(K) is in r-concept level i provided

∀j < i, (P ∪ B) ∩ Lj = ∅ and (P ∪ B) ∩ Li �= ∅ .

Thus (P, B) is in concept level i provided that Li is the first partition block,
from the r-rooted LABFS decomposition of K = (O, A, E), that P ∪ B meets.
To match traditional FCA notation, we let Bi(K) denote the set of all concepts
in concept level i.

The next sequence of statements establishes that the entire extent and intent
of every concept of K = (O, A, E) must be included in three consecutive levels
of the partition {L0, L1, ..., Ln} of O ∪ A.

Lemma3. Let K = (O, A, E) be an r-rooted formal context and let X be a
nonempty subset of O ∪ A. For X ⊆ Li and i ≥ 0, it follows X ′ ⊆ Li−1 ∪ Li+1.

Proof: Let o ∈ X ′. First we suppose o ∈ O. Since X is nonempty, there exists
some x ∈ X , and so o ∈ X ′ implies (o, x) ∈ E. By Lemma 2, E =

⋃
i∈N∪{0} Si,

so x ∈ X ⊆ Li implies that (o, x) ∈ Si−1∪Si∪Si+1. In any case, o ∈ Li−1∪Li+1.
The same argument applies for o ∈ A.

Proposition4. Given an r-rooted formal context K = (O, A, E),

B(K) =
⊔

i∈N∪{0}
Bi(K).

Also, if (P, B) ∈ Bi(K), then
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P ⊆ Li+1, B ⊆ Li ∪ Li+2 if i is even,

B ⊆ Li+1, P ⊆ Li ∪ Li+2 if i is odd.

Proof: First note that every concept of a graph-connected formal context must
have a nonempty extent or a nonempty intent, since we assume that every formal
context has nonempty object and attribute sets. Thus every concept (P, B) must
satisfy (P ∪ B) ∩ Li �= ∅ for some i, and there must be a least such value i for
which this is true, by the well-ordering of N ∪ {0}. This value i determines the
r-concept level that (P, B) lies in.

For the second statement we argue the even case, leaving the similar argument
in the odd case to the reader. Suppose (P, B) ∈ B2s. Then B ∩ L2s �= ∅, while
P ∩ Lj = B ∩ Lj = ∅ for all j < 2s. We claim that B′ ⊆ L2s+1. By Lemma 3,
B′ ⊆ L2s−1 ∪ L2s+1. But B′ = P , and if P ∩ L2s−1 �= ∅, then this contradicts
(P, B) ∈ B2s(K), so we conclude that B′ ⊆ L2s+1. Again, by Lemma 3 B = B′′

must be a subset of L2s ∪ L2s+1.

The following statement is an immediate consequence of the definitions, and is
recorded for later reference:

Lemma5. Let K = (O, A, E) be a formal context and suppose H ⊆ E. If B ⊆
A, then BH ⊆ BE. If P ⊆ O, then PH ⊆ PE.

Proposition6. Let K = (O, A, E) be a graph-connected formal context, and let
a root r ∈ A be given. Then Bi(K) ⊆ B(Si) .

Proof: Suppose (P, B) ∈ Bi. We consider the case where i is even, and leave the
similar odd case to the reader. By Proposition 4, P ⊆ Li+1 and B ⊆ Li ∪ Li+2.
Since (P, B) ∈ Bi ⊆ B(K), it follows that PE = B and BE = P . Thus, by
Lemma 5,

PSi ⊆ PE = B and BSi ⊆ BE = P.

To show the inclusion B ⊆ PSi , we suppose b ∈ B = PE . Then for every
p ∈ P, pEb. Since P ⊆ Li+1 and B ⊆ Li ∪ Li+2, we conclude that for every
p ∈ P ,

pEb and (p, b) ∈ Li+1 × (Li ∪ Li+2),

so for every p ∈ P, pSib, that is, b ∈ PSi . Thus B ⊆ PSi .
Similarly, BE ⊆ BSi , and since B = PSi and P = BSi , we conclude that

(P, B) ∈ B(Si).

Thus, the ith r-concept level of an r-rooted formal context is included in
the set of formal concepts of Si, its ith LABFS subrelation. Unfortunately, the
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reverse inclusion does not hold, but the following theorem shows that the set
of non-trivial concepts in B(Si) that intersect Li consists of formal concepts of
K that are in the r-concept level i along with those ordered pairs (P, B) that
generate (in K) formal concepts in the r-concept level i − 1.

Theorem 7. Let K = (O, A, E) be an r-rooted formal context. If (P, B) ∈
B(Si), with P �= ∅, B �= ∅ and Li ∩ (P ∪ B) �= ∅ , then

1. If (P ∪ B) ∩ Li+2 �= ∅, then (P, B) ∈ Bi(K).

2. If (P ∪ B) ∩ Li+2 = ∅, then

There exists (Q, C) ∈ Bi−1(K) such that P ⊆ Q and B ⊆ C, or

(P, B) ∈ Bi(K).

Proof: Suppose (P, B) ∈ B(Si), so that PSi = B and BSi = P .

For 1., suppose (P ∪ B) ∩ Li+2 �= ∅. We will assume that i is even, that is,
that B ∩ Li+2 �= ∅, and leave the odd i case to the reader. By Lemma 5,

B = PSi ⊆ PE and P = BSi ⊆ BE

so we need only examine the reverse inclusions.
Let b ∈ PE . Since P �= ∅, there exists some q ∈ P such that qEb. Also,

P ⊆ Li+1 (by construction of Si and the assumption that i is even), so it follows
from Lemma 2 that b ∈ Li ∪ Li+2. Now we have that for all p ∈ P , pEb and
p ∈ Li+1 and b ∈ Li ∪ Li+2. This is equivalent to saying that for all p ∈ P , pEb

and (p, b) ∈ Li+1 × (Li ∪ Li+2), that is, for all p ∈ P, pSib. Thus b ∈ PSi = B,
so we conclude that PE ⊆ B, and we have shown that B = PE .

Let p ∈ BE . Since B ∩Li �= ∅, it follows that there is some b1 ∈ B ∩Li such
that pEb1, and since B ∩ Li+2 �= ∅, it follows that there is some b2 ∈ B ∩ Li+2

such that pEb2. Now pEb1 implies that p ∈ Li−1 ∪ Li+1 and pEb2 implies that
p ∈ Li+1 ∪ Li+3, so p is trapped:

p ∈ (Li−1 � Li+1) ∩ (Li+1 � Li+3) = Li+1.

Thus BE ⊆ Li+1. Now p ∈ BE and p ∈ Li+1 imply that, for all b ∈ B, pEb and
p ∈ Li+1, which is equivalent to saying that, for all b ∈ B, pEb and b ∈ Li∪Li+2

and p ∈ Li+1. The latter expression is equivalent to (p, b) ∈ Li+1 × (Li ∪ Li+2),
so, for all b ∈ B, pSib. Thus p ∈ BSi = P , and we conclude that P = BE . This
completes the proof of the first case.

To prove the second case, suppose (P ∪ B) ∩ Li+2 = ∅. We assume i is even
and argue this case; thus we assume that B ∩ Li+2 = ∅. The proof for odd i is
similar, and is omitted.
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First we show B = PE . Since (P, B) ∈ B(Si), it follows that PSi = B and
BSi = P , so B = PSi ⊆ PE .

We now prove PE ⊆ B. Let x ∈ PE . As P ⊆ Li+1 and P �= ∅, there exists
some k ∈ P such that kEx, and thus x ∈ Li ∪ Li+2. But if x ∈ Li+2, then
P ⊆ Li+1 implies x ∈ PSi ∩ Li+2, that is, x ∈ B ∩ Li+2, which contradicts the
assumption that B ∩ Li+2 = ∅. Thus x ∈ Li, so x ∈ PSi = B. This shows that
B = PE .

Either BE = PEE = P or BE = PEE � P . In the former case, (P, B) ∈ Bi.
In the latter case, we will prove (PEE , PE) ∈ Bi−1.

Suppose P � PEE . We claim BE = PEE ⊆ Li−1∪Li+1 and PEE∩Li−1 �= ∅.
Since B ⊆ Li, Lemma 3 implies that BE ⊆ Li−1 ∪ Li+1. If BE ⊆ Li+1, then
B ⊆ Li implies BSi = BE , that is, P = BSi = BE = PEE , a contradiction.
Thus BE ∩ Li−1 �= ∅.

We conclude that (PEE , PE) ∈ Bi−1, so we set Q = PEE and C = PE to
complete the proof.

Recall the standard attribute set embedding µ : A → B(K) given by

µ(a) = ({a}′, {a}′′) ,

and the corresponding object embedding γ. To ease the description of the concept
lattice of the subrelation generated from the root r and the elements in all the
levels up to some level Li, we extend the usual notation, by defining µ[B] =
(B′, B′′), for B ⊆ A, and similarly, γ[P ] = (P ′′, P ′), for P ⊆ O.

Definition: Fix K = (O, A, E). For any subset B ⊆ A, define

↓B(K) µ[B] =
⋃

b∈B

{C ∈ B(K) | b ∈ intent(C)}

and for P ⊆ O

↑B(K) γ[P ] =
⋃

p∈P

{C ∈ B(K) | p ∈ extent(C)}.

In plain language, these subsets of B(K) are the order ideal of B(K) determined
by µ[B] and the order filter of B(K) determined by γ[P ], where γ and µ are the
object- and attribute-embedding maps of [Ganter and Wille (99)]. Our purpose
in introducing these subsets of B(K) is to describe the connection between the
unions ⋃

j=0,1,...,i

Bj(K) ,

which are clearly nested as i ranges from 0 to its maximum value, and the
concepts of unions of the subrelations Sj . Note that if L0, L1, ..., Lk−1, Lk is
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the full list of levels of an r-rooted formal context K, then

B(K) =
⋃

j=1,...,k−1

Bj(K) .

Corollary 8. Let K = (O, A, E) be an r-rooted formal context, such that the
intent of 1B(K) is empty and the extent of 0B(K) is empty. Let i ∈ Z satisfy
i ≥ 2. Define the formal context Ki = (Oi, Ai, Ui) by setting

Ui =
⋃

j=0,1,...,i−2

Sj ,

and letting Oi and Ai be the domain and codomain of Ui, respectively. Let Ci be
the set of concepts (P, B) of Ki such that P �= ∅ and B �= ∅ and P∪B � Li−1∪Li.
Then Ci is equal to

[(
⋃

j<i−2, j odd

↑B(K) γ[Lj]) \ 1B(K)] ∪ [
⋃

j≤i−2, j even

↓B(K) µ[Lj]) \ 0B(K)] .

The proof of the Corollary is left to the reader. The most important note is
that the concepts in Ci are all in B(K) by Theorem 7, because of the condition
P ∪ B � Li−1 ∪ Li and the definition of Ui.

Of course, a corresponding statement can be made for odd values of i. The
key point to take from Corollary 8 is that for increasing values of i, the unions
that express the concepts in Ci are nested, so that, as i grows – that is, as the
LABFS decomposition of K unfolds the full relation – the union expresses which
are the corresponding concepts in the full concept lattice. The appearance of
the levels Lj in the unions expressing Ci indicates the tight connection between
LABFS levels and the concepts they generate.

4 Unfolding a Concept Lattice Using LABFS

In practice, the effect of Corollary 8 is that we can choose a root, say, some
attribute r ∈ A, and unfold the lattice diagram from the corresponding attribute
concept µ(r). Suppose the rooted LABFS decomposition has been determined,
and we have limited our attention to the subcontext generated by the union of
the subrelations Sj , as appears in Corollary 8. The concepts of B(K) that can
be computed from this subrelation are, first, those non-trivial concepts below
µ(r), the concept determined by the root r. Next we compute those concepts
which include objects in L1 in their extent but exclude r in their intent; this
includes the attribute concepts ({α}′, {α}′′) with α ∈ L2, except for those such
that α → r. Next come the concepts which include attributes in L2 (except for
the attribute concepts which have already appeared), and so on, up to Li, save
for those two-part concepts (described in Theorem 7) including only elements
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from Li−1 and Li which must be verified in the full context K = (O, A, E). In
this section, we first present an example illustrating the unfolding of the concept
lattice from a root concept, and follow that with a discussion of the utility of
unfolding in the context of viewing association rules via a concept lattice.

4.1 An Example of Unfolding

Now consider the formal context F in Figure 2 below, with 14 objects and 13
attributes, already arranged to display the attr-1−rooted LABFS decomposition.
This synthetic data is both sparse and connected. The context is followed by the
lattice B(F), with 34 concepts and 69 edges.

Figure 2. A graph-connected formal context F, in LABFS-specific tabular form.

Figure 3. The lattice B(F), drawn by Concept Explorer.
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The concept lattice in Figure 3 is drawn using Concept Explorer [ConExp].
After minimal manipulation of the diagram, we see that its structure is that of
a 4-fence lattice, glued at a coatom to a Boolean algebra with 3 atoms, glued
at a coatom to a 3-fence lattice with one additional leg, glued at a coatom to
a Boolean algebra with 4 atoms (a j-fence lattice is a j-fence with a top and
bottom added).

We have implemented a program, Decompose, which converts an input of
a formal context and a root to an output of the LABFS decomposition of the
relation, also allowing the user to output the subcontext generated by levels Li

through Lj , for i < j. The concept lattice of the output subcontext can then
be viewed in Concept Explorer [ConExp]. The next figure shows the output of
Decompose on the input of the context in Figure 2, along with its determination
of the context generated by subrelation S0 ∪ S1 ∪ . . . ∪ S9, and finally the
conversion of that subcontext to the input format of Concept Explorer.

Figure 4. The LABFS overview of F, from Decompose.

Decompose displays the statistics associated with each new level, and between
new levels and the previous level. The display shows the number of new vertices
in level Li, the number of edges from level Li to level Li+1, and the density
of edges relative to the maximum possible |Li × Li+1|. This feature provides
an overview of the LABFS results, relative to root r (in the example shown,
r =attr-1), so that sparser sections of the data can be distinguished from less
sparse sections. In Figure 4, Decompose indicates the portions of the binary
relation that form a fence: the consecutive levels reading “Li 1 1 1.0 (j, j)”
indicate levels of the LABFS that have one new vertex, one edge to level Li+1,
density 1.0, and where the new vertices range from j to j in the index list.

After the LABFS overview, Decompose allows the user to output the sub-
context generated by levels Li to Lj . For example below, by requesting levels L0

through L11, the subrelation S0 ∪ S1 ∪ . . . ∪ S9 is saved to a file, and similarly
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by requesting levels L11 through L19, the subrelation S11 ∪ S12 ∪ . . . ∪ S19

is saved to a file. If requested, Decompose also converts a given context to the
input format of Concept Explorer (ConExp), so its lattice can be viewed.

Figure 5a. The subcontext F0−11 of F, viewed in ConExp.

Figure 5b. The subcontext F11−19 of F, viewed in ConExp.

Figure 6a. The lattice of the subcontext F0−11 in Figure 4a, viewed in ConExp.
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Figure 6b. The lattice of the subcontext F11−19 in Figure 4b, viewed in ConExp.

In Figure 6a, note that the concept generated by obj-8 in the subcontext is
not the same concept generated in the full context of Figure 2 (it does not include
attr-8 as it should), but all other concepts are concepts of the full context. As
stated above, only concepts determined exclusively from elements of the last two
levels need to be checked for their standing in the full context – all others are
“real”. A similar comment applies to Figure 6b, so that the only concept from
the full concept lattice B(F) that does not appear the lattice B(F0−11), nor in
B(F11−19), is the object concept ({obj − 8}′′, {obj − 8}′).

We have not yet implemented a lattice viewer that visually contrasts actual
concepts (of the full context) with those that may only be two-part concepts
(again, as in Theorem 7). Thus in viewing the lattices of subcontexts we are
left to determine which concepts are concepts of the full subrelation. However,
flagging the actual concepts should not pose any great challenge, since the results
we have presented provide sufficient information to compute only those concepts
of induced subcontexts that are in the full concept lattice.

4.2 Rooted LABFS and Association Rules

From the artificial example just considered and Theorem 7, it is apparent that
these results regarding the LABFS decomposition may allow (depending on the
depth of the relation) an efficient localized computation of the concept lattice.
A judicious choice of a root will impact the level of lattice unfolding, and since
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the complexity of LABFS is linear on the number of edges of the correspond-
ing graph, we foresee that inexpensive searches will help make this choice. The
sparser the data, the more useful we expect the LABFS decomposition to be in
providing such localization. If in addition the diameter of the associated graph
is large then by choosing antipodal roots one expects more lattice unfolding.

On the other hand, the worst-case context ({1, 2, 3, ..., n}, {1, 2, 3, ..., n}, �=)
is not decomposed at all by LABFS, as any element chosen as root will yield
only levels L0, L1 and L2, so the only subrelation is S0, and it is not a proper
subrelation.

The translation of LABFS into the concept lattice allows the lattice to be
unfolded from a root attribute. If we determine a subrelation from levels L0,
L1, L2, and L3, then all concepts with the root in their intent will be present,
and all these concepts are concepts of the full lattice. Further, any concepts with
attributes from L2 in their intent will have their full extents represented, since we
extended as far as L3, though they may be missing attributes in their intent. It is
well-known that any association rule, say {α, β, δ} → ρ, has its confidence value
confK( {α, β, δ} → ρ ) determined by dividing the cardinality of the concept
extent {α, β, δ}′ by the cardinality of the concept extent {α, β, δ, ρ}′. Suppose
we compute K3(ρ) from a given context K. If we are focused on what (nearly)
implies ρ, there are two advantages offered by working in K3(ρ) instead of K:
first, only attributes related to ρ through some objects will appear in B(K3(ρ)),
e.g. α, β, δ ∈ A with {α, β, δ, ρ}′ �= ∅; second, the presence of the full (K-)extents
for the related concepts µ[{α, β, δ, ρ}] and µ[{α, β, δ}] in K3(ρ) ensures that

confK( {α, β, δ} → ρ ) = confK3(ρ)( {α, β, δ} → ρ ) .

A similar observation regarding support can be made as long as we divide by
the cardinality |O| of the full object set instead of the cardinality of Oj(ρ), the
object set of Kj(ρ).

Thus, limiting our attention to only levels L0, L1, L2 and L3 corresponds
to a query mode for considering association rules that have the root in their
conclusion (note that this is a related, but more theoretically grounded, version
of the query process discussed in [Brooke]). Beyond these first three levels, De-
compose can indicate how many objects and attributes will be picked up, and
the user can decide how deeply to go before truncating to a subcontext. If this
is not possible, another root can be chosen for separate examination.

We make one final note regarding the dependence of the depth of the LABFS
output on the nature of the input. Even in the presence of very sparse connected
data, a complementary attribute will disallow a LABFS decomposition from
having any significant depth. Specifically, if a formal context includes comple-
mentary attributes α and ζ, and a root β ∈ A is chosen which does not imply α
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and does not imply ζ (this will be the case for most epidemiological data, since,
e.g., it is often recorded whether a member of a population is Male or Female),
then the LABFS decomposition will present at most levels L0, L1, ..., L4. This
is because L1 = {β}′ will include at least one object that satisfies α and at least
one object that satisfies ζ, so L2 must include the attributes α and ζ, which in
turn forces L3 to include all the remaining objects, and then L4 must include
any remaining attributes that did not appear in L0 or L2.

5 Conclusion

The determination of the LABFS decomposition(s) associated with a formal
context provides an overview of the data – crucial when the data is large, since
the lattice will be too large to view (or even possibly to store) – and the results
we have presented provide sufficient information to compute only those concepts
of LABFS-induced subcontexts that are in the full concept lattice.

Generalizing our comments about the effect of a complementary pair of at-
tributes on the maximum depth of a LABFS decomposition, note that if there
are k attributes such that their neighborhoods correspond to a partition of the
set of objects this means that they are mutually independent in the sense that
there are no implications among them, and we could present a similar character-
ization of the depth of LABFS under assumptions that mirror those mentioned
for a complementary pair. This suggests their identification and removal, as a
preprocessing step before applying LABFS. In any event, LABFS decomposition
will be more effective if the root is chosen to maximize the number of levels of
decomposition. In graph theoretical terms this corresponds to choosing the root
so that the number of levels as close as possible to the diameter of the data bi-
graph. Related methods that exploit other graph parameters use the notions of
cores and cuts and we are currently investigating these approaches. The overall
objective is to decompose the data bigraph in an efficient manner that translates
into decompositions of the corresponding concept lattice, and the understanding
established in this paper is a small step in this larger program. These techniques
become imperative when the concept lattice becomes so large that it does not
fit in random access memory, so that external memory algorithms are required
[Abello and Vitter eds (99)]. Moreover, even if it fits in random access memory
a fine graded decomposition allows its visual exploration on a monitor screen,
the screen certainly being smaller than memory by several orders of magnitude
[Abello and Korn 02].
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