
Type-safe Versioned Object Query Language

Rodrigo Machado, Álvaro Freitas Moreira, Renata de Matos Galante

Instituto de Informática

Universidade Federal do Rio Grande do Sul (UFRGS)

Cx. P. 15.064 – CEP 91.501-970 – Porto Alegre – RS – Brasil

{rma, afmoreira, galante}@inf.ufrgs.br

Mirella Moura Moro

Department of Computer Science & Engineering

University of California Riverside (UCR)

900 University Ave, Riverside, CA 92521 – USA

mirella@cs.ucr.edu

Abstract: The concept of versioning was initially proposed for controlling design evo-
lution on computer aided design and software engineering. On the context of database
systems, versioning is applied for managing the evolution of different elements of the
data. Modern database systems provide not only powerful data models but also complex
query languages that have evolved to include several features from complex program-
ming languages. While most related work focuses on different aspects of the concepts,
designing models, and processing of versions efficiently, there is yet to be a formal
definition of a query language for database systems with versions control. In this work
we propose a query language, named Versioned Object Query Language (VOQL), that
extends ODMG Object Query Language (OQL) with new features to recover object
versions. We provide a precise definition of VOQL through a type system and we
prove it safe in relation to a small-step operational semantics. Finally, we validate the
proposed definition by implementing an interpreter for VOQL.
Key Words: Operational Semantics, Object-oriented Database Management Sys-
tems, Type Systems, Query Languages.
Category: H.2.3, F.3.2

1 Introduction

The concept of versions was initially proposed for controlling design evolution

and co-authoring on computer aided design [Katz 1990] and software engineering

[Conradi and Westfechtel 1998, Westfechtel et al. 2001]. In those environments,

versioning is applied to files, such that different alternatives or revisions of a

document (e.g. source code, electronic models, product descriptions) are stored

on different files. Hence, the versions are mostly handled by the operating system

(we refer to [Robbes and Lanza 2005] for a more recent survey). Probably, the

most common tools for handling this type of versions are CVS (Concurrent

Version System1) and RCS (Revision Control System2).

1 http://ximbiot.com/cvs
2 http://www.gnu.org/software/rcs/rcs.html

Journal of Universal Computer Science, vol. 12, no. 7 (2006), 938-957
submitted: 28/1/06, accepted: 6/4/06, appeared: 28/7/06  J.UCS

Nevertheless, a distinguished functionality of the version concept appears

when applied to structured data and managed by database systems. In this

context, it is possible to control the evolution of different elements of the

data depending on the respective data model (e.g. relations, tuples, columns

for relational model and classes, attributes, relationships, methods for ob-

ject oriented model). Similarly, versioning techniques have also appeared in a

large range of topics. Some recent examples are XML document management

[Vagena et al. 2004], semantic web [Noy and Musen 2004], and data warehous-

ing [Wrembel and Morzy 2005].

Modern database systems provide not only powerful data models but also

complex query languages for distinguished features such as the ability to handle

object versions. In this sense query languages have evolved to include several

features from complex programming languages. This situation has lead to incre-

menting their definition with techniques and methodologies largely used by the

programming language community, such as formal semantics and type systems.

ODMG has striven to integrate object oriented databases capabilities with

object oriented programming languages [Cattell et al. 2000]. A type system for

an OQL-like query language is formally specified in [Bierman and Trigoni 2000,

Bierman 2003], and a formal semantics for OQL is defined in terms of an

object algebra in [Zamulin 2003]. Two complementary concerns are to pro-

vide a formal semantics for XML related query languages such as XPath,

XQuery [Draper et al. 2005, Colazzo et al. 2002, Siméon and Wadler 2003]

and XDuce [Hosoya and Pierce 2000], and to integrate XML and SQL

by using domain specific embedded languages [Christensen et al. 2002,

Graunke et al. 2001, Kiselyov and Krishnamurthi 2003, Thiemann 2002,

Welsh et al. 2002, Bierman et al. 2005].

In this work we formally define a query language for a non-conventional

database that supports the concept of object versions. Information stored in a

database evolves with time and, very often, it is necessary to maintain and to

retrieve versions that keep track of such evolution. This new language, named

Versioned Object Query Language (VOQL), extends ODMG [Cattell et al. 2000]

with distinguished features for recovering object versions. We present VOQL’s

main versioning features through a series of examples and we discuss the main

aspects of an interpreter available for VOQL.

Similarly to the core aspects of its counterpart OQL (formally defined in

[Bierman and Trigoni 2000, Bierman 2003]), we also provide a precise definition

of VOQL in the form of a type system and we prove it safe in relation to a

small-step operational semantics. This formal definition serves two purposes: it

is essential for proving that the language is safe (in the sense that evaluation of

well-typed queries do not lead to execution errors) and it also works as a precise

language reference for guiding an implementation process.

939Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

The rest of this paper is structured as follows. Section 2 presents the Ver-

sioned Obect Data Model (VODM) on which VOQL is based. Section 3 presents

the VOQL query language through a series of examples and illustrates how it

can be used to recovery versioned objects and their versions. Section 4 intro-

duces an operational semantics for VOQL and Section 5 defines a type system

for the language. Section 6 proves that the type system is safe with respect to

the operational semantics. Section 7 presents an interpreter for VOQL. Section

8 goes over related work and section 9 concludes this paper.

2 Versioned Data Model

In this section we define the Versioned Object Data Model (VODM), a class-

based object model based on ODMG [Cattell et al. 2000] and extended with

new features for specifying object versions.

A VODM database schema is a collection of class definitions similar to classes

defined in Java. A class defines a set of attributes, relationships, and method

signatures. A relationship is defined explicitly. Transversal paths are declared in

pairs, one for each direction of the relationship. Relationships are accessed by the

query language as attributes (i.e. from the semantics point of view, attributes

and relationships receive the same treatment). The database management system

is responsible for maintaining the referential integrity of relationships. So, if

an object that participates in a relationship is deleted, any transversal path

to that object must also be deleted. Maintaining referential integrity ensures

that applications cannot dereference transversal paths that lead to nonexistent

objects. Finally, the class behavior is specified as a set of method signatures. In

ODMG, methods are defined in a host programming languages such as Java and

C]. Hence, we do not consider methods in our formal treatment.

Once the database is active, the objects are instantiated and versions can be

created implicitly (any update defines a new version) or explicitly (by a user).

For each set of versions, there is a versioned object in charge of grouping all

versions of the same object. Each versioned object has also a current version

which, by default, is the most recently created. Again, it is not the focus of this

paper to discuss how exactly this whole process works. What matters is that the

database is capable of managing different versions for the same object following

the basic features aforementioned.

For instance, consider an example taken from an academic system. The cur-

ricula usually undergoes successive revisions, such as an update on the set of

courses to be taken in order to obtain a degree. Students must follow the cur-

rent curriculum, but it might be necessary to query past curriculum versions in

order to grant course equivalences for instance. Figure 1 illustrates the graphical

representation of the extension of the class Curriculum. This extension has one

940 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

Figure 1: Graphical representation of a versioned object of the class Curriculum

with three versions (CS 2004, CS 2005 and CS 2006).

versioned object with three versions of a Computer Science curriculum: the first

one - CS2004, and two derived alternatives - CS 2005 and CS 2006.

Figure 2 shows a fragment of a VODM schema for an academic system struc-

ture. There are three classes named Person, Faculty, and Course. In this frag-

ment, class Person has attributes for last name and social security number;

Faculty extends Person with office number and title; Course has number, de-

scription, and units. There is a relationship (with transversals called teaches

and is taught by) between classes Faculty and Course. As illustrated, the

main clauses on a VODM specification are as follows:

– extends: defines a single inheritance relationship between two classes. For

simplicity, we assume that all class definitions explicitly state a superclass

and the class Object is the superclass of all classes.

– extent: names the set of all instances of a class within a particular database

state. In the example, the extent FacultyM is a subset of the extent Persons,

as Faculty is a subclass of Person.

– hasVersions: allows storing different versions of objects, the main feature

of VODM. This clause (in a class definition) indicates that modifications in

the state of an object of the class leads to the creation of a version of that

object. Instances of a versioned class are called versioned objects.

Observe that the versioned object’s versions are organized in a version deriva-

tion tree. A language for querying a database, where instances are organized in

such a way, should provide support for collecting all versions of a versioned ob-

ject, and for navigating among the nodes of the derivation tree (e.g. selecting

the original and the last versions, and selecting the antecessors/successors of a

941Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

class hasVersion Course extends Object

extent Courses

{ attr courseNum : String,

attr courseDesc : String,

rel is_taught_by : Professor (inverse Professor teaches)

}

class hasVersion Person extends Object

extent Persons

{ attr lastName :String,

attr SSN : Integer,

}

class hasVersion Faculty extends Person

extent FacultyM

{ attr officeN : String,

attr title : String,

rel teaches : Set(Courses)(inverse Course is_taught_by)

}

Figure 2: VODM schema for a fragment of an academic system.

specific version). In the next section we present the VOQL language informally

through a series of examples.

3 VOQL Query Language

Here, we propose the Versioned Object Query Language (VOQL) as a query lan-

guage for this database with versioning support. This language is a fragment of

ODMG OQL [Cattell et al. 2000], extended with features for maintaining object

versions. We consider only functional aspects of the query language, i.e, queries

that do not create and/or delete objects.

VOQL queries belong to the language defined by the grammar of Figure 3.

Next, we focus on the new features presented by VOQL.

3.1 Extended features

VOQL has variables of types boolean, integer, strings, and sets. When a query q

denotes a versioned object, q.a accesses the attribute a of the versioned object’s

942 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

q ∈ Query
q ::= b booleans

| i integers
| s strings
| {q1, . . . , qn} sets, n ≥ 0
| vo id versioned object ids
| v id version ids
| x variables
| q1 bop q2 binary operations
| uop q1 unary operations
| q.a attribute access
| q->a attribute access in a colection
| q->versions acess to all versions
| if q1 then q2 else q3 conditional
| select qa

from q1 x1, . . . , qn xn selection, n ≥ 0
where qb

Figure 3: VOQL syntax.

current version. Additionally, in the notation q->a, q is a set of versioned objects

or versions. The result of q->a is a collection of all a-attributes of elements of q.

Besides the regular arithmetic, logical and relational operators, VOQL has

unary operators that test the absolute position of a version (is leaf, is root)

and binary operators that compare the relative position of two versions in the

version derivation tree of a versioned object (is succ, is pred). VOQL has the

usual conditional and select-from-where constructs as well.

3.2 Basic and versioned queries

In this subsection we informally describe the principles of VOQL with emphasis

on its versioning capabilities. We consider again an academic system (as speci-

fied in Figure 2) with a fragment of its instances illustrated on the top half of

Figure 4. Class Person has only one instance. Class Faculty has one versioned

object with two versions. Finally, class Course has three different instances:

Networks and Compilers with one instance each, and Introduction to Computer

Science with three versions. The bottom half of Figure 4 has a series of examples

of VOQL queries. In the figure, each query has a proper identifier that will be

used in the text.

Query 1 is a plain (with no versions) query that retrieves the set of titles

of all faculty members named “John”. The variable FacultyM represents the

extension of the class Faculty. The names of extents (previously declared within

the database schema) are treated as global variables within queries. On the other

hand, the variable f is local to the query. Since no specific version is required

943Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

Figure 4: Graphical representation of some versions from the academic system

plus queries and their results.

in this query, f ranges over the current version in the extent FacultyM. Adding

the word versions to the extent name changes the query range to consider all

its versions. Therefore, query 2 retrieves the collection of titles of all versions of

faculty members named “John”.

Suppose now that one wants to retrieve the original course numbers of all

course instances. In VOQL this is achieved by query 3 that uses the operator

is root for testing the position of versions within the version derivation tree.

This query returns a collection of course numbers only from those courses’s

versions that are root on the derivation tree of the versioned object. Note that

courses CS114 and CS121 do not have any version. They belong to the results

of this query because the first instance of an object is regarded as its first version

and root of the derivation tree, by default.

944 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

3.3 The ‘.’ operator

In OQL, the ‘.’ operator has a position-dependent semantics. When used in

the statements select and where of a query, it implies conventional member

access. For example, in query 4, the operator is applied directly to the variable

c, which ranges over object identifiers. This query returns the set of courseNum

of courses with more than 4 units. On the other hand, when used in the statement

from, it expresses the creation of a collection of attributes from a collection of

object identifiers. For example, in query 5, the ‘.’ operator is used in conjunction

with the extent FacultyM. It generates a collection by reaching the teaches

relationship of all elements within the extent and grouping them all. The result

is different from query 4 because 5 only considers courses being taught (i.e.

course CS121 is not returned since it has no faculty assigned to).

In order to have a simpler context-independent, non-positional semantics, we

distinguish these two different meanings with two operators: ‘.’ for member access

and → for iteration over collections. For example, query 5 is then formulated as

query 6 in VOQL. The ambiguity in the interpretation of the ‘.’ operation (not

mentioned in ODMG OQL) has been firstly pointed out in [Galante et al. 2003a].

This distinction became clear while we were working on the formal semantics

and the type system for VOQL.

4 Operational Semantics for VOQL

The result of query evaluation depends on the extent, versioned object and ver-

sion environments. We first explain in detail each one of these environments,

then we discuss the semantic rules.

4.1 Environments

From now on, we assume the existence of sets of class, extent and attribute

identifiers (ClassId, ExtId, and AttrId respectively).

Extent environment. An extent is a collection of versioned object identifiers

(vo id) that correspond to all persistent versioned objects of a given class. An

extent environment is a mapping from extent identifiers (defined in the schema

with the extents clause) to extents. We use vee as a metavariable for extent

environments:

vee ∈ V EE = ExtId
fin
⇀ P(V o id)

Versioned object environment. The state of a versioned object (vobjstate)

is given by a tuple (c, versions, current, deriv) where c is the versioned object’s

945Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

class name, versions is a set with the identifiers of all the versions of this ver-

sioned object, current is the identifier of the current version of the versioned

object, and deriv is a versioning relation on elements of versions.

vobjstate ∈ V objstate = ClassId ×P(V id) × V id ×P(V id × V id)

For instance, The versioning relation for the versioned object of figure 1 is

given by the set { (CS 2004, CS 2005), (CS 2004, CS 2006)}.

A versioned object environment maps each versioned object identifier vo id

to a pair (c, vobjstate) where c and vobjstate are the versioned object’s class

name and state respectively. We use voe as a metavariable for versioned object

environments.

voe ∈ V OE = V o id
fin
⇀ ClassId × V objstate

Version environment. In semantics for object oriented languages the state of

an object maps object’s attributes to their values. Here the attribute of a version

can hold not only values but also versioned object identifiers. Versioned object

identifiers are not considered as values because, depending on the context, they

can still be evaluated to the versioned object’s current version. The content of

an attribute (ranged over by the metavariable k) is then an element of the set

Stored defined as:

k ∈ Stored

k ::= b booleans

| i integers

| s strings

| vo id versioned object ids

| v id versions ids

| {k1, . . . , kn} sets n ≥ 0

The state of a version is then given by a function that maps the names of

the version’s attributes to their stored contents :

vstate ∈ V ersionState = AttrId → Stored

A version environment maps version identifiers to pairs (c, vstate) where c

and vstate are the version’s class name and state respectively. We use ve as a

metavariable for version environments.

ve ∈ V E = V id
fin
⇀ ClassId × V ersionState

Moreover, a database state is represented by a triple (vee, voe, ve) of extent,

versioned object and version environments respectively:

946 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

(vee, voe, ve) ∈ V DBState = V EE × V OE × V E

We write vee; voe; ve ` q → q′ to represent that the VOQL query q is

reduced, in one step, to the VOQL query q′ in database state (vee; voe; ve).

Finally, the following subset of queries cannot be further reduced:

v ∈ V alues

v ::= b booleans

| i integers

| s strings

| v id version ids

| {v1, . . . , vn} set of values n ≥ 0

In order to reduce the number of rules we use evaluation contexts. An eval-

uation context E is a query with a single hole in it (written •) that marks the

position of the next subexpression to be reduced. The following grammar defines

evaluation contexts for VOQL:

E ::= •

| {v, E ,q}

| E bop q

| v bop E

| uop E

| E .a

| E->a

| if E then q1 else q2

| select qa from E x1, . . . , qn xn where qb

| select q from where E

| E->versions

According to this grammar, sets of queries are evaluated left-to-right. Also,

in a select-from-where, the from part is evaluated first followed by the evaluation

of the where part. A key property is that a query is either a value or uniquely

decomposed as an evaluation context with a hole filled with a non-value subex-

pression that matches the query in the left side of a reduction rule. The rule

Ctx connects the evaluation of a non-value subexpression with its evaluation

context:

vee; voe; ve ` q → q′

vee; voe; ve ` E [q] → E [q′]
(Ctx)

947Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

4.2 Evaluation Rules

We know proceed by showing the evaluation rules of queries filling the holes in

evaluation contexts.

Basic Queries. The select-from-where construct is evaluated by first building

the cartesian product of all extents mentioned in the from statement. From this

product, only those objects that satisfy the condition specified within where are

collected. The result of the query is given by the select statement that projects

components of these objects.

If the first query in the from part is the empty set, the whole query reduces

to the empty set by the rule Select1.

vee; voe; ve ` select qa from {} x1, . . . , qm xn where qb → {} (Select1)

The cartesian product is given by Select2 that uses the substitution opera-

tion 3 to produce all possible combinations of values for all variables within the

from statement. Note that the query in the right side of Select2 forms another

query using the union set operator.

vee; voe; ve ` select qa from {v1, . . . , vm} x1, . . . , qn xn where qb →

(select qa from q2 x2, . . . , qn xn where qb)[x1 ::= v1]

union

. . .

union

(select qa from q2 x2, . . . , qn xn where qb)[x1 ::= vm]

(Select2)

When the where part is false, the result of the select is the empty set.

Otherwise, the whole select proceeds with a set with qa.

vee; voe; ve ` select qa from where false → {} (Select3)

vee; voe; ve ` select qa from where true → {qa} (Select4)

Versioned Objects. Rule Var reduces an extent identifier to its associated

collection of versioned object identifiers.

vee(x) = {vo id 1, . . . vo id 2}

vee; voe; ve ` x → {vo id 1, . . . vo id 2}
(Var)

The rule Vo id evaluates a reference to a versioned object to its current

version according to the versioned object environment.

3 The notation q[x := v] denotes the query that results from the substitution of v for
all free occurrences of x in q

948 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

voe(vo id) = (c, versions, current, tree)

vee; voe; ve ` vo id → current
(Vo id)

Operators. A version derivation tree of a versioned object is a set of pairs of

version identifiers. If a pair (v id 1, v id 2) belongs to this set, it means that the

version v id1 is an immediate predecessor of version v id 2. Next, the premises

of rules Pred1 and Pred2 check whether v id 1 is predecessor of v id 2 in the

version derivation tree.

voe(vo id) = (c, versions, current, tree) (v id 1, v id2) ∈ tree

vee; voe; ve ` v id1 is pred v id2 → true
(Pred1)

voe(vo id) = (c, versions, current, tree) (v id 1, v id2) 6∈ tree

vee; voe; ve ` v id 1 is pred v id 2 → false
(Pred2)

The rules for the other positional operators follow this same pattern and,

hence, are omitted (rules for arithmetic, logical and relational operators are also

omitted).

The ‘.’ operator. As previously discussed, the ambiguity of the ‘.’ operator is

solved by presenting two operators with distinguished meanings. The rule Dot1

accesses the content of an object attribute.

ve(v id) = (c, vstate) vstate(a) = k

vee; voe; ve ` v id .a → k
(Dot1)

Rules Arrow1 and Arrow2 evaluate queries of the form

{v id1, . . . v idn}->a (n ≥ 0).

vee; voe; ve ` {v id ,v}->a → {v id .a} union {v}->a (Arrow1)

vee; voe; ve ` {}->a → {} (Arrow2)

Finally, rule Versions collects all versions of a versioned object by accessing

the versioned object state.

(ci, versionsi, currenti, treei) ∈ Image(voe) v id i ∈ versionsi

vee; voe; ve ` {v id i}->versions →
⋃n

i=1
versionsi

(Versions)

949Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

5 Type System

Types in VOQL are given by the following grammar:

σ ∈ Type

σ ::= int | bool | string | c | set(σ)

A type judgement for a VOQL query q has the form

vsch; vee; voe; ve; Γ ` q : σ

where vee, voe and ve are extent, versioned object and version environments

respectively, vsch is a representation of a database schema, and Γ is an environ-

ment mapping query variables to their types.

A schema is represented by a mapping from class identifiers to class defini-

tions. A class definition in its turn, is given by a triple (s, e, ty) where the first

component s is the name of the superclass, the second component e is the name

of the class extent and the final component ty is a map from the class attributes

to their types. For clarity, a typing context vsch;vee;voe;ve;Γ is sometimes rep-

resented by K.

Basic queries. Rule Var is for typing both local and global query variables

(extent identifiers as defined in the schema):

Γ (x) = σ

vsch; vee; voe; ve; Γ ` x : σ
(Var)

Rule T-Select types the queries q1 . . . qn in the from part from left to

right adding to the type context Γ the associated type assignments to variables

x1 . . . xn.

vsch; vee; voe; ve; Γ ` q1 : set(σ1)

vsch; vee; voe; ve; Γ, x1 : σ1 ` q2 : set(σ2)
...

vsch; vee; voe; ve; Γ, x1 : σ1, . . . , xn−1 : σn−1 ` qn : set(σn)

vsch; vee; voe; ve; Γ, x1 : σ1, . . . , xn : σn ` qa : σa

vsch; vee; voe; ve; Γ, x1 : σ1, . . . , xn : σn ` qb : bool

x1 to xn different x1, . . . , xn 6∈ Dom(Γ) n ≥ 0

vsch; vee; voe; ve; Γ ` select qa from q1 x1 , . . . , qn xn where qb : set(σa)

(T-Select)

Versioned objects. Rules T-Void and T-Vid access the versioned object en-

vironment and the version environment to obtain the class name.

950 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

voe(void) = (c, vobjstate)

K ` void : c
(T-Void)

ve(vid) = (c, vstate)

K ` vid : c
(T-Vid)

Operators. Rule T-Pred simply requires that both operands of is pred be of

the same class type c. The rules for other positional operators are similar:

K ` q1 : c K ` q2 : c

K ` q1 is pred q2 : bool
(T-Pred)

The ‘.’ operator. Rule T-Dot states that if q is of type c, and if the type of

attribute a is σ based on the schema environment for c, then q.a is of type σ.

K ` q : c vsch(c) = (s, e, ty) ty(a) = σ

K ` q.a : σ
(T-Dot)

Observe that the type of a query q->a, given by rule T-Arrow, is set(σ),

where a is of type σ according to the schema.

K ` q : set(c) vsch(c) = (s, e, ty) ty(a) = σ

K ` q->a : set(σ)
(T-Arrow)

The rule T-Versions ensures that the construction versions will be applied

only to collections of versioned objects.

K ` q : set(c)

K ` q->versions : set(c)
(T-Versions)

Subtyping. The subtyping relation for VOQL types, written σ ≤ σ′, is the re-

flexive and transitive closure of the relation defined by the next rules. We assume

that the subclass hierarchy specified in the schema definition is represented by

a relation written extends:

c extends c′

c <: c′
(Extends)

σ1 <: σ2

set(σ1) <: set(σ2)
(<:Set)

Rule T-Sub connects the subsumption relation ≤ with the type system.

K ` q : σ1 σ1 <: σ2

K ` q : σ2

(T-Sub)

951Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

6 Safety of VOQL type system

In order to prove type safety the three environments that form the database state

must be valid and must also be well-formed according to the database schema.

For instance, a versioned identifier cannot belong to more than one versioned

object, and the type specified for an attribute in the schema must match the type

of the stored content of this attribute. The relation which states that database

environments are valid and are well-formed according to the database schema is

written

vsch ` vee, voe, ve

The definition of this relation is straightforward but too lengthy, so it is not

presented in this paper.

In VOQL, extent identifiers are lexically indistinguishable from variables in-

troduced in the from part of a select-from-where. This generates a problem

to the type system, which needs to know when certain identifiers refer to an

extent. A solution is to start with an initial type environment Γ containing type

associations for the extent identifiers extracted from the schema.

The following two theorems state that, when the database state is well formed

according to the database schema, the reduction of well typed VOQL queries do

not get stuck, and that the types of well-typed VOQL queries are preserved by

the reduction rules as well.

Theorem 1 (Progress) If

– vsch; vee; voe; ve; Γ ` q : σ, and

– vsch ` vee, voe, ve,

then either

– q ∈ V alues, or

– there is q′ such that vee; voe; ve ` q → q′.

Theorem 2 (Type Preservation) If

– vsch; vee; voe; ve; Γ ` q : σ,

– vee; voe; ve ` q → q′, and

– vsch ` vee, voe, ve,

then vsch; vee; voe; ve; Γ ` q′ : σ.

The proofs of the two theorems above are straightforward inductions on

the structure of queries and for this reason are omitted from the paper.

They follow the classical syntactical soundness approach for type soundness

of [Wright and Felleisen 1994].

952 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

7 VOQL Interpreter

This section describes the VOQL interpreter developed for experimenting with

the language. The VOQL Interpreter consists of three main modules, as depicted

in Figure 5: the query evaluator, the type checker, and the integrity checker. The

query evaluator and the type checker were implemented following strictly the

operational and typing rules for the language. Although the DBMS is responsible

for the database integrity, we decided to provide a verifier of valid database states

(the integrity checker module) in relation to the schema since it is required for

query evaluation safety.

Figure 5: Architecture of VOQL implementation.

Figure 6 illustrates a screenshot of the VOQL Interpreter. Queries can be

specified through a graphical interface that displays query types and results.

The interface also allows users to define database schema and extents. The input

data for the VOQL Interpreter are:

1. query to be evaluated;

2. database state describing extents and their objects; and

3. database schema, defining the classes of objects.

All these elements are described textually, and parsers construct their internal

representation.

The interpreter was implemented in OCaml [OCaml 2006], using the

ocamllex and ocamlyacc tools for building the needed parsers. The graphical

user interface was built using the labltk library. The VOQL interpreter runs

on all platforms supported by the OCaml interpreter, including MS-Windows

and GNU/Linux. Source code, binaries and documentation can be found in

http://www.inf.ufrgs.br/~rma/ctvql.

953Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

Figure 6: Screenshot of VOQL implementation.

8 Related Work

The concept of versioning has been used in many different applications over

the years. A distinguished functionality of the concept appears when data ver-

sioning is managed by database systems. In such scenario, the Temporal Ver-

sions Model (TVM) [Moro et al. 2001b, Moro et al. 2001a], was proposed as a

join solution for managing both temporal and versioned data. The query lan-

guage for this model, named Temporal Versioned Query Language (TVQL), was

proposed in [Moro et al. 2002]. Likewise, there was also a preliminary work on

extending ODMG and OQL with both temporal and versioning features, named

TV ODMG [Gelatti et al. 2002].

In order to propose VOQL, we assumed the existence of a database with

versioning support. The base model has some common characteristics to both

TVM and TV ODMG. Specifically, the features for handling versions, i.e. the

semantics of versioned object and versions, are mostly the same. Nevertheless, we

opted for not including the temporal aspects in our work because the versioning

management provided by a database system is orthogonal to the temporal one (as

the concepts are managed independently from each other). Also, our proposal is

more comprehensive since it covers some important features overseen by previous

work, for example the distinction between . and → operators. More importantly,

954 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

there is no formal specification, operational semantics or type system specified

for the TVM query language or its TV ODMG counterpart. The idea of covering

the temporal aspects with versioning is left as future work.

When databases have complex structures that require constant changes, the

schema may also need to be versioned. In this scenario, models and techniques for

schema versioning are proposed for managing the undergoing new specifications

and user requirements [Galante et al. 2005]. Moreover, [Galante et al. 2003a]

proposes a language for controlling the schema evolution process, named Tem-

poral and Versioning Language for Schema Evolution (TVL/SE). This language

is able to derive and modify schema versions, and also to update data asso-

ciated with them, creating either new object versions or just keeping the his-

tory of these data modifications. A formal semantics for TVL/SE is given in

[Galante et al. 2005, Galante et al. 2003b]. Our work is complementary to those

since VOQL is specific for the data level, as opposed to the schema level.

Also related to our work is the type system formally specified for a complex-

value OQL-like query language in [Bierman and Trigoni 2000, Bierman 2003].

An operational semantics for query evaluation is also given and this semantics

is used to prove the soundness of the proposed type system. In [Zamulin 2003]

a formal semantic for OQL is defined in terms of an object algebra and OQL

queries are translated into corresponding object algebra expression. None of

these works, though, has a formal definition for a query language with versioning

support.

Our work follows the same lines of a series of recent research devel-

opments unifying the areas of database and the formal definition of pro-

gramming languages. Besides the related work on object oriented database

languages already mentioned, there is also an intense activity with semi-

structured databases, specially with XML related languages such as XPath

and XQuery [Draper et al. 2005]. A type system for a XML query language is

given in [Colazzo et al. 2002] and is used to verify whether the query language

operations respect the XML schema restrictions. [Siméon and Wadler 2003]

specifies a formal semantic for XML Schema while W3C Consortium

[W3C XML Work Group 2006] has an effort to specify an operational seman-

tics and a type system for both XPath and XQuery [Draper et al. 2005].

9 Summary and Future Work

In this work, we formally proposed a query language – the Versioned Ob-

ject Query Language (VOQL) – for extending ODMG Object Query Language

(OQL) with new features to recover object versions. VOQL has a set of operators

and constructs that make it suitable for querying a database where versions are

organized in a derivation tree. We also defined a type system for VOQL and we

955Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

proved it safe in relation to a small-step operational semantics. Furthermore, we

solved the ambiguity of the ‘.’ operator first identified in [Galante et al. 2003a].

We also described a VOQL interpreter developed for validating the proposed

formal definitions.

Finally, we acknowledged the importance of a database model that is capable

of managing time aspects besides the versioning support. An initial extension to

ODMG for such a model is presented in [Gelatti et al. 2002]. Since there is no

formal specification of the language for that model, we plan to extend VOQL

for time support as well.

References

[Bierman 2003] Bierman, G. M. (2003). Formal semantics and analysis of object
queries. In ACM SIGMOD International Conference on Management of Data, pages
407–418, San Diego, California, USA. New York: ACM Press.

[Bierman et al. 2005] Bierman, G. M., Meijer, E., and Schulte, W. (2005). The essence
of data access in Cω. In Proceedings of ECOOP, volume 2736 of LNCS, pages 287–
311. Springer-Verlag.

[Bierman and Trigoni 2000] Bierman, G. M. and Trigoni, A. (2000). Towards a formal
type system for ODMG OQL. Technical report, University of Cambridge.

[Cattell et al. 2000] Cattell, R., Barry, D., Bartels, D., Berler, M., Eastman, J., Gamer-
man, S., Jordan, D., Springer, A., Strickland, H., and Wade, D. (2000). The Object
Data Standard: ODMG 3.0. Morgan Kaufmann, San Francisco. 280p.

[Christensen et al. 2002] Christensen, A. S., Muller, A., and Schwartzbach, M. I.
(2002). Static analysis for dynamic XML. In Proceedings of PlanX.

[Colazzo et al. 2002] Colazzo, D., Ghelli, G., Manghi, P., and Sartiani, C. (2002).
Types for correctness of queries over semistructured data. In WebDB, pages 19–
24.

[Conradi and Westfechtel 1998] Conradi, R. and Westfechtel, B. (1998). Version mod-
els for software configuration management. ACM Comput. Surv., 30(2):232–282.

[Draper et al. 2005] Draper, D., Fankhauser, P., FERNNDEZ, M., Malhota, A., Rose,
K., Rys, M., SIMON, J., and Wadler, P. (2005). XQuery 1.0 and XPath 2.0 for-
mal semantics. In W3C Working Draft. ¡http://www.w3.org/TR/2003/WD-xquery-
semantics-20030502/¿.

[Galante et al. 2005] Galante, R. M., dos Santos, C. S., Edelweiss, N., and Álvaro Fre-
itas Moreira (2005). Temporal and versioning approach to schema evolution in
object-oriented databases. Data & Knowledge Engineering, 53(2):99–128.

[Galante et al. 2003a] Galante, R. M., Edelweiss, N., and dos Santos, C. S. (2003a).
TVL SE: Temporal and Versioning Language for Schema Evolution in Object-
Oriented Databases. In Intl. Conf. on Database and Expert Systems Applications,
volume 2736 of LNCS, pages 683–692. Berlin: Springer-Verlag.

[Galante et al. 2003b] Galante, R. M., Edelweiss, N., dos Santos, C. S., and Álvaro
Freitas Moreira (2003b). Data modification language for full support of temporal
schema versioning. In Brazilian Symposium on Databases, pages 114–128. UFAM.

[Gelatti et al. 2002] Gelatti, P. C., dos Santos, C. S., and Edelweiss, N. (2002).
TV ODMG: Uma Extensão do Padrão ODMG com Suporte para Tempo e Versões
(in Portuguese). In SBBD, pages 42–56.

[Graunke et al. 2001] Graunke, P., Krishnamurthi, S., Hoeven, S. V. D., and Felleisen,
M. (2001). Programming the web with high-level programming languages. In Pro-
ceedings of ASE.

956 Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

[Hosoya and Pierce 2000] Hosoya, H. and Pierce, B. C. (2000). Xduce: A typed xml
processing language (preliminary report). In WebDB (Selected Papers), pages 226–
244.

[Katz 1990] Katz, R. H. (1990). Towards a unified framework for version modeling in
engineering databases. ACM Computing Surveys, 22(4):375–408.

[Kiselyov and Krishnamurthi 2003] Kiselyov, O. and Krishnamurthi, S. (2003).
SXSLT: A manipulation language for XML. In Proceedings of PADL.

[Moro et al. 2002] Moro, M. M., Edelweiss, N., Zaupa, A. P., and dos Santos, C. S.
(2002). TVQL - Temporal Versioned Query Language. In International Confer-
ence on Database and Expert Systems Applications, DEXA, 13., volume 2453 of
Lecture Notes in Computer Science, pages 618–627, Aix-en-Provence, France. Berlin:
Springer-Verlag.

[Moro et al. 2001a] Moro, M. M., Saggiorato, S. M., Edelweiss, N., and dos Santos,
C. S. (2001a). Adding time to an object-oriented versions model. In International
Conference on Database and Expert Systems Applications, DEXA, 12., volume 2113
of Lecture Notes in Computer Science, pages 805–814, Munich, Germany. Berlin:
Springer-Verlag.

[Moro et al. 2001b] Moro, M. M., Saggiorato, S. M., Edelweiss, N., and dos Santos,
C. S. (2001b). Dynamic systems specification using versions and time. In Inter-
national Database Engineering & Applications Symposium, IDEAS, pages 99–107,
Grenoble, France. Los Alamitos: IEEE Computer Society.

[Noy and Musen 2004] Noy, N. F. and Musen, M. A. (2004). Ontology versioning in
an ontology management framework. IEEE Intelligent Systems, 19(4):6–13.

[OCaml 2006] OCaml (2006). Objective caml. http://www.caml.org.
[Robbes and Lanza 2005] Robbes, R. and Lanza, M. (2005). Versioning systems for

evolution research. In Proceedings of IWPSE, pages 155–164.
[Siméon and Wadler 2003] Siméon, J. and Wadler, P. (2003). The essence of XML. In

POPL, pages 1–13.
[Thiemann 2002] Thiemann, P. (2002). WASH/CGI: Server side web scripting with

sessions and typed compositional forms. In Proceedings of PADL.
[Vagena et al. 2004] Vagena, Z., Moro, M. M., and Tsotras, V. J. (2004). Supporting

branched versions on xml documents. In Proceedings of RIDE, pages 137–144.
[W3C XML Work Group 2006] W3C XML Work Group (2006). XML - extensible

markup language. http://www.w3.org/XML.
[Welsh et al. 2002] Welsh, N., Solsona, F., and Glover, I. (2002). SchemeUnit and

SchemeQL: Two litle languages. In Proceedings of Workshop on Scheme and func-
tional programming.

[Westfechtel et al. 2001] Westfechtel, B., Munch, B. P., and Conradi, R. (2001). A
layered architecture for uniform version management. IEEE Trans. Software Eng.,
27(12):1111–1133.

[Wrembel and Morzy 2005] Wrembel, R. and Morzy, T. (2005). Multiversion data
warehouses: Challenges and solutions. In Proceedings of ICCC, pages 137–144.

[Wright and Felleisen 1994] Wright, A. K. and Felleisen, M. (1994). A syntactic ap-
proach to type soundness. Information and Computation, 115(1):38–94.

[Zamulin 2003] Zamulin, A. V. (2003). Formal semantics of the ODMG 3.0 object
query language. In ADBIS, pages 293–307.

957Machado R., Freitas Moreira A., de Matos Galante R., Moura Mora M. ...

