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Abstract: A genetic algorithm (GA) based recurrent fuzzy neural network modeling
method for dynamic nonlinear chemical process is presented. The dynamic recurrent
fuzzy neural network (RFNN) is constructed in terms of Takagi-Sugeno fuzzy model.
The consequent part is comprised of the dynamic neurons with output feedback. The
number and the parameters of membership functions in the premise part are optimized
by the GA considering both the approximation capability and structure complexity of
RFNN. The proposed dynamic model is applied to a PH neutralization process and
the advantages of the resulting model are demonstrated.
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1 Introduction

Process modeling is a very important step in the control, diagnosis and optimiza-
tion of the process system. The chemical process modeling is especially difficult
because of its nonlinear and dynamic characters. The field of Artificial Intelli-
gence (AI), such as Neural Network (NN), Fuzzy Theory, Expert System (ES),
Genetic Algorithms (GA), has been rapidly developed in recent years. Each al-
gorithm has their own strengths but there are still some limitations of them.
In order to reduce these limitations, the hybrid algorithms were developed by
combining two or three AI approaches and then drew on the strength of each to
offset the weakness of the others. Thereinto, fuzzy-neural network (FNN) had
emerged as one of the most active and fruitful areas of research in fuzzy logic
and neural networks with the better degree of accuracy and with the smaller
computational times [Buckley and Hayashi 1994][Rutkowski 2004]. However, in
the field of dynamic system modeling, the most commonly used models were the
recurrent neural networks (RNN), which were regarded as closed-loop systems,
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with the feedback paths introducing dynamics to the model [Qin et al. 1992].
They exhibited greater prediction capabilities compared with the static ones
[Mastorocostas and Theocharis 2002]. In [Lin et al. 2005], a dynamic RNN was
proposed for system identification and derived good result. The feedback signal
was taken from the output of the activation function, after delayed for several
times, it was fed as input to the neuron. Therefore, the dynamic chemical process
modeling in this work combines the recurrent neural network with Takagi-Sugeno
(T-S) fuzzy model, and a recurrent fuzzy neural network (RFNN) is constructed,
which is composed of the premise part and the consequent part.

Though fuzzy systems have been applied successfully in the field of industry,
the generation of the fuzzy rules and the adjustment of its membership functions
(MFs) were done by trial and error and/or operator’s experience. Subsequently,
the designers find it difficult to develop adequate fuzzy rules and membership
functions to reflect the essence of the process. Moreover, some information gets
lost or ignored on purpose when human operators articulate their experience
in the form of linguistic rules. To overcome these drawbacks, an elitism GA
for optimization of the parameters of MFs in the premise part is proposed.
Since the number of MFs determines the fuzzy rules directly, which is closely
related to the complexity of RFNN, a special fitness function considering both
the approximation capability and structure complexity is designed in this work.
Once the MFs and rules are decided, the parameters in the consequent part can
be tuned by recursive least-squares (RLS) method.

The rest of the paper is organized as follows. Section 2 describes the basic
architecture of T-S fuzzy model, and combines it with recurrent neural networks.
Section 3 gives a detailed description of the proposed GA approach to optimize
both the number and the parameters of MFs in the premise part. The simulation
tests on a pH neutralization process are made in section 4. The conclusions are
summarized at section 5.

2 T-S Recurrent Fuzzy Neural Networks (RFNN)

2.1 Basic Structure of the T-S Fuzzy Model

Considering a SISO system, we assume the process to be modeled is described
as following:

y(k + 1) = f(X(k)) (1)

where X(k) = [y(k), ..., y(k − n), u(k − d), ...u(k − d − m)], u is the input, m,n
are the orders of the process while d is the time delay, respectively. A T-S type
fuzzy model can be constructed to model process with its fuzzy IF-THEN rules
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expressed as follows:

Rule j : If x1(k) is A1j and x2(k) is A2j and ... and xN (k) is ANj

Then y(k + 1) = BT
j X(k), j = 1, 2..., M, M ≤

∏N

i=1
mi (2)

where Bj = [bj1, bj2, ..., bjN ]T are parameters in the consequent part, y(k + 1)
is the prediction output of the fuzzy model, mi is the number of MFs for xi, M

is the number of rules. The output of fuzzy model can be expressed as follows:

y(k + 1) =

∑M
j=1 aj [X(k)]BT

j X(k)∑M
j=1 aj [X(k)]

(3)

where aj [X(k)] is the Gaussion membership function of the inferred fuzzy set
Aj (Aj =

∏N
i=1Aij ), defined by

aj[X(k)] = μi1
1 μi2

2 ...μin

N (4)

μj
i = exp

(
−||xi − cij ||

σ2
ij

)
(5)

where i1 ∈ 1, 2, ..., m1; i2 ∈ 1, 2, ..., m2; ...; iN ∈ 1, 2, ..., mN ; cij is the center of
the Gaussion membership function of the fuzzy set Aij , while σij is the width.
Define fuzzy basis function (FBF) as

Φj [X(k)] =
aj [X(k)]∑T
l=1 al[X(k)]

(6)

The output y(k + 1) can then be expressed as a linear combination of FBFs in
the following form.

y(k + 1) =
M∑

j=1

Φj [X(k)]BT
j X(k) (7)

2.2 The Structure of Recurrent Fuzzy Neural Networks

Mastorocostas et al. presented a general structure of the dynamic recurrent neu-
ron [Mastorocostas and Theocharis 2002]. Hence, it is easy to construct the dy-
namic neuron according to the consequent part of the T-S fuzzy model as shown
in Figure 1. Combining with the premise part, the dynamic RFNN can be ob-
tained in Figure 2, where x = [u, y] is the input vector used to connect the net-
work to its environment. The whole RFNN consists of two parts— the premise
part and the consequent part.

In Figure 2, the premise part is made up of 4 layers. The first layer is the
input layer, the number of the nodes in this layer is N . Each node in the second
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Figure 1: A representation of the dynamic neuron
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Figure 2: Schematic scheme of RFNN

layer delegates the value of a language variable, such as NM, PS, etc, which is
used to calculate the value of membership function (μj

i ) for each input variable.
The number of nodes in layer 2 is

∑N
i=1mi. The node in the third layer is

utilized to match the premises in every fuzzy rule and compute the fitness value
of each rule (aj). The number of nodes in the last layer is the same as layer 3,
i.e., N4 = N3 = M , which is used to figure out the value of FBFs (Φj). The
consequent part is composed of 2 layers. The role of the first layer is the same
as that in the premise part, and there exist M nodes in the second layer. Each
node delegate one rule, which is used to yield yj , j = 1, 2, ..., M , and is described
in Figure 1. The output layer is used to produce the result of defuzzification as
shown in Eq. (7).
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The suggested RFNN, comprising the rules in the form of Eq. (2), is a quasi-
nonlinear fuzzy model. The rules are not linked with each other, neither through
external feedback nor through internal, they are connected merely via the de-
fuzzification part. The premise and defuzzification block are static while the
consequent block is dynamic, which are different from each other merely in the
weighting factors of feedback. The input vector of the premise part may be
different from that of consequent part.

3 Tuning the Parameter of RFNN

Suppose the input vector of RFNN is fixed in advance. The parameters need to
learn are the weights bjk(j = 1, 2, ..., M , k = 1, 2, ..., N) and the centers (cij)
and widths (σij) of MFs.

3.1 Learning Algorithm of the Weights

If the membership function is decided a priori, i.e., those FBFs Φj [X(k)] have
already been decided. The parameters in the consequent part (Bj) can then be
easily estimated using least-squares (LS) algorithm. Denote

Θ = [BT
1 BT

2 ...BT
M ]T (8)

Ψ = [Φ1[X(k)]X(k)T , Φ2[X(k)]X(k)T , ..., ΦM [X(k)]X(k)T ]T (9)

Substitute Eq.(8) and Eq.(9) into Eq.(7) yields

y(k + 1) = Ψ(k)T Θ (10)

Also denote
Φ = [Ψ(1), Ψ(2), ..., Ψ(Nn)] (11)

Y d = [yd(2), yd(3), ..., yd(Nn + 1)] (12)

Rearrange Eq.(10) for k = 1, 2, ..., Nn, yields

Y d = ΦΘ (13)

Eq.(13) is in the form of a linear regression model. If the reverse of matrix (ΦT Φ)
exist, the parameters matrix Θ can be uniquely determined by the conventional
LS method.

Θ = [ΦT Φ]−1ΦT Y d (14)

However, if Φ is poorly conditioned, the parameter obtained by Eq.(14) will
change dramatically if the elements of Y d are modified slightly and result in
poor predictions of Ŷ d when used Φ with new data [William and Ronald 2006].
This is always the case because sufficient training data are very difficult to be
obtained for most processes. To solve this problem, the recursive least-squares
(RLS) method is adopted in this work.
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3.2 Optimization of the Numbers and Parameters of MFs

For almost every process, we can get some linguistic information from domain
experts or operators. Once the fuzzy model is mapped into the networks shown
in Figure 2, and the weights are obtained as described in section 3.1, there exist
2
∑N

i=1 mi parameters to be optimized. However, optimization of those parame-
ters cannot be easily solved by the standard optimization methods. An interest-
ing alternative for solving this complicated problem can be offered by the recently
developed evolutionary computation methods-GAs, which are the most popular
and successful strategies among these evolutionary methods [Salomon 1996]. In
a GA, the population is the set of possible solutions, and each individual of
this population is characterized by chromosome-like structures. The possibilities
of survival of each individual are evaluated by the cost function. The result of
this evaluation is called fitness and plays an important role in selection and re-
production. The evolution is achieved by the application of genetic operators,
such as selection, crossover and mutation. The optimization of the numbers and
parameters of MFs in RFNN is described at following sections.

3.2.1 Coding Method

There are totally 2
∑N

i=1 mi parameters to be optimized in the RFNN, which
means one chromosome should be able to delegate 2

∑N
i=1 mi real number. Hence,

binary coding chromosome will become too complex, and decimal coding chro-
mosome is adopted. The structure of lth chromosome is shown as follows.

Cl =

⎡
⎢⎢⎣

c11 c12 ... c1m1 0 σ11 σ12 ... σ1m1 0
c21 c22 ... c2m1 0 σ21 σ22 ... σ2m1 0
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

cN1 cN2 ... cNm1 0 σN1 σN2 ... σNm1 0

⎤
⎥⎥⎦ (15)

where l = 1, 2, . . .L, L is the size of the population, mi is produced randomly
between 1 and D, D is the maximum number of MFs. Without loss of generality,
D is set as 11, and N as 2. The elements of Cl are computed by the following
equation:

cij = ximin + r(ximax − xjmin) 1≤i≤N, 1≤j≤mi (16)

σij = 0.01 + r(
ximax

2
− 0.01) 1≤i≤N, 1≤j≤mi (17)

where r is a random number between 0 and 1, xjmin and xjmax is the min-
imum and maximum values of input variables given in the problem. When L

premise parts are generated, the corresponding weights of Lconsequent parts
can be obtained using RLS method described in section 3.1. Thus, the for-
mulation of L RFNNs is completed, which can be represented by the pairs
(C1, Θ1), (C2, Θ2), ..., (CL, ΘL).
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3.2.2 Fitness Function

Once L RFNNs are constructed, the predictions Ŷd1, Ŷd2, ..., ŶdL can be obtained
and the corresponding errors El, are computed as follows:

El = ||Yd − Ŷdl||22 (18)

In terms of section 2, the complexity of RFNNs mainly lies in the number of
input (N)) and its number of MFs (

∑N
i=1 mi). Since the number of input is

decided a priori, the number of MFs is included in the fitness function to simplify
the structure of RFNN. Hence, fitness function considering both approximation
capability and structure complexity is shown as follows.

Jl(Ci, Θi) = El + λ

N∑
i=1

mi (19)

This criterion expresses a compromise between the cost of modeling errors and
the cost of the complexity of network structure, where λ is the weighting factor.

3.2.3 Population Evolution

Once the codification and fitness function have finished, the next step will be the
application of the evolutionary algorithm. The GA used in this work is a standard
genetic algorithm (SGA) with elitism, and its flowchart is shown in Figure 3. The
first step of the GA is the generation of an initial random population. And after
the initialization, the fitness of every individual in the population is obtained
through the cost function evaluation. If the ending condition is not satisfied, the
next step will be population evolution (applying genetic operators). The ending
condition can be the maximum evolution generation, the degree of convergence,
or any other. Moreover, Elitism, the inclusion of the best current set in the next
population, is used throughout.
Selection. A set of individuals from the previous population must be selected
for reproduction. This selection depends on their fitness values. Individuals with
better fitness values will more probably survive. There exist different types of
selection operators, and in this work Roulette wheel method is applied. The
probability of an individual being selected, P (Cl), is given by:

P (Cl) =
f(Cl)∑L
l=1 f(Cl)

(20)

where f(Cl) is the fitness value of the individual Cl, which is obtained by
1

J(Cl, Θl)
. The roulette wheel is placed with L equally spaced pointers. A single

spin of the roulette wheel will simultaneously pick all the members of the next

1338 Tao J., Wang N., Wang X.: Genetic Algorithm Based Recurrent Fuzzy ...



⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

00
00

22

11

2222122221

1121111211
l
m

lll
m

ll

l
m

lll
m

ll

ccc
ccc

σσσ
σσσ

LL

LL

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
++++++

++++++

00
00

1
2

1
22

1
21

1
2

1
22

1
21

1
1

1
12

1
11

1
1

1
12

1
11

22

11
l
m

lll
m

ll

l
m

lll
m

ll

ccc
ccc

σσσ
σσσ

LL

LL

'22

11

00
00

2
1

22
1

21
1

22221

1
1

12
1

11
1

11211

l
l
m

lll
m

ll

l
m

lll
m

ll

ccc
ccc

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
+++

+++

σσσ
σσσ

LL

LL

122

11

)1(
1

222212
1

22
1

21

1
112111

1
12

1
11

00
00

+
+++

+++

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡

l
l
m

lll
m

ll

l
m

lll
m

ll

ccc
ccc

σσσ
σσσ

LL

LL

Figure 3: Schematic scheme of the crossover operation

population.
Crossover. The crossover operator is applied after selection, and this produces
new individuals. Not all the selected individuals are crossed over, this depends on
the crossover probability, pc. Crossover operation is executed between the current
chosen individual Cl and the next individual Cl+1, and yields the offspring
chromosomes C′

l,C′
l+1. Since the chromosome is composed of the centers and

widths, two points are chosen among the centers and widths, respectively. The
procedure is demonstrated with Figure 3, which contains a scheme of two-point
crossover.
Mutation. To have a better exploration of the search space, mutation operator is
carried out. And when the element of an individual is mutated with a probability
pm, it is replaced by a new generated element in terms of Eq. (16) and (17).

4 Simulation Results

The proposed GA based RFNN modeling approach will now be applied to a sim-
ulated PH neutralization process [Nahas et al. 1992]. The process model consists
of three nonlinear ordinary differential equations and a nonlinear output equa-
tion:

ḣ = q1 + q2 + q3 + Cvh0.5Wa4 (21)

Ẇa4 =
1

Ah
[(Wa1 − Wa4)q1 + (Wa2 − Wa4) + (Wa3 − Wa4)] (22)

Ẇb4 =
1

Ah
[(Wb1 − Wb4)q1 + (Wb2 − Wb4) + (Wb3 − Wb4)] (23)

Wa4 + 10pH4−14 + Wb4
1 + 2 × 10pH4−pK2

1 + 10pK1−pH4 + 10pH4−pK2
− 10−pH4 = 0 (24)

where h is the liquid level, Wa4 and Wb4 are the invariants of the effluent stream,
q1, q2 and q3 are the acid, buffer and base flow rate, respectively. The sampling
period is chosen as 0.25 min. It is desired to control pH4 by the base flow rate q3.
The interesting operation range is defined by 0≤pH≤14 and 0≤q3≤40 ml\s The
objective is to build discrete dynamical models for predicting the value of pH4
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using as input variables base flow rate q3 and previous values of pH4 According
to the export knowledge of the pH process, the input of consequent part is chosen
as:

X(t) = [u(k), u(k − 1, u(k − 2), yFNN(k), yFNN (k − 1), yFNN (k − 2)]T (25)

The input of premise part is selected as the current output (pH4). For training
and testing the GA based RFNN model, we created a set of 500 input-output
data by selecting randomly the values of the base flow rate q3 within the space
[0,40].The first 300 data points is used for training RFNN, while the left is used
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Figure 4: MFs optimized by GA
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Figure 5: MFs obtained by k-means

to test the performance of the proposed RFNN. The operational parameters
used in the proposed GA are listed as follows: number of chromosomes L =
30, maximum number of MFs D = 11, weighting factor λ = 0.5, number of
generations G = 150, probability of crossover pc = 0.8, probability of mutation
pm = 0.01. After the optimization of RFNN, 5 MFs of the premise part are
shown in Figure 4, and the trained T-S type RFNN model is shown as following:
If pH4(k) is A1 then

yFNN = 5.1878− 0.0229u(k) + 0.0137u(k − 1) + 0.0097u(k − 2)

−0.0592yFNN(k) − 0.0446yFNN(k − 1) − 0.0150yFNN(k − 2)

If pH4(k) is A2 then

yFNN = 21.2761− 0.0716u(k)− 0.0022u(k − 1) − 0.0024u(k − 2)

+0.0109yFNN(k) + 0.0100yFNN(k − 1) + 0.0034yFNN(k − 2)

If pH4(k) is A3 then

yFNN = −1.3595− 0.0685u(k) + 0.0930u(k − 1) + 0.061u(k − 2)

−0.0394yFNN(k) − 0.0287yFNN(k − 1) − 0.0095yFNN(k − 2)
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IfpH4(k) is A4 then

yFNN = 5.7630− 0.0933u(k) + 0.0096u(k − 1) + 0.0061u(k − 2)

−0.0403yFNN(k) − 0.0284yFNN(k − 1) − 0.0094yFNN(k − 2)

IfpH4(k) is A5 then

yFNN = 4.5970 + 0.1954u(k)− 0.0207u(k − 1) − 0.0133u(k − 2)

+0.0873yFNN(k) + 0.0627yFNN(k − 1) + 0.0210yFNN(k − 2)

Thus, the RFNN model is employed to give predictions on testing data set.
The prediction result on the testing data sequence is compared with the result
obtained by a general RFNN. In this method, the number of membership func-
tions is the same as GA-RFNN, the centers are obtained by k-means method
[Darken and Moody 1990], and the width is set as 2, as shown in Figure 5. And
the parameters of the sequent part are obtained by RLS. From the modeling
errors shown in Figure 6 and Figure 7, we can see that the proposed GA-RFNN
model is superior to general RFNN model.

For the dynamic process modeling, if the input keeps unchanged, the output
of dynamic process model will arrive at certain point if it is stable. This means
that there exists a static relation between the input and the steady-state value
of the output. This relation is well known as steady-state response in process
industry. Here we examine the steady-state response of the two methods and
the real process. The simulation results are shown in Figure 8 and Figure 9.
From the above comparison, we can see that after the optimization of MFs in
the premise part by GA, the structure of RFNN can be simplified while the
approximation capability is improved greatly. Since the training data include
the whole operating condition, the GA-RFNN fit the real process quite well.
Without optimization, the RFNN using the same training data is inferior to
GA-RFNN.

5 Conclusions

The issue of the dynamic modeling approach is investigated by GA based RFNN.
The consequent part of RFNN is a linear combination of dynamic recurrent neu-
rons, whose parameters are derived by RLS. The GA is designed which performs
both structure and parameter optimization for the number and parameters of
MFs in the premise part of RFNN. Based on the GA optimization method,
the suggested RFNN modeling approach does not require accurate knowledge of
the process. Performance comparisons on a nonlinear pH neutralization process
are made with regard to general RFNN modeling method and demonstrate the
efficiency of the proposed method.
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Figure 7: Modeling errors of RFNN
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