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1 Introduction

For any computer system, data security is essential, in terms of integrity and confiden-
tiality. Data enables many different services to be offered to users, whether it is a simple
consultation service, such as a website, or a vital service, such as life monitors in hospitals.
The data used in these types of services are critical to their proper functioning. In the first
case the risk may be, for example, an economic loss, in the second case a loss of human
life. This criticality makes data interesting as an interface to execute cyber attacks. Many
types of attacks specifically seek to target data to compromise systems. However, in this
work we focus on a particular type of attack, called False Data Injection Attack (FDIA).

This work is carried out within the Flowbird company (http://www.flowbird.group).
Flowbird is the world leader in on-street parking solutions. The parking meters man-
ufactured by the company can be found in thousands of cities around the world and
process thousands of data. These data are used to provide a variety of services such as
parking solutions, notably offered through physical touch devices, or the monitoring of
environmental conditions through the presence of numerous sensors in parking meters,
such as noise or pollution sensors. An attack specifically targeting the data of the services
provided by the company would then be critical, both in economic and reputational terms.
Indeed, the services could then be unavailable or provide erroneous information.

The company’s devices are connected to the internet via mobile networks and are
linked to a data centre that sends and receives data from parking meters. The multiple
services on the devices or in the data centre then use these data to provide the various
services to the end users. The general architecture of the systems is shown in [Fig.1].
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Figure 1: Simplified architecture of the parking management system

The system we study in this paper, the parking meters and their multiple services, share
common characteristics with Internet of Things (IoT) devices, such as their architecture,
physical vulnerability or services provided. Our systems are therefore susceptible to being
attacked with the same attack as any IoT devices. In the following, we therefore consider
the devices we are working on as part of the IoT, particularly in the state-of-the-art
context. Nevertheless, the work is focused on the devices present within the company.

In this work, we focus on developing an approach and tools to protect our systems
against FDIA. There are several levels to consider for the security aspect: data and their
characteristics, data manipulation, and attack simulations to create credible scenarios.
We identify the following research questions:

— RQ1: What are the data gathered by our systems?

To answer this question, we are exploring our systems and looking for the types
of sensors that exist, in order to deduce the nature of the data they measure and to
characterise the information they carry. For example, formats, types or uses made of
them.

— RQ2: How to effectively address the FDIA challenge on our systems?

To answer this question, we present a typical architecture of our systems in order to
understand their vulnerabilities to FDIA. We also present our approach through a
multi-step workflow to address this challenge in our systems.

— RQ3: How to effectively describe FDIA scenarios with a Domain-Specific Language
(DSL)?

To answer this, we briefly present the DSL grammar used to model FDIA scenarios.
Next, we explore the DSL through sample scenarios to demonstrate the modelling
capabilities offered by the DSL, as well as its scalability.

This work is composed of 6 sections. In section 2, we present our context and the
related works. In section 3, we explore the different data managed by our systems
and characterise them. Section 4 introduces our approach and briefly outlines the DSL
grammar used to model and produce FDIA. Section 5 explores the expressiveness of our
approach through the presentation of multiple scenarios. Section 6 concludes the paper
with a discussion and possible future work.
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2 Context and Related Works

In this section, we present the devices we use and the link we establish with the IoT. This
link allows us to explore existing work on data security issues and to justify why we are
addressing the FDIA one. We then explore the FDIA in the literature and related works
addressing them.

2.1 Security Aspects of Devices

Our Flowbird devices can be described as a five-layer architecture as [oT devices [Aazam
et al., 2014]. Firstly, the perception layer collects data from the sensors, these data are
then transmitted to the other layers via the network layer. It is connected to the internet
and uses many different protocols. Then the middleware layer carries out the technical
processing of the data. The application layer then uses this data to display it to the end
user. Finally, the business layer is used to control the whole chain and uses the data to
explore new business models.

The analogy between the general loT architecture and our system architecture is
shown in [Fig.2]. The description of the layers shows that data is at the centre of our
(and IoT) architecture.
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Figure 2: Analogy between IoT architecture with parking management system

Data integrity is a key element for the services provided by the company. In the field
of IoT security, we seek to identify existing attacks in relation to the architectural layers.

Like the IoT, our devices are subject to many constraints (connectivity, autonomy,
computing power, etc.). They also pose many security challenges, such as data privacy,
data access permission, networks authentication, secure storage, secure data processing
[Zhao and Ge, 2013]. Each layer of the architecture faces its own security concerns.
[Tab. 1] summarises the attacks explored, classified in their respective layers. In the
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Architecture layers|Security issues

Hijacked/fake node, False Data Injection Attack, Denial of Ser-
Perception layer |vice (DoS) attack, Authentication attack, Cloning, Eavesdropping,
Spoofing, Jamming, Inference attack, Physical attack
State-of-the-art security attack. e.g. Sybil attack, Sinkhole attack,
Sleep deprivation attack, DoS attack, False Data Injection Attack,
Man in the middle attack, Traffic analysis, Routing attack, Selec-
tive forwarding

Unauthorized access, DoS attack, Malicious insider, False Data
Injection Attack

False Data Injection Attack, DoS attack, Spear-Phishing attack,
Sniffing Attack

Business layer |Same as Application layer

Network layer

Middleware layer

Application layer

Table 1: Architecture layers and their security issues [Farooq et al., 2015, Zhao and Ge,
2013, Padmavathi and Shanmugapriya, 2009, Sikder et al., 2018]

table, the presence of FDIA in each layer shows its importance. Data integrity in our
systems is a critical challenge, and FDIA is a major threat to this integrity. We have just
seen the link between our systems and IoT, we can suppose that they share the same
vulnerability to FDIA, which answers the first part of the question RQ2. In the next
section, we look at FDIA in the literature.

2.2 False Data Injection Attack

First introduced by [Sencun Zhu et al., 2004] in the field of sensor networks and later in
the field of Wireless Sensor Networks (WSN), especially smart grids [Liu et al., 2009],
FDIA are attacks in which an attacker seeks to change a system’s behaviour by modifying
the data used for its services. For example, in the case of smart grids, the attacker seeks
to inject errors into sensors state variables, which then leads systems to wrong power
grid state estimation. In this particular area, this can lead to total power blackouts such
as the one in Ukraine in 2015, where a FDIA was launched against the country’s power
grid. Three energy distribution companies were compromised and their services were
disrupted, throwing part of Ukraine into a blackout [Liang et al., 2017].

More generally, FDIA is an intentional attack (malicious) or unintentional where a
sensor network is compromised, usually by taking advantage of one or multiple sensors.
The aim is to generate and send, data or events that don’t represent the reality of the
network environments. This type of attack can lead to service disruption, energy and
network waste, money loss, and even physical destruction [Albright et al., 2010].

In the case of an intentional FDIA, the goal of the attacker is to disrupt the services
provided by the application that gathers and processes the data sent by the sensors, such
as the Ukraine attack.

In the case of unintentional FDIA, there is no attempt to harm a specific system.
We’re more likely talking about a False Data Injection (FDI). Usually FDI happens in the
perception layer, it’s an anomaly in the environment of the sensor or an error inside the
sensor itself. However this type of FDI also needs some protection to prevent damage
and disruption of the system. An example of unintentional FDI can be a worm on a
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humidity sensor that stops watering a crop, or a lorry parked next to a pollution sensor
that triggers a specific event.

The vast majority of the research focusing FDIA has been conducted in the smart-grid
and WSN field. In particular within power-grid state estimation, mainly for FDIA filtering
and detection [Mo et al., 2010, Manandhar et al., 2014, Lee et al., 2010].

One of the difficulties of the FDIA challenge is to be able to develop, train and verify
this FDIA filtering and detection techniques using real data from systems in production
that have been attacked. Usually, the attacked data are either protected for confidential
purposes or has simply not been detected, therefore not flagged as compromised.

To develop their attack mitigation systems and validate them through experimenta-
tion, various authors used several methods to generate data. [Yang et al., 2017] uses a
pseudorandom generator to emulate the data collection and also a pseudorandom genera-
tor to emulate FDIA behaviour. [Yi Huang et al., 2011] uses for their system in normal
state (no attacked) a Bayesian model of the random state variables with a Gaussian
distribution and for the malicious data they changed the distribution. The data used
by [Chaojun et al., 2015] are based on the data from the New York independent system
operator (NYISO) from 2012, and generate the state data following a procedure. The
attacked data are numerical and they apply a modification of 90%, 95%, 100%, 105%,
and 110% of the original numerical value.

The main flaw in the use of these methods is usually the loss of correlation with
reality. The use of non-real base data and arbitrarily designed attacks, result in the loss
of both system-specific and attacker-specific behaviour.

The closest work but in a specific domain is made by [Cretin et al., 2018], who
developed a DSL-based testing framework to perform FDIA on air traffic control systems.
They used real data from air traffic control and perform FDIA on them by using a DSL
adapted to the specificity of the aircraft domain, then, they reinject the altered data in air
traffic control systems.

As far as we know, there is no related work to assess the resilience of industrial
systems attacked by FDIA. This also applies to [oT systems [Bostami et al., 2019]. In the
following section, we therefore explore various works that do not necessarily belong to
the FDIA domain, which could bring some avenues of research to our own. In particular
in terms of test methods and data generation.

2.3 Data Generation for FDIA

Once the attack model is made, it must be used to generate the data of the attack. In this
section we will therefore review the methods used in the literature to generate data, in
particular relevant test data.

We therefore wish to obtain synthetic but realistic data. There are several reasons for
using synthetic data rather than data from real systems. The first reason is the amount of
data. A system for multiple reasons may not produce enough data to use authentic data.
For example, a system that is still in development, or a system that uses confidential data.
The second reason is data labelling. It is difficult to categorise authentic data. Are the
recovered data healthy or are they altered? This brings us to the third reason, it is difficult
to have data that are definitely considered corrupted data. Especially because they have
not been detected as such, and if they are, they are often kept confidential. And the fourth
reason, the use of generated data allows the attack to target very specific behaviours.

It is obvious that there are shortcomings when using synthetic data. In particular, the
main drawback is the realism of the generated data, and especially for correlated data or
business logic rules.
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[Popi¢ et al., 2019] reviewed data generator techniques and use cases. For the data

modelling process, they present several methods such as [Hoag and Thompson, 2007]
and [Rabl and Poess, 2011]. For their models, this type of data generator describes
through an XML format the characteristics of the data. Then the data generation is made
from the XML model. For example, [Anderson et al., 2014] present a framework for
generating synthetic data for IoT. Their approach comes from the fact that it is difficult,
in a big data context, to work on large amounts of data. Especially because [oT has
completely heterogeneous data structures between the different IoT systems. Also, the
sharing of such data brings data confidentiality issues in corporate contexts, and therefore
cannot be released to the public. Their approach proposes to generate synthetic data from
authentic data, keeping the structure and characteristics contained in the authentic data.
To do so, they proceed in two main steps, data characterisation and data generation. On
the data characterisation step, they extract two information from the data, the structure of
the XML and the values present inside this structure. On the data generation step, they
use the information harvested in the previous stage to reconstruct the data structure, and
to populate it using random generator based on the distribution of the values.
The generation work here is very interesting. In particular the preservation of the data
structure and the characterisation of the data values from real data to deduce statistics.
Nevertheless, a temperature sensor next to a humidity sensor will have its data correlated
with the previous ones but also with those of the humidity sensor. The approach proposed
will probably deduce certain characteristics, such as an interval of temperature evolution,
but the data will probably lose all correlation between them or the other sensor. This
correlation between data is a critical aspect in our case. FDIA must be consistent with
the data preceding or following it; otherwise it would be detected too easily.

We will also see later that our approach, although it may involve data generation,
is largely based on data modification. In practice the generation of synthetic data from
scratch is little used and the modification of existing data is much more used, because it
allows us to keep the essence of the data and their connections.

The method we find the most interesting is the one of [Cretin et al., 2018], within the
context of FDIA applied to the field of air traffic control. To assess the FDIA resilience
of ADS-B, an air traffic control technology, they use a DSL to model FDIA scenarios.
These scenarios are then applied through a framework to actual air traffic data to generate
altered data. Although addressing the FDIA, their DSL is very oriented for the air traffic
control domain. It includes language elements specific to the data present in aircraft
recordings, such as altitude, ICAO aircraft model identification, or transponder code.
The use of a DSL in this kind of case studies in highly specialised fields are interesting.
This makes it possible for experts in the field to quickly get to grips with it by offering
them great expressiveness. Moreover, to use a DSL it is not necessary to be familiar with
general programming languages. In addition, the use of DSL is also found in synthetic
data generation as in [Fremont et al., 2019]. The authors propose a probabilistic scenario
description language for perception systems. They generate synthetic data from these
scenarios describing car positioning scenes. This is in order to train and evaluate machine
learning tools, especially on rare events or on their performance in particular conditions.
DSL are very indicated to treat problems in very precise fields in an efficient way. They
allow us to model and specify many aspects, including scenarios, so they are interesting
for our case studies, where we want to model attack scenarios and then apply them to
datasets.



780 Briland M., Bouquet F: An Approach for Testing False Data Injection Attack...

3 Data Definition

Sensors example
Our sensor  |[White, 1987] Classes

Our Sensors type|Description

Measure the thermal
property, used for
Thermal sensor |monitoring the sensors Thermometer Thermal
environment, or the (Temperature)
sensor’s device itself

Measure the distance or

. . tical
Proximity sensor|detect the proximity of Photo-sensor Optica .
. (Wave Amplitude)
an object
. Measure the linear Mechanical
Motion sensor . . Accelerometer .
acceleration or rotation (Acceleration)
Measure optical property, Optical

Optical sensor |lots of sensors operate in ~ |QR code reader| (Wave amplitude)
the infrared
Measure the chemical

. environment of the . Optical

Chemical sensor L Particle sensor .
sensors (gas, humidity, (Wave amplitude)
particle)
Measure waves, as Acoustic

Acoustic sensor |acoustic waves or Microphone (Wave amplitude)
ground waves

. Measure a relative Magnetic field

Position sensor o Compass .

position (Amplitude)

Table 2: Sensor classification in our system

To know what exactly we need to address for scenario generation and data falsification,
we have to analyse the company ecosystem, mostly on the perception layer where the data
are generated. The result presented in this section provides the answer to RQ1. We have
worked on sensor classification, identification of data properties and data categorisation.

3.1 Sensor Classification

The identification of data property is based on the analysis of the entity that provides
the data. In our devices the data are provided by the sensors. Sensors classification
schemes have already been defined for electronic and engineering purposes [White,
1987, Hulanicki et al., 1991]. In the most comprehensive study they defined nine classes
(acoustic, biological, chemical, electric, magnetic, mechanical, optical, radiation, thermal
and others) that can encompass all sensors.
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For this work, we have identified the sensors used in our systems and classified
them under categories as shown in [Tab. 2]. The first column is our classification, the
second a brief description, the third is the example of sensors found in our system, and
the fourth the [White, 1987] classification of the sensor example. We have identified this
classification because the behaviour of the data will change depending on the sensor type,
and for data alteration we need to be as close to the real-life behaviour of the property as
possible. Mainly to avoid being easily detected by possible intrusion detection tools.

In the following we present the seven classes, we have identified in our system.

Thermal sensors: Thermal sensors measure changes in thermal properties of a par-
ticular element, such as body temperature, ambient temperature or car engine temperature.
In our use cases, this type of sensor is used to monitor the state of the environment around
or inside parking devices.

Proximity sensors: Proximity sensors are used in a very wide variety of applications,
the most common one is in smartphones to detect the presence of something near the
screen (face, pocket) to avoid bad input. In our use case, this type of sensor is used to
detect the presence of a person in front of parking devices.

Motion sensors: Motion sensors measure the position in space by means of linear
acceleration and rotation of the monitored object. This is usually an accelerometer or
gyro sensor. The most common use case is in the field of smartphones. In our case, this
type of sensor is used to detect physical intrusion attempts on devices.

Optical sensors: Optical sensors deal with light by converting light properties in
electrical signals. Many devices use this type of sensor for a wide range of applications.
They can be found in a smartphone to adjust the screen luminosity, in a heartbeat sensor
or in an infrared thermometer. In our use case, this type of sensor is used to read QRcodes.

Chemical sensors: Chemical sensors measure the chemical property, usually the
concentration of a specific element. In our case, this type of sensor is used to measure
the No2 concentration around devices.

Acoustic sensors: Acoustic sensors convert the wave amplitude of a sound. The
most common example of an acoustic sensor is the microphone. In our use case, this
type of sensor is used to measure the noise around devices.

Position sensors: The position sensors measure their position through space. The
most common example of position sensors is the compass. In our use case, this type of
sensor is used to detect the position of the devices.

We have also identified, by extending the search, two other categories that can accept
sensors. But which are not present in our systems. Mechanical sensors, which measure a
mechanical force (force, pressure, strain, torque), and level sensors, which measure a
liquid or solid level (water, grain, powder).

Usually, the sensors are used for two main intentions: 1- to gather information to
perform control and operate actuators, 2- to monitor elements, either for ensuring the
correct functioning or to take a decision based on the monitoring. For FDIA, a malicious
adversary carries out attacks through these two main objectives. For example, in the
case of a thermal sensors an attacker can disturb the function of an asset by modifying
the temperature returned by the sensor, or by generating an anomaly to trigger the
maintenance of the part attacked.

A big challenge of FDIA is that sensors are generally not alone in their environment.
It depends on the type of the systems. A system for monitoring the street environment
(temperature, hydrometry, particles, pollution) of a city will need several sensors to get
sufficient and reliable coverage (one device per street, about a hundred metres between
the sensors). A smart car will need several sensors but close to each other to analyse the
road (multiple sensors per side of the car, a few centimetres between the sensors). Due to
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Figure 3: Categorisation of a data

this usual configuration of multiple devices, the spatial propagation of the measurements
must be addressed. For example, in thermal sensors the temperature propagation must be
considered for the attack to remain coherent. In some cases, if two sensors are close to
each other, the data from the two sensors must be altered according to their distance and
the power of the alteration made. It also depends on whether the attacker tries to attack a
local property or a more global property.

3.2 Data Classification

After identifying the sensors’ categorisation, we need to analyse what categorises the
data returned by the sensors. We have analysed multiple data sets from our systems to
find out which property defines them.

Through the research we define that a data is characterised through five properties:
the definition, the criticality, the validity, the property and the type. This classification is
summarised in [Fig. 3].

Definition: is the representation of the data, it can be a data of identification, time,
location or a measure.

The data of identification is always present in our datasets, this data serve to identify,
either the device itself, the transaction or the user of the device. For FDIA, identification
data are important, their main purpose is to select the target that the attacker wants to
attack.

The time data are also always present in our dataset. They are usually in a timestamp
format. These data are used to situate other correlated data over time. For FDIA they are
useful for creating scenarios within a specific time frame. Moreover time data needs a
high degree of consistency to remain undetected.

Location data represents the location across space of the device. The location is not
present in all dataset. However, for effective tampering and attack propagation through
the system, it is important to have this data available, it can be added by the attacker.
This data should be considered differently than location data that does not represent the
position of the object concerned. Such data would be found in the next category.
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The measure category contains all the data returned by the sensors described in the
previous section. Generally, the decisions taken by the application layer are based on
those data, therefore they are usually the main target of attackers.

Criticality: is a scale of the severity of the impact that could occur when specific
data are attacked and altered by FDIA. This data property is useful to have a good
categorisation of the probability of an attack on the data. Moreover this property helps
the scenario maker to build the attack. This scale is defined through five levels, very low,
low, medium, high and very high. This scale is typically used in the standard ISO/IEC
27005 for information security risk management.

Type: is the data type. Through our analysis we found that all data types that can be
found in languages are used in our data (Integer, Float, String, Char, Bool, etc.). However
the vast majority of the data rely on a JSON Data format for their data transaction.
Therefore, most types used are String, Number and Boolean.

Validity: is the data validity through the different transactions. Usually the data
is valid only during its proper transaction, but occasionally some data can be sent for
information or configuration purpose and can be one-time data.

Property: represents a particular property of the data, we have identified specific
properties such as the step, the precision or if the data is an alarm.

All these properties can evolve. They are based on the data we have analysed, keeping
in mind to be the most exhaustive.

In this section we have answered the RQ1. We have identified the sensors used in our
systems and defined their produced data with their properties. We have also identified
the different characteristics of the data. This allows us to better understand the data and
the attacks that may be perpetrated against it. This is used to define our approach as well
as the DSL.

4 Approach and DSL

To address the FDIA challenge and to complete the answer to RQ2 started in section 2.1,
we have defined a complete approach and a DSL to model and execute the attacks. The
workflow of our approach is shown in [Fig. 4].

Data acquisition is the first step of this workflow, it consists of two processes: either
importing a dataset under a file format such as a CSV or JSON, or intercepting the
devices data flow by performing a man in the middle or eavesdropping attack to perform
a live attack.

Data configuration is made by the expert of the System Under Test (SUT). It consists
of the property definition of the data present in the dataset or in the flow defined in the
data acquisition step.

The conversion is the step where the input data are transformed to an internal format
for a better processing of the data as well as to be able to process a wide heterogeneity
of data and systems. This converted data are stocked in a database.

Designing scenario is made by the expert of the system under test. We provide a
textual DSL for designing a scenario of FDIA. The expert uses this DSL, and selects the
specific dataset he wants to alter.

Tampering generator is the phase where we read the scenario describing FDIA,
and transform it into a memory representation.

Scenario execution is the process of applying the memory representation of the
scenario written by the expert to the dataset. It results in a new dataset with tampered
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Figure 4: Workflow for FDIA testing - Data acquisition, designing and testing

data stored in a database. After this step the expert can choose to export this dataset, in
order to teach the Al learning machine to detect false data injected in the dataset.

Injection is the process of converting the data back to their original form, and inject
them in the SUT. It can be either an injection of all the data tampered, or an injection
respecting the timing of the different message in the dataset.

The SUT represent the system where data altered by FDIA are injected.

Test evaluation aims to verify the impact of the injection in the SUT with a test
oracle. This test evaluation should be exported to a report, for the purpose of either
correcting the SUT or improving the FDIA written by the test expert.

Domain-Specific Languages (DSL) are languages tailored to a particular domain
and application [Mernik et al., 2005]. They have more expressiveness than the General
Programming Languages (GPL) such as C or Java. The main advantage of using a DSL
is the gain in productivity when used by people experts in the domain covered by the
DSL. It allows users not fluent in general computer languages to learn easily and perform
complex action on a specific domain.

To address the challenge posed by FDIA, we have defined a DSL that aims to describe
the full scenario of the attack. A FDIA scenario is a complete, step-by-step description of
the actions taken by the attacker to carry out an attack. To define this DSL we reviewed
literature best practices [Fowler, 2010, Czech et al., 2018] and used the methodology
defined by [Mernik et al., 2005]. This 4-step methodology answers the questions, ”When
and how to define a DSL”. For the purpose of brevity, we will not present the methodology
in this work. Nevertheless, we will briefly present the DSL obtained at the end of the
methodology in the following.

A scenario is made up of two parts, the scenario property and the scenario actions
as shown in [Fig. 5] which describes the DSL grammar. The scenario property part is
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(scenario) ::= (scenarioDeclaration) (executionList)

(scenarioDeclaration) ::= Scenario (string literal) ticker (decimal literal) geolocation (’
(real literal) ©,’ (real_literal) ©)’

(executionList) ::= (execution) *;’ ({execution) ;)"
(execution) ::== ((create things
(alterationCriteria) (timeframe))
| (alter things (selectionCriteria) {(alterationCriteria) (timeframe))
| (delete things (selectionCriteria) (timeframe))
| (copy things (selectionCriteria) {alterationCriteria) (timeframe)))

(selectionCriteria) ::= where (selectionCriterion) (and (selectionCriterion))*

(selectionCriterion) ::= (id) ‘=" (type)

| Gid) > (ope)

| (id) < (type)

| Gid) 1= {ope)

| (id) isInsideCircle “ C (real_literal) <,’ (real_literal) *,” (decimal_literal) *)’
|

(user_function)
(timefirame) = from (decimal literal) to (decimal literal)
(attenuationCriteria) ::= with attenuation of (real_literal)
(alterationCriteria) ::= set (alterationCriterion) (and (alterationCriterion))*
(alterationCriterion) ::= (id) ‘=" (type)

id) ‘+=" (real_literal)
id) ‘*=" (real_literal)
id) ‘+=" (evol) (attenuationCriteria)?

/i
I (id) ‘=" (evol)
|
|
|

(
(
(
(

user_function)
(evol) == “(C (decimal_literal) ‘=> (decimal_literal) *,” {decimal_literal) ‘)’
(ype) = (id)

| (string literal)

| (decimal_literal)

| (real literal)
(decimal literal) = (°0°-’9*)*"
<ld> c= - A2 ) (O e A2 0009 )*
(string literal) == "> (C_>’a’- 2’ "A’-Z’°0°-°97)* <v°
(

real literal) = (°0°-"9” )" . (°0°-9° )t
Figure 5: Grammar of the DSL

used to describe properties applied to the whole scenario. The scenario actions part is a
description of the actions carried out by the scenario.
The scenario’s actions are composed of multiple part:
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Primitive: They determine the action performed, and the form of the following
elements of the rule. They are: create, alter, copy and delete.

Selection criteria: It is the selection of the specific records that the attack designer
wants to alter. Usually it is an identifier of a device, but it can also be a specific condition
such as a temperature value above a threshold. So it can also be seen as a trigger. Specific
selection depending on the sensors targeted can occur such as the selection inside a circle
defined by geographical coordinates and a radius.

Alteration criteria: These are the alterations that are applied to the messages in the
record selected by the selection criteria. As for the selection, some specific alterations
need to be defined depending on the sensors. Attenuation can be added to an alteration
to simulate the geographical distance between the different selected records.

Time frame: It represents the time windows affected by the linked scenario action.
Its representation is in absolute time in relation to the recording file.

In this section we finish to answer the RQ2. We have developed a comprehensive
multi-step approach to meet the FDIA challenge. We have also defined a Domain-Specific
Languages that aims to define complex scenarios of FDIA based on the characteristics
of our systems and their data. Source files and a prototype of our approach can be found
at https://gitlab.com/mbriland/fdia-simulation.

5 Experimentation on the DSL Expressiveness

In this section, we want to demonstrate the interest of the approach in its expressiveness,
and therefore in its ability to describe specific FDIA scenarios. The section contributes
to answering the RQ3. To this end, we will give examples of real attack scenarios and
we will represent them in our dedicated language.

5.1 Primitives and Data Usages

The first cover of expressiveness is the primitive one. We have defined four types of
primitives to define the elementary operations that a FDIA could perform on real data.
Creating, modifying, deleting and copying.

Our first scenario is therefore the data creation. This type of attack makes sense
when attacking alarm values, as it requires little or no correlation with other data. It is
within this primitive that the use of synthetically generated data is interesting. Mainly
for complex attacks. For example, a scenario for a low battery alarm on our system:

1 scenario "alarm triggering"
2 create things where meter_code="521" set LowBatteryAlarm=true
from 0 to 9999;

Second primitive is the data alteration. This attack primitive is in practice the most
widely used, as it is the one that allows the greatest expressiveness on the data. It allows
modifying the greatest range of system behaviour by modifying the data values. For
example, a scenario to simulate the malfunctioning of a sensor on our system:

1 scenario "failsensor"
2 alter things where meter_code="521" set temperatureTC=200
from 0 to 9999;

Third primitive is the data deletion. This attack makes sense when the attacker tries
to make information disappear. This can be interesting to cancel an intrusion alarm. For
example, a scenario to deactivate an open door alarm on our system:


https://gitlab.com/mbriland/fdia-simulation
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1 scenario "alarmCanceling'
2 delete things where DoorOpenAlarm=true from 0 to 9999;

The fourth primitive is a copy of data. This attack is interesting when the attacker
need to reproduce the real behaviour of other devices or other specific data. For example,
some kind of spoofing scenario, where data is retrieved from another device to create a
new one with the same data:

1 scenario "clone"
2 copy things where meter_code=500 set meter_code=499 from 0 to
9 .

)

So these are the four basic types of alterations that can be made with this DSL. In
terms of data types coverage by DSL, we can cover all the types of data present in our
datasets. An example scenario for involving different data types:

1 scenario "dataCoverage"
2 alter things where meter_code=500 and area="park03" set
temperature*=0.03 and isAlive=true from O to 9999;

5.2 Complex Usages

The previous examples focused mainly on a single device. The strength of FDIA lies
in the subtle alteration of several entities to achieve the desired behaviour. In our DSL
we can effectively act on several entities. For example, the following scenario selects
several entities that lie within a circle through their geographical location:

1 scenario "MultiDevices selection"

2 alter things where location isInsideCircle
(47.213865,5.968195,500) set temperature*=0.03 from 0 to
9999;

With all these elements we can build more complex attacks, associating them in
scenarios. The scenario in the following describes an attack using multiple primitive
to perform a complex attack. Line 2 sets the property that allows you to locate the
application point of the scenario. Line 3 describes an alter primitive scenario action,
it selects the devices present in a circle defined by a radius in metres and their GPS
location. Then, it applies to this selection an increase in the quantity of particles measured
over time, attenuated with respect to the distance between the devices and the point of
application of the scenario. Line 4 describes a create primitive scenario action, it creates
a message containing a pollution alarm when the particle measure in over a threshold.
Line 5 describes a delete primitive scenario action, it deletes all messages with a particle
number greater than 34000.

1 scenario "ComplexAttack"

2 geolocation (47.213865,5.968195)

3 alter things where location isInsideCircle
(47.213865,5.968195,500) set particles
g;ég.o->99999.0,10.0) with attenuation of 10.0 from O to

4 create things where particles>4000 set particleAlarm=true
from 0 to 9999;

5 delete things where particles>34000;

This attack makes it possible to simulate a complex failure attack. Firstly, the number
of particles measured will gradually increase (respecting a propagation pattern between
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devices thanks to attenuation). This can lead to reactions from the system, for example,
display within a city of dangerous air quality. Secondly, an alarm is emitted when the
value is over 4000. Thirdly, if the particulate data exceeds a certain threshold then
messages sent by the devices are suppressed, indicating a failure or malfunction this
usually generates alerts to the system operator, probably caused by the particular increase
in particle measurement.

)

-,

meter_code:500 400 m

b2
&

(

meter_code:515

meter_code:521

Figure 6: Sensors’ geographical locations
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Figure 7: Particle data before running the scenario

[Fig. 7] and [Fig. 8] shows the execution of the complexAttack” scenario on one
month of particle data collected by the three devices presented in the map in [Fig. 6]. The
triggering of the alarm is not represented in the figure. The [Fig. 7] represents the original
data and the [Fig. 8] shows the result of the FDIA attack scenario. We see the effect of
gradually increasing the number of particles over time and clipping of all particles above
34000.
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Figure 8: Particle data after running the scenario

5.3 Other Domains Usages

We can therefore perform many different attack scenarios, using the basic functionality
of the language. However, this type of attack is strongly linked to the context in which it
is carried out and may require specific primitives or selection/alteration functions. A new
system may therefore require the evolution of the DSL in order to perform interesting
FDIA. The DSL is designed to support this scalability. In the research of [Cretin et al.,
2018], the authors identified six specific FDIA scenarios for their air traffic control
domain. If we wanted to address these scenarios some would be achievable natively
through the DSL, such as the dispartition of aircraft using the delete primitive which
would allow messages to be deleted from an aircraft under certain conditions.

However, other more complex scenarios would require the evolution of the DSL,
such as the ghost aircraft flooding scenario where several simulated aircraft are created
in order to saturate the airspace around selected aircraft. With our actual DSL this attack
with the creation of three aircraft would look like this:

1 scenario "saturate"

2 copy things where ICA0=39AC47 set ICA0=25AC48 and altitude
+=1000 and longitude+=0.03 from 0 to 9999;

3 copy things where ICA0=39AC47 set ICA0=26AC49 and altitude
+=-500 and latitude+=0.015 from 0 to 9999;

4 copy things where ICA0=39AC47 set ICA0=27AC50 and altitude
+=1600 and longitude+=0.03 and latitude+=0.026 from O to
9999

With three aircraft the objective is still attainable, but if the saturate attack needs
much more aircraft, there is a need to define a new primitive specific for this attack
scenario. This scenario also needs specific parameters, selection and alteration function
for a correct realisation. This could take this form:

1 scenario "saturate"

2 saturate things where isInsideSphere
(47.213865,5.968195,1000,500) set ICAO=random(icaoDB)
with FloodAmount=50 from O to 9999;

The action is defined by the primitive named “’saturate”, followed by a new geo-
graphical selection (inside a sphere). It may be interesting to develop other types of
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geographical selections for this specific domain. Then we define an alteration criterion
with a notion of randomness for the identification of the simulated aircraft. Followed by a
parameter used for the action, which is the number of aircraft to simulate for each selected
aircraft. As the scenario is already feasible with the native DSL, the new implementation
can be easily added.

This shows us that our DSL allows covering basic and general alterations that could
occur in our attacked systems. It also allows us to extend it with more complex and
domain-specific alterations by defining new alteration primitives and new alteration
functions targeted to that domain. This gives us good confidence in the expressiveness
of the DSL and answer the RQ3.

6 Conclusion and Discussion

In this work, we addressed the FDIA challenge that could take place on our systems. To
do this, we propose an approach centred on the use of a DSL to model the attacks. We
then run the scenarios described using the DSL on real data, which allows us to keep the
essence of the data. This altered data can then be used, for example, to test our systems
by injecting them, or to train machine learning detection systems.

The DSL allows simple selections like selection by identifier, but also more complex
selections such as geographic selections. The DSL also allows simple and more complex
alterations such as distance-based alteration attenuation. It allows a high expressivity
to address FDIA affecting multiple data or systems. In particular, it has an upgrade
capability to handle new systems and domains vulnerable to FDIA.

As mentioned in the introduction, our systems have much in common with those in
the IoT field. We therefore think it would be interesting to explore how our DSL could
help the 10T field to be more resilient to FDIA, which is also very vulnerable to such
attacks.

There are multiple objectives to improve this prototype. The first objective is the
overall amelioration of the DSL through a better expressiveness with more selection and
alteration function, this may involve the use of multiple domain systems to reveal the most
interesting attacks in multiple specific areas. One objective is also the implementation of
a link between the prototype and the SUT to perform tests directly from the tool. This
assertion system could take shape within the DSL to specify and validate that the attack
scenario triggers or not certain properties within the SUT. In the longer term, the goal
would be to improve the attacks to make them more effective based on the data attacked,
this would allow a better test coverage, and help the expert to select the best scenarios.
To make them more effective, the use of artificial intelligence through machine learning
methods would be interesting. Moreover, this development could be coordinated with the
development of a tool to detect FDIA. For this purpose, the use of Generative Adversarial
Networks (GANs) would be very indicated, which would improve FDIA generation and
detection in both directions.
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