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Abstract: Feature selection (FS) is a pre-processing step that aims to eliminate the redundant and

less-informative features to enhance the performance of data mining techniques. It is also consid-

ered as one of the key factors for improving classification problems in high-dimensional datasets.

This paper proposes an efficient wrapper feature selection method based on Grey Wolf Optimizer

(GWO). GWO is a recent metaheuristic algorithm that has been widely employed to solve diverse

optimization problems. However, GWO mainly follows the search directions toward the leading

wolves, making it prone to fall into local optima, especially when dealing with high-dimensional

problems, which is the case when dealing with many biological datasets. An enhanced variation

of GWO called EGWO, that adapts two enhancements, is introduced to overcome this specific

shortcoming. In the first mode, a transition parameter is incorporated to move GWO from the ex-

ploration phase to exploitation phase. In addition, several adaptive non-linear decreasing formulas

are introduced to control the transition parameters. In the second mode, a random-based search

strategy is exploited to empower the diversity of the search process. Two binarization schemes us-

ing S-shaped and V-shaped transfer functions are incorporated to map the continuous search space

into a binary one for dealing with FS problem. The efficiency of the proposed EGWO is validated

on ten high-dimensional low-samples biological data. Our experimental results show promising

performance of EGWO compared to the original GWO approach as well as other state-of-the-art
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Keywords: Feature selection, Enhanced grey wolf optimizer, Binary grey wolf optimizer, Classi-
fication, Biological data, Exploration, Metaheuristics
Categories: H.3.1, H.3.2, H.3.3, H.3.7, H.5.1

DOI: 10.3897/jucs.78218

1 Introduction

Recently, there has been a growing interest to deal with high-dimensional data classi-
fication problems. The reason is that the high-dimensional data classification causes a
substantial statistical burden, and makes conventional classification algorithms unfea-
sible to use [Pappu and Pardalos, 2013]. High dimensional data classification can be
found in many real world applications, including medical diagnosis of tumors based
on micro-array data, sentiment classification of online reviews [Ghaddar and Naoum-
Sawaya, 2018], emotion recognition from ECG signals [Sepúlveda et al., 2021], and
diagnosis of severity rating of Parkinson’s disease [Balaji et al., 2021]. In general, the
quality of data is a crucial factor that deeply impacts the performance of data mining
techniques such as classification. For instance, the presence of irrelevant or redundant
information may adversely affect the predictive ability of the machine learning algo-
rithms. In real-life, most problems are high dimensional. When taking biological data,
for example, an excessive number of features are usually collected during the data acqui-
sition phase. So, filtering the biological data for extracting the most valuable information
(i.e., features) is considered as a complex and time-consuming task [Lin et al., 2019].
That is to say, having a dataset with a large number of features may negatively affect
the performance of the learning algorithm. Feature Selection (FS) is one of the most
acceptable approaches that can be used to reduce the data dimensionality, which will
enhance the overall performance of the learning process, and reduces execution time
[Guyon and Elisseeff, 2003, Liu and Motoda, 2012].

FS is employed to find the most informative features that can be used to build a
robust classification model. The main objective of FS is to reduce the dimensionality
of a dataset by eliminating the unnecessary (i.e., irrelevant and redundant) features.
Moreover, removing irrelevant features will lead to reduce the memory usage, enhance
the learning process and decreasing the computational time required for performing the
classification task [Zhao et al., 2010]. FS is a challenging multi-objective optimization
problem that aims to find the minimum subset of the most relevant features for data
classification task (i.e., preserving the maximum classification performance). Based on
the criteria used for assessing the quality of the chosen subset of features, FS methods
are categorized into two prominent families: filters or wrappers [Chantar et al., 2021]. In
the filter methods, features are chosen based on their scores determined using various
statistical tests for quantifying their correlation with the response variable. In this way,
the selection of features is independent of any machine learning algorithms. In contrast,
wrapper FS approaches involve two components to find the optimal subset of features:
search algorithm and evaluation method. The search strategy, which is mostly a heuristic
algorithm, is employed to explore the search space for finding the ideal subset of features,
while a specific machine learning algorithm is used to evaluate the goodness of the
features subset provided by the search algorithm. In general, wrapper FS, compared
to filter FS, can achieve better in terms of classification accuracy since it can expose
and utilize dependencies between selected candidates in a subset of features [Chantar
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et al., 2020]. Among the various FS techniques, wrapper methods have been successfully
applied in many recent studies [Nguyen et al., 2020, Al-Tashi et al., 2020, Xue et al.,
2016, Alweshah et al., 2021, Awadallah et al., 2022, Awadallah et al., 2020].

Generating a high informative subset of features is a challenging search task. Three
possible strategies can be used to address the FS problem: exhaustive search, random
search, and heuristic search strategies [Mafarja and Mirjalili, 2017]. In the exhaustive
search, FS methods examine a large number of subsets to find the most accurate one.
For example, if the original dataset has N features (i.e., inputs), there will be 2N − 1
subsets generated from the original dataset. Examining all possible subsets my lead
to find the best subset based on the evaluation criterion. In this case, the execution
time will be high and not practical to apply an exhaustive search for real problems. In
the case of random search strategy, searching for the subsequent feature subset in the
feature space is performed in a random way [Lai et al., 2006]. Similar to complete search,
the random search may lead in some cases to generate all possible subsets of features
[Talbi, 2009]. To overcome the limitation of exhaustive search methods, heuristics and
metaheuristics search can be used as effective alternativemethods to find the best subset of
features in an acceptable execution time [Glover and Kochenberger, 2006]. Metaheuristic
algorithms usually come in two flavors: single-based solution (i.e., trajectory-based) or
population-based algorithms. Both methods try to enhance that solution/population in
an iterative manner until the stop condition is achieved. However, the population-based
methods try to gain a balance between exploration and exploitation processes. This
balancing makes population-based approaches more reliable for complex problems with
high dimensional input data [Talbi, 2009]. To date, metaheuristics algorithms show an
excellent performance for solving real complex problems in FS domains [Nguyen et al.,
2020, Mafarja et al., 2020, Hassouneh et al., 2021].

Currently, Swarm Intelligence (SI) based metaheuristics are widely applied as wrap-
per FS approaches [Rostami et al., 2021]. In 2014, a new SI-based algorithm was pro-
posed by Mirjalili et al. [Mirjalili et al., 2014] called Grey Wolf Optimizer (GWO). It
simulates the behavior of grey wolves in nature. Since 2014, GWO have been employed
successfully in variety of real-world optimization problems such as scheduling problems
[Abed-alguni and Alawad, 2021], text mining [Chantar et al., 2019], aerial vehicles path
planning [Qu et al., 2020] and others [Erdogan et al., 2021, Deveci and Çetin Demirel,
2018, Çetin Demirel and Deveci, 2017, Akyurt et al., 2021, Faris et al., 2017, Sharma
et al., 2020]. GWO algorithm has several advantages such as it is simple, easy to use,
has fewer parameters that need to be tuned, and has an excellent switching mechanism
between exploration and exploitation processes while searching for an optimal solution
[Faris et al., 2017].

Despite the merits of GWO, it suffers, as most meta-heuristics, from the problem
of premature convergence. The primary search strategy of the GWO is mainly based
on following the search trends towards the best solutions (i.e., leading wolves), making
it prone to be trapped early in the local optima, especially when dealing with high-
dimension problems [Gupta and Deep, 2020]. According to [Faris et al., 2017, Heidari
and Pahlavani, 2017b, Long et al., 2018, Lu et al., 2018, Tu et al., 2019], the problem of
early convergence in the GWO is due to two main weaknesses: the lack of population
diversity and the insufficient balance between exploration and exploitation behaviors.
Consequently, the research is still open to provide more operators that will emphasize
exploration potential. These reasons constitute a motivation for embedding different
strategies into GWO for improving its performance.

The above-stated limitations of GWO, along with the nature of the NP-Hard FS
optimization problem, are the main foundation and motivation of this research. Addition-



502 Thaher T., AwadM., Aldasht M., Sheta A., Turabieh H., Chantar H.: An ...

ally, the No-Free-Lunch (NFL) theorem [Wolpert and Macready, 1997] for optimization
suggests that a universal algorithm that guarantees effective performance to handle all
problems is impossible [Ho and Pepyne, 2002]. Furthermore, the presence of challenging
classification tasks such as classifying biological and medical detests is another reason
that motivated the authors of this work to develop a robust feature selection approach
to tackle these problems. In this study, the authors propose an efficient wrapper-based
FS method for handling the classification task of high-dimensional biological data. The
proposed wrapper feature selection method employs an enhanced variant of GWO as a
search algorithm. The main contributions of this research are summarized as follows:

– Different binarization schemes are investigated to adapt the GWO for handling the
FS problem.

– An enhanced variant of GWO called EGWO is proposed to empower the exploration
potential and make it better for the high-dimensional FS problem. The enhancement
included boosting the original GWO with a random-based exploration operator and
introducing the idea of the transition control parameter to switch between exploration
and exploitation using different adaptive non-linear convergence shapes.

– The proposed approach is validated through ten challenging biological datasets.

– The efficiency of the proposed EGWO is verified by comparing it with six well-
regarded FS algorithms and offered promising results.

The rest of the paper is structured as follows: Section 2 explores a set of previous
works within the same research field. Section 3 presents an overview of the GWO
algorithm, including the inspiration and mathematical model. Section 4 is dedicated to
explaining the proposed approach deeply. The experimental results are reported and
discussed in section 5. Finally, Section 6 concludes the overall work and presents the
future direction.

2 Related Works

2.1 Meta-heuristic based feature selection

The literature reveals that FS plays a major role in many machine learning and classi-
fication tasks. Recently, a wide range of SI-based algorithms have been integrated as
search strategies in various wrapper FS approaches. Instances of founded metaheuristics-
based FS approaches include Particle Swarm Optimization (PSO) [Xue et al., 2014],
GWO [Emary and Zawbaa, 2016], Harris Hawks Optimization (HHO) [Thaher et al.,
2020b, Thaher et al., 2021b], Slim Mould Algorithm (SMA) [Abdel-Basset et al., 2021],
Moth-Flame Optimization (MFO) [Tumar et al., 2020, Abu Khurma et al., 2021], Whale
Optimization Algorithm (WOA) [Mafarja et al., 2020, Hassouneh et al., 2021, Mafarja
et al., 2019], Dragonfly Algorithm (DA) [Hammouri et al., 2020], Marine Predators
Algorithm (MPA) [Elminaam et al., 2021], and others [Nguyen et al., 2020]. For instance,
Xue et al. [Xue et al., 2014] investigated two PSO-based multi-objective FS approaches
for solving classification problems. The first algorithm uses the idea of non-dominated
sorting, while the second one exploits the ideas of mutation, crowding, and dominance.
The performance of the proposed multi-objective algorithms was compared with two
classical FS approaches, a single objective and two-stage FS algorithms using twelve
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benchmark data sets. The experimental results indicated that the two PSO-based multi-
objective algorithms could deliver comparable results. In addition, Emary et al. [Emary
et al., 2015] introduced a binary version of Firefly algorithm (FFA) to tackle FS tasks
using a threshold value. The modified FFA algorithm can adaptively provide a proper
balance between exploration and exploitation and find the optimal solution quickly. The
proposed approach was examined on eighteen data sets and confirmed its superiority over
other methods such as PSO and genetic algorithm (GA). Sayed et al. [Ismail Sayed et al.,
2018] proposed a chaotic whale optimization algorithm (CWOA) where ten chaotic map
functions were applied. The chaotic maps were used instead of random parameters to
gain a better trade-off between the exploration and exploitation phases. Medjahed et
al. [Medjahed et al., 2017] proposed a complete diagnosis procedure of cancer based
on binary dragonfly (BDF) algorithm with an SVM classifier. SVM-recursive feature
elimination was applied to extract the gene from the datasets, and BDF was utilized to
improve the performance of SVM-RFE. The proposed approach was applied over six
microarray datasets and provided high satisfactory accuracy results.

As presented in [Emary and Zawbaa, 2016], three FS approaches based on meta-
heuristic algorithms, namely GWO, ant lion optimizer (ALO), and MFO were proposed.
Two chaos functions were applied for controlling the exploration rate in the three proposed
FS approaches. Results of conducted experiments on a set of datasets obtained from
the UCI machine learning repository indicated that chaos functions could provide better
exploration and exploitation and hence, excellent performance when applied with GWO
and ALO. To deal with the binary FS problem, Thaher et al. [Thaher et al., 2020b]
proposed a new binary Harris Hawks Optimization algorithm. The binary HHO was
evaluated on high dimensional with low number of samples datasets. The results revealed
that the HHO-based FS technique could be applied as a promising approach to dealing
with high dimensional with few samples datasets. Mafarja and Mirjalili [Mafarja and
Mirjalili, 2017] proposed two models for FS based on Whale Optimization Algorithm
(WOA) and Simulated Annealing (SA) algorithms. The proposed approaches were tested
on 18 standard benchmark datasets obtained from the UCI repository. The experimental
results approved the efficiency of the proposed WOA-based FS approaches in selecting
the most informative features for classification tasks. Finally, AgrawAal et al. [Agrawal
et al., 2021] presented an extensive literature review on dealing with feature selection
problems using metaheuristic algorithms.

2.2 Applications of GWO Algorithm

GWO is considered as one of the effective optimization algorithms that have been
proposed in the last few years. Since its appearance, it has been widely used to solve
many optimization problems. For instance, [Mittal et al., 2016a] GWOwas applied to deal
with Cluster head (CH) selection problem in wireless sensor networks (WSNs) field. Wen
et al. [LONG Wen, 2015] employed GWO to tackle constrained conditions for solving
the problem of non-stationary multi-stage assignment. Various complex constrained
optimization problems and a classical engineering design problem named pressure vessel
were solved by Joshi and Arora [Arora and Joshi, 2017] using the GWO algorithm. In
addition, distributed Compressed Sensing (DCS) problem was tackled by Liu et al. [Liu
et al., 2018] using a combination of GWO and q-thresholding algorithms. GWO was
applied by Lu et al. [Lu et al., 2017] to deal with the problem of welding scheduling in the
modern industry domain. Debnath et al. [Debnath et al., 2017] proposed a model based on
GWO and DE algorithms for dealing with the problem of an automatic power production
control in an interconnected multi-source power system. Furthermore, GWO is also
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utilized for solving the problem of economic load dispatch (ELD) [Jayabarathi et al.,
2016]. In [Liu and Wang, 2021], GWO in conjunction with RNA encoding crossover-
operation was introduced to deal with the non-parametric modeling problem of the FCC
process. Farughi et al. [Farughi et al., 2019] applied GWO and ALO optimizers for
solving the problem of population districting in health systems. Faris et al. [Faris et al.,
2018a] and Negi et al. [Negi et al., 2020] provide reviews of GWO-based applications
related to various fields.

In addition to the above-mentioned works, many researchers have adopted the GWO
algorithm as a wrapper FS method [Al-Tashi et al., 2020]. For example, a novel approach
is proposed by Qiang et al. [Li et al., 2017] that combined GA with GWO. Here, the
authors used GA as a tool to generate the initial population to keep a high diversity
rate, while GWO is employed as a search algorithm for updating the initial population.
Emary and Zawbaa [Emary and Zawbaa, 2016] enhanced the performance of GWO by
using some chaotic maps rather than random numbers to find a good balance between
exploration and exploitation processes.

Lately, a multi-strategy ensemble GWO called MEGWO was introduced by Tu et al.
[Tu et al., 2019] to enhance the diversification and intensification of the conventional
GWO. To overcome the limitations of GWO, three different search strategies were
incorporated: the adaptive cooperative strategy, the enhanced global best strategy, and
disperse foraging strategy. Experimental results revealed the superiority of MEGWO in
dealing with FS problems. In addition, [Chantar et al., 2020] solved the FS problem for
the Arabic text classification task utilizing the GWO-based wrapper FS approach. The
authors incorporated an improvedGWOusing an elite-based crossover scheme as a search
strategy. Promising results were achieved compared to other state-of-the-art methods.
Moreover, Too and Abdullah[Too and Abdullah, 2020] developed two binary variants of
the recently established Competitive GWO (CGWO) and an opposition-based CGWO
(OBCGWO) to tackle the FS problem in electromyography (EMG) pattern recognition.
The experimental results confirmed that the OBCGWO yielded better classification
performance. Furthermore, Abdel-Basset et al.[Abdel-Basset et al., 2020] proposed a
wrapper-based FS approach using a new fusion of GWO integrated with a two-phase
mutation. Following a different FS approach, [Singh et al., 2020] introduced a non-linear
FS Network (FsNet) utilizing a concrete Neural Network (NN) structure comprised of a
selection layer for FS and deep NN. The comprehensive survey about FS methods can
be found in [Xue et al., 2016, Nguyen et al., 2020]

Recently, Al-Wajih et al.[Al-Wajih et al., 2021] proposed a binary hybrid approach
called HBGWOHHO by combining GWO with HHO to enhance the performance of the
GWO algorithm for tackling the FS problem. An improved binary GWO was proposed
by Hu et al.[Hu et al., 2020] for FS tasks. The authors conducted a mathematical analysis
of the range of AD values in the binary variant of GWO. Based on their analysis, new
transfer functions were introduced, and a new updating strategy for the a parameter was
proposed to balance the exploration and exploitation potentials. Another GWO-based
wrapper FS approach was proposed in [P et al., 2021]. The authors integrated GWO
to search the useful features to improve the performance of the botnet attack detection
system.

In summary, the inspected related works confirm the effectiveness of the SI-based
metaheuristics, precisely the GWO method, for FS tasks in various fields. Most of
the previous methods employed transfer functions to switch the nature of SI methods
from continuous to discrete (i.e., binary) structures. Moreover, many SI algorithms
have been enhanced to escape from premature convergence. These algorithms’ ability
to explore the search space encourages many researchers to adopt them for solving
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complex optimization problems in FS domains. In general, swarm algorithms need a
proper setting to balance the exploration and exploitation processes. Moreover, most
swarm algorithms have only one parameter that controls the ratio between exploration
and exploitation. For example, PSO has a parameter called inertia weight (ω) that controls
both processes. However, many papers try to enhance the controlling process of this ratio
(i.e., adaptively change). Harrison et al. [Harrison et al., 2016], highlighted the updating
methods for the inertia weight parameter. Chuang et al. [Chuang et al., 2008] proposed
a chaotic logistic map to update the inertia weight parameter. For GWO, there is only
one parameter (i.e., a), which controls the switching process between exploration and
exploitation. The nature of this parameter decreases linearly throughout iterations. This
decreasing process enables GWO to focus on exploration at the beginning of the search
process and perform more exploitation at the end of the search process. However, in
some challenging FS tasks, such as those with massive features, efficient exploration
becomes essential to increase the probability of discovering promising regions within the
search space. Consequently, other updating strategies (i.e., nonlinear, logarithm, etc.))
that can guarantee a better balance between exploration and exploitation are desired
for the problem at hand. Moreover, The standard GWO allows the search agents to be
updated based on the best three agents (i.e., α, β, andγ). In specific, GWO is prone to
stagnation in local optima areas. Therefore, better operators to emphasize exploration is
required.

In addition to the NFL theorem, these concerns form the motivations of our attempt
to propose an enhanced variant of GWO for high-dimensional FS tasks. In the proposed
approach, a random-based updating mechanism is employed to empower the exploration
tendency of GWO. In addition, instead of the linear decreasing of the value of (a)
parameter during the course of the optimization process, we employed different updating
strategies to the main control parameter (a) to maintain the trade-off between exploration
and exploitation processes. More accurately, non-linear decreasing strategies for updating
(a) parameter are used instead of the current liner function in the GWO algorithm. It can
be seen that many GWO-based approaches have been introduced by other researchers for
dealing with several optimization problems, including FS tasks. In Table 1, we summarize
the main proposed modifications on the original version of the GWO algorithm to tackle
different optimization problems. In each case, the mechanism of updating the value of (a)
parameter is mentioned to show the main difference between the proposed form of GWO
algorithm in this work and previously presented modified forms of GWO algorithm. It is
clear that almost all previously introduced modifications of GWO use the original linear
equation for updating the value of (a) parameter during the course of iterations.

3 Grey Wolf Optimizer

GWO is a population-based optimization algorithm proposed by Mirjalili et al. in 2014
[Mirjalili et al., 2014]. GWO belongs to the SI family of metaheuristics. It mainly mimics
the intelligent hunting strategy, and social organization of the grey wolves [Faris et al.,
2017, Heidari and Pahlavani, 2017a]. Generally, grey wolves are live in herds in which
wolves are organized in an interesting social hierarchy of four levels. Figure 1 presents
the main organization of each pack of grey wolves.

Cooperative hunting is another promising social behavior of grey wolves in addition
to the social hierarchy structure. The hunting process is straightforward; in the first phase,
wolves start tracking and chasing weak prey. The second phase begins by surrounding
(i.e., pursuing, encircling, and harassing) the prey to prevent it from escape. The final
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Proposed modification Parameter (a) Reference

Elite-based crossover

scheme as a search strategy Linearly decreased [Chantar et al., 2020]

Combining GWO with Harris Hawks

Optimization (HHO) Linearly decreased [Al-Wajih et al., 2021]

Combining GA with GWO Linearly decreased [Li et al., 2017]

Chaotic maps for better balancing

between exploration and exploitation Linearly decreased [Emary and Zawbaa, 2016]

A multi-strategy ensemble GWO Linearly decreased [Tu et al., 2019]

Competitive GWO and

an opposition-based GWO Linearly decreased [Too and Abdullah, 2020]

GWO integrated with

a two-phase mutation Linearly decreased [Abdel-Basset et al., 2020]

A new updating strategy for

the a parameter Linearly decreased [Hu et al., 2020]

Applying natural selection

methods in the social hierarchy

process of GWO Linearly decreased [Al-Betar et al., 2018]

A new updating strategy

for the a parameter Non-linearly decreased [Ahmadi et al., 2021]

A new updating strategy for

the a parameter An Exponential function [Mittal et al., 2016b]

Table 1: Proposed modifications of GWO algorithm for feature selection

Figure 1: Social hierarchy of grey wolves.

phase is attacking and killing the prey. These techniques are mathematically modeled to
propose the GWO optimization algorithm. In GWO, the herd of wolves is represented by
the population of search agents (i.e., candidate solutions), and the best-known solution
represents the prey. Each search agent’s quality (fitness) is given by the evaluation
function of the optimization problem being solved. Subsequently, the social hierarchy is
modeled by considering the top three agents as α, β, and γ, respectively. The rest of the
population is assumed to be the ω. Encircling behavior is the key to the hunting process.
Eq. (1) presents the mathematical model of encircling process.

~X(t+ 1) = ~Xp(t)− ~A. ~D (1)

where t represents the current iteration, and ~D refers to the distance vector between the

current wolf position ~X(t) and the prey position ~Xp(t). It can be evaluated based on
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Eq.(2) .

~D = |~C. ~Xp(t)− ~X(t)| (2)

where vectors ~A and ~C are coefficient vectors that are evaluated based on Eqs. (3), and (4),
respectively. || denotes the absolute value, and · is an element-by-element multiplication.
It is worth mentioning here that the dimension of vectors is equal to the number of
variables (features) of the problem being solved.

~A = 2~a · ~r1 − ~a (3)

~C = 2 · ~r2 (4)

where ~r1 , ~r2 refer to a random vectors whose elements are within [0,1], the variable ~a is
the main control parameter, its components are decreased in a linear manner from 2 to 0
over the course of iterations as given by Eq. (5),

~a = 2× (1− t

T
) (5)

where t refers to the current iteration and T refers to the total number of iterations.
To simplify the effects of Eqs. (1) and (2), figure 2 depicts the encircling process in a

two-dimensional search space. In simple, each wolf updates its position (X,Y ) randomly

based on the position of the prey (X
′
, Y

′
); where both vectors ~A and ~C are tuned to allow

reach different places around the best solution. For instance, the position (X
′ −X,Y

′
)

can be reached by setting ~C = (1, 1) and ~A = (1, 0). It is worth mentioning here that
the random vectors r1 and r2 are employed for the stochastic purpose (i.e., to allow
reach any random location between the points shown in figure 2). The same idea can be
generalized to a search space with n dimensions.

After the encircling phase, the hunting process starts. Due to insufficient information
on the optimal solution for most real-world problems, it is supposed that the best solution
obtained so far represents the prey. The hunting process is mathematically simulated based
on the fittest three solutions α, β, and γ, which are assumed to have better knowledge of
the potential prey location. In specific, the best three candidate solutions obtained so far
will guide the other search agents during the optimization process. The updating process
is achieved based on the following formulas:

~Dα = |~C1. ~Xα(t)− ~X(t)| (6)

~Dβ = |~C2. ~Xβ(t)− ~X(t)| (7)

~Dδ = |~C3. ~Xδ(t)− ~X(t)| (8)

~X1(t+ 1) = | ~Xα(t)− ~A1. ~Dα| (9)

~X2(t+ 1) = | ~Xβ(t)− ~A2. ~Dβ | (10)

~X3(t+ 1) = | ~Xδ(t)− ~A3. ~Dδ| (11)
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Figure 2: The encircling process of GWO in 2D space

~X(t+ 1) =
~X1(t) + ~X2(t) + ~X3(t)

3
(12)

where the vectors ~Xα(t) , ~Xβ(t) , ~Xδ(t) represent the best locations of all types of wolves

in the current iteration t. ~C1 , ~C2 , and ~C3 are evaluated based on Eq.(4), ~X(t) represents

the location of the present solution, and ~Dα , ~Dβ , ~Dδ are the distances between the

current solution and the best three solutions, respectively. The three vectors ~A1 , ~A2 , ~A3

are calculated as in equation (3). Figure (3) demonstrates the potential next position of a
search agent in a 2D search space. It can be noticed that that the next position would be
in a random place within a circle defined by the positions of α, β, and γ. In alternative
words, the position of the prey is estimated by α, β, and γ. While the other wolves modify
their positions randomly around the prey.

GWO is a global search algorithm; the proposed mathematical operators adjust the
ability of exploration and exploitation. In this regard, the main parameter (a) decreases
linearly from 2 to 0 throughout iterations. Accordingly, the coefficient A fluctuates
dynamically inside [-a, a] as defined in Eq. (3). The exploration process is achieved
when |A| ≥ 1, and the exploitation process will be achieved when |A| < 1. That is to
say, when random values of A are inside [-1, 1], the new position of a search agent can
be in any position between its original position and the estimated position of the prey. In
contrast, with |A| ≥ 1, the new position can fall outside the circle defined by α, β, and
γ (see Figure (3). Algorithm (1) presents the Pseudo code of the GWO.

It can be noted that A and C are the main factors that control the exploration and
detection tendency of GWO. Therefore, providing improvements to these parameters
and introducing more exploration operators will effectively contribute to solving the
problem of stagnation in local solutions, especially when dealing with high-dimensional
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Figure 3: Position updating mechanism for each search agent in GWO

classification tasks [Mirjalili et al., 2014, Chen et al., 2021].

4 The Proposed Methods

4.1 Enhanced Grey Wolf Optimizer

The classical GWO has several merits. It is simple to implement, has fewer parameters
to be tuned, and employs social hierarchy behavior. However, the major drawback of
GWO is premature convergence. The algorithm lacks the required diversity during
the optimization process and can easily be stuck into local optima. Therefore, several
modifications have been introduced in the literature to improve the exploratory potential.
In GWO, a parameter called (a) controls the balance between exploration and exploitation.
This parameter is adaptively decreased over the iterations to provide more exploration at
the early stage of the search process while providing more exploitation at the last stage.

In this study, we present an improved version of GWO intending to enhance the
exploration feature. The pseudo-code of the enhanced GWO is shown in Algorithm 2.
The proposed version depends on two enhancement schemes as follows:

4.1.1 Transition Control Parameter

We have introduced the transition control parameter concept inspired by WOA [Mirjalili
and Lewis, 2016], and HHO [Heidari et al., 2019] algorithms. The idea is based on
dividing the search process into two phases: exploration and exploitation. We exploit
the transition parameter that already exists in GWO for the transition between these two
phases smoothly. In the original GWO, a is reduced linearly from 2 to 0. The variation
range of A is also reduced by a. Therefore, A is a random variable in the interval [-2a,
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Algorithm 1 Pseudo code of the standard GWO

1: Set the initial parameters: population size (N ), maximum iterations (T )
2: Generate the initial grey wolf population Xi(i = 1, 2, . . . , n)
3: Assess the fitness of each search agent

4: Identify the best three search agents based on their fitness

5: Xα = the fittest search agent

6: Xβ = the second fittest search agent

7: Xδ = the third fittest search agent

8: while (t < T ) do
9: for each search agent do

10: Update the coefficients a, A, and C
11: Use Eq. (12) to re-position (update) the current search agent

12: end for

13: Evaluate the fitness of new population

14: Update the best three solutions Xα , Xβ and Xδ

15: t = t+ 1
16: end while

17: return the best solution Xα

2a]. The parameter a is decreased from 2 to 0 to emphasize exploration and exploitation,
respectively. Therefore, we introduce a transition parameter (tp) used to control the
transition between exploration and exploitation potentials as in eq. (13).

~tp = 2~a .~r − ~a (13)

a = 2− (2.
t

T
) (14)

Based on the variation of the tp vector, we update the position of a search agent according
to a randomly chosen search agent instead of the best three agents found so far (exploration
phase). This mechanism |tp| > 1 emphasizes exploration and allows the GWO algorithm to
perform a global search. In the exploitation phase (|tp|<1), we used the original operators
of GWO.

4.1.2 Exploration Phase

In this phase, search agents are guided by a randomly selected solution to emphasize
searching more areas in the large search space. Eqs.(15) and (16) shows the exploration
process of EGWO.

~D = |~C. ~Xrand − ~X| (15)

~X(t+1) = ~Xrand − ~tp. ~D (16)

where ~Xrand is a randomly selection search agent.
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4.1.3 Different Decreasing Shapes of Convergence Parameter (a)

In the original GWO, a is reduced linearly from 2 to 0. Other updating rules (nonlinear,
logarithmic) are utilized to emphasize the required diversity for high-dimensional FS
problems to increase the probability of discovering more promising regions. Accordingly,
four decreasing shapes of awere utilized. The decreasing formulas and the corresponding
variants of EGWO are presented below, while decreasing patterns of a and tp are shown
in Figures 4 and 5. In addition to the original GWO algorithm, we have five enhanced
variants, where each one has a special decreasing strategy applied to the parameter a, as
follows:

– EGWO: the enhanced variant using exploration and exploitation phases where a
decreases linearly, according to the formula in Eq. (14).

– EGWO1: the enhanced variant using decreasing strategy 1, according to the formula:

a = 2− (
2t1/3

T 1/3
) (17)

– EGWO2: the enhanced variant using decreasing strategy 2, according to the formula:

a = 2− (
2× log(t+ 1)

log(T )
) (18)

– EGWO3: the enhanced variant using decreasing strategy 3, according to the formula:

a = 2× e−( 4t
T )2 (19)

– EGWO4: the enhanced variant using decreasing strategy 4, according to the formula:

a = (
−2× t3

T 3
) + 2 (20)

where t is the current iteration, and T is the maximum number of iterations.

4.2 Binary GWO for Feature Selection

GWO, as most metaheuristic methods, are designed to tackle problems in continuous
search space. Accordingly, a binarization scheme is usually employed to adapt real-valued
metaheuristics to match the discrete search space of the FS problem. For this purpose,
two main techniques have been introduced in the literature. In the first technique called
(continuous-binary operator), the original real-values operators are reformulated into
binary operators. Whereas in the second technique, which is called two-step binarization,
the original real operators are not redefined [Crawford et al., 2017]. To conduct the
binarization, fuzzy Transfer Functions (TFs) are first employed to convert the real values
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Figure 4: Shapes of convergence parameter a using different decreasing formulas

into intermediate probability values within [0,1]. Therefore, each element in the real
solution is given a probability of being 0 or 1. In the second step, the outcomes of TFs
are stochastically threshold using a specific rule to find the binary output. In common,
the two-step binarization technique is the most popular method, which revealed success
performance in different domains [Thaher et al., 2020a, Thaher et al., 2021a].

TFs are defined based on their shapes into two families: V-shaped and S-shaped
[Mirjalili and Lewis, 2013] (see Figure 6). The literature reveals that two binary versions
of the GWO were proposed by Zawbaa et al.[Zawbaa et al., 2016] for FS problem. In
the first approach (called bGWO1), individual steps toward the best three leaders are
binarized, and then stochastic crossover is performed among the three basic moves to
find the updated binary gray wolf position (see [Zawbaa et al., 2016] for equations).
In the second approach (called bGWO2), the S-shaped function was utilized to squash
the continuously updated position, then stochastically threshold these values to find
the updated binary gray wolf position. In both strategies, a sigmoid function as in Eq.
(21) was utilized. In this work, we have employed the two proposed methods using
S2 and V2 TFs. Therefore, four variants named: SBGWO1, VBGWO1, SBGWO2,
VBGWO2 were introduced. Note that BGWO1, BGWO2 refer to the first and second
approaches, respectively. Mathematical formulas of S2 TF with standard binarization rule
are shown in Eqs (21) and (22). While Mathematical formulas of V2 TF with complement
binarization rule are shown in Eqs (23) and (24).

T (Xj(t)) =
1

1 + e−xj(t)
(21)

Xj(t+ 1) =

{
1 r < T (Xj(t))
0 Otherwise

(22)
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(a) GWO (b) EGWO1

(c) EGWO2 (d) EGWO3

(e) EGWO4

Figure 5: Behavior of tp during 100 iterations for the standard GWO and the proposed

variants
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Algorithm 2 Pseudocode of the Enhanced GWO

1: Set the initial parameters: population size (N ), maximum iterations (T )
2: Generate the population Xi(i = 1, 2, . . . , n)
3: Assess the fitness of each search agents.

4: Identify the best three agents based on their fitness.

5: Xα = the fittest search agent

6: Xβ = the second fittest search agent

7: Xδ = the third fittest search agent

8: while (t < T ) do
9: for each search agent do

10: Update convergence parameter tp using Eq. (13)
11: if (| tp |>= 1) then . Exploration phase
12: Update the position of the current search agent using Eq. (16)

13: else if (| cp |< 1) then . Exploitation phase
14: Update the position of the current search agent by Eq. (12)

15: end if

16: end for

17: end for

18: Update convergence parameter a using a selected formula.
19: update A, and C
20: Evaluate the fitness of new population

21: Update the best three solutions Xα , Xβ and Xδ

22: t = t+ 1
23: end while

24: end while

25: return Xα
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Figure 6: S-shaped and V-shaped TFs
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where t represents the current iteration,Xj is the real value of the j
th element, T (Xj) is

the probability that Xj will be 1 or 0, and r is a random value inside [0,1].

T (Xj(t)) = | tanh(Xj(t))| (23)

Xj(t+ 1) =

{
v bj r < T (Xj(t))
bj Otherwise

(24)

where v is the complement, bj is the current binary value for the j
th element. With

the complement binarization rule, the new binary value (Xj(t+ 1) is set based on the
benefits of the current binary solution, that is to say, based on the probability value
(T (Xj(t)), the j

th element is either kept or flipped.

4.3 Formulation of Feature Selection Using BGWO

Adapting optimization algorithms to deal with any optimization problem requires identi-
fying two main components: evaluation (fitness) function and solution representation.
The main objective of the FS task is to find the minimal features subset that aids in
achieving the maximum classification accuracy. Therefore, FS is recognized as a chal-
lenging multi-objective optimization problem. Aggregation is one of the most popular
techniques for multi-objective formulation. It is a prior method in which multiple ob-
jectives are combined into a single objective such each objective is given a weight to
define its importance [Mirjalili and Dong, 2020]. Accordingly, the two objectives of FS
are combined as shown in 25 to evaluate the suitability of the features subset.

↓ Fitness(X) = α× (1− γ(X)) + β × R

D
(25)

where Fitness(X) represents the fitness value of a subset X , γ(X) denotes the clas-
sification accuracy by filtering out the unselected features in the X subset, R and D
are the number of selected features and the number of original features in the dataset
respectively, α and β are the weights of the classification accuracy and the reduction
ratio, α ∈ [0, 1] and β = (1− α) adopted from [Emary and Zawbaa, 2016, Mafarja
et al., 2017, Faris et al., 2018b, Thaher et al., 2021b].

Solution representation for the problem being solved is the other main design aspect
that should be properly determined. FS is considered a binary optimization problem in
which the candidate solution (i.e., a subset of features) is encoded as a binary vector.
Each element in that vector has two values: (0) indicates that the corresponding feature
is not selected, and (1) indicates that the corresponding feature is selected. Fig. 7 depicts
a sample solution for a dataset of D features.

Figure 7: Binary solution representation
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5 Experiments and Discussion

This part introduces the experimental work carried out to test the performance of the
proposed algorithm. It is divided into four parts. Section 5.1 presents the experimental
setup. Section 5.3 provides the implementation of basic GWO with different binarization
schemes. After selecting the suitable binary variant, we investigate the performance of the
proposed approaches in Section 5.4. Section 5.5 is dedicated to providing a comparison
between the enhanced GWO and six state-of-the-art algorithms.

5.1 Experimental Environment Setup

For the sake of fair comparisons, all experiments were performed under the same envi-
ronment utilizing a system with Intel(R) Core(TM) i7-8550U CPU @ 1.8GHz (8 CPUs)
and 8 GB RAM. Al algorithms were implemented in MATLAB R2018a. Due to the
non-deterministic behavior of metaheuristic algorithms, each algorithm is executed 20
times, and the results are reported in terms of average (Avg) and standard deviation (Std).
The best-reported results are highlighted in boldface. Moreover, the non-parametric
Friedman test (F-test) [Riffenburgh, 2006] was utilized to calculate the overall rank of
each tested algorithm. The detailed settings of all algorithms including common and
internal parameters are listed in Table 2. Values of parameters were selected based on
trials and errors on small simulations as well as recommended settings in the literature.

The performance of the proposed wrapper methods was evaluated on ten biological
benchmark datasets obtained from [Li et al., 2018].The main characteristics of these
datasets, including the number of features, number of records, and number of classes,
are provided in Table 3. for reliable performance estimation of machine learning (ML)
algorithms, we applied the k-folds cross-validation(CV) procedure (k=5). It is a re-
sampling procedure used to assess the performance of ML algorithms. This method is
recommended when the data is limited, as in the used biological data where the number
of samples ranges between 50-203 (see Table 3). Moreover, CV yields less optimistic (or
less biased) results compared to the simple hold-out method [Hastie et al., 2009, James
et al., 2013, Tumar et al., 2020]. In this work, the data sample is partitioned randomly
into five folds; four folds (80%) are used to train the model, while the remaining fold
(20%) is used to validate the model. This procedure is repeated five times, thus ensures
that each sample has the chance of being appeared in the training and testing set. Finally,
the recorded scores are averaged to represent the performance metric of the model.

To judge the performance of the proposed wrapper-based FS methods, three evalua-
tion measures were used: classification accuracy, number of selected features, fitness
values, and running time.

5.2 Evaluation of Classification Methods

It is well-known that the involved classification algorithm highly influences the per-
formance of wrapper FS methods. Besides, each classifier is sensitive to its specific
parameters. Accordingly, extensive experiments were conducted to select a suitable
classifier to evaluate the proposed searching algorithm. For this purpose, we exploited
two well-known classifiers: K-Nearest Neighbors (KNN) and Decision Tree (DT), which
are commonly utilized in the literature for FS problems [Tumar et al., 2020, Hassouneh
et al., 2021, Mafarja and Mirjalili, 2017]. KNN was tested with different K values, while
DT was tested with a different maximum number of splits (MS).
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Common parameters

population size 10

Number of iterations 100

Number of runs 20

Dimension #features

K for cross validation 5

Fitness function α=0.9 , β=0.1

Internal parameters

Algorithm parameter value

BHHO Convergence constant E [2 0]

BWOA convergence constant a [2 0]

Spiral factor b 1

BBA Qmin, Qmax 0, 2

loudness A 0.5

Pulse rate r 0.5

BGWO convergence constant a [2 0]

BPSO Inertai weight w [0.9 0.2]

cognitive constant c1 2

social constant c2 2

BGSA initial gravitational constant G0 10

Rpower 1

Alpha 20

BALO w [2,6]

Table 2: Common and internal settings of tested algorithms

Dataset No. of features No. of instances No. of classes

ALLAML_R 7129 72 2

CLL_SUB_111_R 11340 111 3

colon_R 2000 62 2

GLI_85_R 22283 85 2

GLIOMA_R 4434 50 4

lung_discrete_R 325 73 7

lung_R 3312 203 5

lymphoma_R 4026 96 9

Prostate_GE_R 5966 102 2

SMK_CAN_187_R 19993 187 2

Table 3: List of biological datasets
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Dataset KNN DT

k=3 k=5 k=10 k=20 k=30 k=50 MS=3 MS=7 MS=10 MS=20 MS=50

ALLAML_R 0.8333 0.7917 0.7500 0.6806 0.6528 0.6528 0.8750 0.8750 0.8750 0.8750 0.8750

CLL_SUB_111_R 0.5045 0.4775 0.5315 0.4685 0.3874 0.3423 0.7027 0.6036 0.6036 0.6036 0.6036

colon_R 0.7258 0.7581 0.7097 0.6613 0.6452 0.6452 0.7097 0.7419 0.7419 0.7419 0.7419

GLI_85_R 0.7765 0.8235 0.8824 0.8353 0.7294 0.6941 0.8000 0.8000 0.8000 0.8000 0.8000

GLIOMA_R 0.7800 0.8200 0.7600 0.5000 0.5000 0.2600 0.7000 0.6800 0.6800 0.6800 0.6800

lung_discrete_R 0.8767 0.8356 0.7945 0.5890 0.5343 0.4658 0.5480 0.6301 0.6164 0.6164 0.6164

lung_R 0.9507 0.9606 0.9310 0.9212 0.7833 0.6847 0.8030 0.8227 0.8227 0.8227 0.8227

lymphoma_R 0.9375 0.9167 0.8229 0.7188 0.5833 0.4792 0.5833 0.6042 0.6042 0.6042 0.6042

Prostate_GE_R 0.7941 0.8333 0.8235 0.7549 0.7549 0.6373 0.8333 0.8137 0.8137 0.8137 0.8137

SMK_CAN_187_R 0.6471 0.6791 0.6631 0.6952 0.6898 0.6471 0.5989 0.5401 0.5615 0.5615 0.5615

Rank (F-test) 4.75 2.95 4.15 6.50 9.15 10.35 5.75 5.60 5.60 5.60 5.60

Table 4: Performance of KNN and DT on the original datasets in terms of accuracy

measure

Table 4 reports the accuracy rates scored by KNN and DT on the original biological
data (i.e., with all features). Inspecting the results, KNN (k=5) achieved better perfor-
mance in most cases with the best overall rank of 2.95. The reported results confirm the
sensitivity of KNN and DT to their parameter settings. Based on the results obtained, the
KNN classifier is utilized to evaluate the generated subset of features in the wrapper FS
approach.

5.3 Evaluation of BGWO Using Different Binarization Schemes

The literature reveals that the adopted binarization scheme significantly affects the
performance of the binary GWO (BGWO) in dealing with the FS problem. In this
subsection, different binarization strategies were investigated to recognize the top version
of the proposed BGWO. For this purpose, the S-shaped-based strategies presented by
[Zawbaa et al., 2016] were adopted to develop two variants, namely, SBGWO1 and
SBGWO2. In addition, we employed V-shaped TF with the proposed strategies to
introduce other variants called VBGWO1 and VBGWO2. The description of the four
binary variants are summarized as follows:

– SBGWO1 and VBGWO1: Individual steps toward the best three leaders are binarized
using S-shaped (SBGWO1) and V-shaped (VBGWO1) TFs, respectively. Then
stochastic crossover is performed among the three basic moves to find the updated
binary gray wolf position [Zawbaa et al., 2016].

– SBGWO2 and VBGWO2: The S-shaped in SBGWO2 and V-shaped in VBGWO2
were utilized to squash the continuously updated position, then stochastically thresh-
old these values to find the updated binary gray wolf position.

The comparative results of the developed four variants of BGWO are exposed in
Tables 5, 6, and 7.The average accuracy rates in Table 5 outlines that the combination
between the second binarization scheme and V-shaped TF (VBGWO2) is superior in all
datasets. It achieved the first rank of 1.00 followed by VBGWO1, SBGWO2, SBGWO1,
respectively. Considering the employed binarization schemes, the efficiency of the two-
step binarization method (i.e., VBGWO1 and VBGWO2) is evident as they got the first
and second ranks, respectively. In this strategy, the original real operators of GWO are
not modified. TFs are utilized to map the continuous solution into binary. Moreover,
V-shaped TF confirms clear superiority over S-shaped TF.
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Dataset Measure SBGWO1 VBGWO1 SBGWO2 VBGWO2

ALLAML_R Avg 0.8444 0.8625 0.8660 0.9562

Std 0.0110 0.0079 0.0093 0.0151

CLL_SUB_111_R Avg 0.5838 0.6243 0.6117 0.6991

Std 0.0163 0.0121 0.0065 0.0229

colon_R Avg 0.8823 0.9065 0.9048 0.9210

Std 0.0153 0.0127 0.0050 0.0103

GLI_85_R Avg 0.8682 0.8965 0.8859 0.9400

Std 0.0155 0.0093 0.0077 0.0084

GLIOMA_R Avg 0.8740 0.8800 0.8800 0.9000

Std 0.0097 0.0000 0.0000 0.0000

lung_discrete_R Avg 0.8630 0.8836 0.8747 0.9158

Std 0.0112 0.0097 0.0080 0.0195

lung_R Avg 0.9557 0.9606 0.9564 0.9776

Std 0.0040 0.0040 0.0049 0.0030

lymphoma_R Avg 0.9271 0.9375 0.9339 0.9547

Std 0.0098 0.0000 0.0051 0.0051

Prostate_GE_R Avg 0.8667 0.8931 0.8917 0.9417

Std 0.0105 0.0086 0.0067 0.0087

SMK_CAN_187_R Avg 0.6497 0.6711 0.6674 0.7281

Std 0.0081 0.0068 0.0071 0.0102

Rank F-test 4.00 2.15 2.85 1.00

Table 5: Comparison of BGWO using different binarization schemes in terms of

accuracy rates

The resultant average number of selected features in Table 6 illustrates that the
VBGWO2 gives a remarkable ranking over the other proposed binarizations approaches
by filtering out a large number of irrelevant features. For Table 7 of the average fitness
values, VBGWO2 also demonstrates its efficiency in providing the best results in all
cases. Finally, the convergence behaviors for BGWO variants (SBGWO1, VBGWO1,
SBGWO2, and VBGWO2) in dealing with all datasets are demonstrated in Figures
8 and 9 . According to curves trends, it is noted that VBGWO2 exhibits a quick and
efficient convergence behavior for all datasets. The Other variants show a premature
convergence drawback. Thus, V-shaped TF proves satisfactory results by keeping the
required diversity during the search process.

Based on the previous observations, it is recognized that the performance of the two-
step binarization scheme combined with V-shaped TF is efficient in terms of the average
accuracy, average numbers of features, and convergence trends. In this regard, VBGWO2
is proven to be effective by reducing the number of features and perceiving higher
accuracy rates which are the main ain of the FS process. Accordingly, this binarization
scheme is considered in all subsequent experiments. For simplicity, the abbreviation
BGWO will be used to denote the binary variant of GWO.
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Figure 8: Convergence curves of BGWO variants for ALLAML_R, CLL_SUB_111_R,

colon_R, GLI_85_R, and GLIOMA_R datasets
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Figure 9: Convergence curves of BGWO variants for lung_discrete_R, lung_R,

lymphoma_R, Prostate_GE_R, SMK_CAN_187_R datasets
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Dataset Measure SBGWO1 VBGWO1 SBGWO2 VBGWO2

ALLAML_R Avg 3549.90 4254.20 4370.60 252.05

Std 46.16 399.12 365.77 52.57

CLL_SUB_111_R Avg 6752.80 7353.40 7225.20 663.30

Std 1794.40 367.88 380.45 218.26

colon_R Avg 1318.20 1275.90 1275.80 145.95

Std 357.47 47.03 22.97 49.36

GLI_85_R Avg 13279.60 14239.50 13557.25 1501.10

Std 3575.17 768.61 1278.66 597.13

GLIOMA_R Avg 2199.00 2258.80 2382.30 185.90

Std 25.46 150.96 252.50 65.53

lung_discrete_R Avg 190.80 200.80 195.00 29.05

Std 49.68 6.21 17.92 6.87

lung_R Avg 1659.00 1739.90 1683.30 162.65

Std 24.82 133.33 123.98 57.83

lymphoma_R Avg 2095.50 2329.70 2282.25 152.85

Std 325.17 120.37 264.77 48.45

Prostate_GE_R Avg 3245.00 3676.80 3731.35 260.75

Std 637.19 297.09 255.25 53.52

SMK_CAN_187_R Avg 9979.90 12558.80 12212.65 839.65

Std 53.29 386.50 1149.59 185.39

Mean Rank F-test 2.20 3.60 3.20 1.00

Table 6: Comparison of BGWO using different binarization schemes in terms of selected

features.

5.4 Results of the Enhanced Variants

After identifying the best binary variant of GWO, which is the V-shaped transfer function
based variant VBGWO2, in this section, we examine the efficiency of enhanced versions
of the VBGWO2 algorithm where different decreasing strategies of parameter a (i.e.,
EGWO1, EGWO2, EGWO3, and EGWO4). The proposed binary variants are named
BEGWO, BEGWO1, BEGWO2, BEGWO3, and BEGWO4, respectively. The efficiency
is appraised on the considered datasets by inspecting the average classification accuracy,
size of the selected features, average fitness, and convergence trends.

Table 8 reports the comparative results of the proposed variants with the original
BGWO in terms of accuracy rates. From Table 8, it is noted that the BEGWO4 achieved
a better accuracy score in 60% of the datasets. For instance, compared to the original
BGWO, the BEGWO4 achieved an increment of roughly 1.5%, 6%, and 4% accuracy
for datasets ALLAML_R, CLL_SUB_111_R, and SMK_CAN_187_R, respectively. In
contrast, it can be observed that the BEGWO2 and BEGWO3 are the last preference
based on the accuracy results. As per F-test, BEGWO4 is ranked first, followed by
BEGWO, BGWO, BEGWO1, BEGWO3, and BEGWO2.

Based on the size of selected features in Table 9, BEGWO4 has successively perceived
the best ranking of 1.20 by reducing a large number of unwanted features. By assaying
the reported results, it can be observed that the BEGWO4 declares superior results in
80 % of the datasets. Considering the CLL_SUB_111_R dataset as an example, the
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Dataset Measure SBGWO1 VBGWO1 SBGWO2 VBGWO2

ALLAML_R Avg 0.1898 0.1834 0.1819 0.0429

Std 0.0094 0.0071 0.0059 0.0139

CLL_SUB_111_R Avg 0.4341 0.4030 0.4132 0.2767

Std 0.0038 0.0103 0.0056 0.0219

colon_R Avg 0.1719 0.1480 0.1494 0.0784

Std 0.0139 0.0111 0.0041 0.0092

GLI_85_R Avg 0.1782 0.1571 0.1635 0.0607

Std 0.0122 0.0108 0.0056 0.0096

GLIOMA_R Avg 0.1630 0.1589 0.1617 0.0942

Std 0.0087 0.0034 0.0057 0.0015

lung_discrete_R Avg 0.1820 0.1666 0.1728 0.0848

Std 0.0081 0.0085 0.0046 0.0173

lung_R Avg 0.0900 0.0880 0.0901 0.0251

Std 0.0036 0.0025 0.0035 0.0030

lymphoma_R Avg 0.1177 0.1141 0.1162 0.0446

Std 0.0094 0.0030 0.0039 0.0041

Prostate_GE_R Avg 0.1744 0.1578 0.1600 0.0569

Std 0.0070 0.0095 0.0039 0.0079

SMK_CAN_187_R Avg 0.3652 0.3588 0.3604 0.2489

Std 0.0072 0.0060 0.0046 0.0093

Mean Rank F-test 3.90 2.10 3.00 1.00

Table 7: Comparison of BGWO using different binarization methods in terms of fitness

values.

BEGWO4 scored an accuracy of 0.7626 with a minimal subset of features (size of 69.80).
In comparison, the conventional BGWO scored an accuracy of 0.699 with 663.3 features.
In general, there is a clear reduction in the number of features while improving or at least
maintaining classification accuracy.

The excellent performance of the BEGWO4 is confirmed by the average of fitness
values reported in Table 10. Inspecting the results, BEGWO4 can surpass the other
competitors on 80% of the utilized datasets. Accordingly, this variant outperforms the
other competitive variants in satisfying the FS process’s main aim. As per mean rank,
BEGWO4 is ranked first, followed by BEGWO and BGWO, respectively.

Finally, the convergence behaviors for the top three variants (i.e., BEGWO4, BEGWO,
and BGWO) are shown in Figures 10 and 11. The plotting curves illustrate that the
BEGWO4 variant exhibits a better acceleration rate of convergence in about seven
problems than all other variants. The convergence curves reveal an acceptable perfor-
mance of the standard BGWO variant in three problems: lung_discrete_R, lung_R, and
lymphoma_R.

Justifying the superiority of the proposed BEGWO4, we can say that employing
the transition parameter along with a random-based exploration operator guarantees
good exploratory potential at the beginning of the search process and emphasize the
required diversity for high-dimensional datasets. Therefore, it can find better minimal
subsets of features that contribute to the highest accuracy rate. In specific, delaying
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Dataset Measure BGWO BEGWO BEGWO1 BEGWO2 BEGWO3 BEGWO4

ALLAML_R Avg 0.9562 0.9667 0.9396 0.9306 0.9368 0.9708

Std 0.0151 0.0171 0.0151 0.0142 0.0171 0.0118

CLL_SUB_111_R Avg 0.6991 0.7518 0.6838 0.6730 0.7203 0.7626

Std 0.0229 0.0307 0.0244 0.0176 0.0374 0.0268

colon_R Avg 0.9210 0.9250 0.9242 0.9226 0.9202 0.9282

Std 0.0103 0.0168 0.0076 0.0099 0.0111 0.0111

GLI_85_R Avg 0.9400 0.9406 0.9359 0.9312 0.9365 0.9494

Std 0.0084 0.0145 0.0160 0.0096 0.0134 0.0179

GLIOMA_R Avg 0.9000 0.9000 0.9000 0.9000 0.9000 0.9000

Std 0.0000 0.0000 0.0065 0.0000 0.0000 0.0000

lung_discrete_R Avg 0.9158 0.9082 0.9151 0.9096 0.9130 0.9082

Std 0.0195 0.0199 0.0123 0.0136 0.0135 0.0127

lung_R Avg 0.9776 0.9741 0.9729 0.9724 0.9700 0.9702

Std 0.0030 0.0045 0.0034 0.0046 0.0040 0.0052

lymphoma_R Avg 0.9547 0.9526 0.9552 0.9526 0.9402 0.9479

Std 0.0051 0.0053 0.0049 0.0053 0.0061 0.0089

Prostate_GE_R Avg 0.9417 0.9426 0.9343 0.9275 0.9333 0.9471

Std 0.0087 0.0160 0.0079 0.0098 0.0060 0.0116

SMK_CAN_187_R Avg 0.7281 0.7543 0.7131 0.7131 0.7297 0.7709

Std 0.0102 0.0174 0.0117 0.0078 0.0122 0.0177

Mean Rank F-test 2.95 2.65 3.60 4.85 4.45 2.50

Table 8: Comparison between the enhanced variants and the standard BGWO in terms

of accuracy rates

the rate of decrease in the value of the control parameter (a) leads to the possibility of
applying the exploration operators for more iterations during the search process, thus
improving the algorithm’s ability to explore more promising regions in the large search
space. Accordingly, it preserves the required diversity during the search process and
reduces the chances of being trapped in local optima.

5.5 Comparison of BEGWO4 with Well-known Algorithms

After proving the effectiveness of the proposed BEGWO4 compared to the conventional
BGWO. This part aims to validate the performance of BEGWO4 by conducting a deep
comparison with other six well-established algorithms in terms of average accuracy,
size of the selected features, and fitness values as reported in Tables 11, 12, and 13,
respectively. The comparative algorithms are Binary Whale Optimization Algorithm
(BWOA), Binary Particle Swarm Optimization (BPSO), Binary Bat Algorithm (BBA),
Binary Ant Lion Optimizer (BALO), Binary Harris Hawks Optimizer (BHHO), and
Binary Gravitational Search Algorithm (BGSA). To keep a fair comparison, the same
binarization scheme was used to adapt these algorithms for the FS problem.

Table 11 outlines the averages of classification accuracy obtained by the BEGWO4
and other algorithms. The results demonstrate that the BEGWO4 variant outperforms the
other competitors in achieving high average accuracy ON 70% of the utilized datasets
(overall rank of 1.3). For the datasets containing the largest number of features, such as
GLI_85_R and SMK_CAN_187_R, the BEGWO4 has retained the highest accuracy
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Figure 10: Convergence curves for top three variants bGWO, bEGWO, and bEGWO4

for ALLAML_R, CLL_SUB_111_R, colon_R, GLI_85_R, and GLIOMA_R datasets [log

scale]
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Figure 11: Convergence curves for top three variants bGWO, bEGWO, and bEGWO4

for lung_discrete_R, lung_R, lymphoma_R, Prostate_GE_R, SMK_CAN_187_R

datasets [log scale]
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Dataset Measure BGWO BEGWO BEGWO1 BEGWO2 BEGWO3 BEGWO4

ALLAML_R Avg 252.05 86.10 527.45 606.15 274.25 29.05

Std 52.57 37.52 128.66 172.22 103.35 22.74

CLL_SUB_111_R Avg 663.30 186.60 1002.65 1386.80 527.60 69.80

Std 218.26 121.88 265.72 324.54 266.68 33.22

colon_R Avg 145.95 67.60 201.55 250.85 170.50 78.95

Std 49.36 44.76 28.25 99.52 50.30 64.43

GLI_85_R Avg 1501.10 612.85 2331.15 2426.40 1205.90 262.70

Std 597.13 570.46 1002.27 493.23 486.68 140.89

GLIOMA_R Avg 185.90 117.15 253.30 318.05 221.05 108.05

Std 65.53 49.70 73.71 77.74 65.68 48.88

lung_discrete_R Avg 29.05 25.30 41.75 45.60 33.20 22.85

Std 6.87 9.70 8.97 14.86 8.40 6.92

lung_R Avg 162.65 80.70 227.60 292.20 170.25 87.30

Std 57.83 29.13 48.98 60.83 37.05 43.31

lymphoma_R Avg 152.85 112.05 251.15 314.20 220.65 96.40

Std 48.45 38.01 53.22 76.98 68.87 61.17

Prostate_GE_R Avg 260.75 113.95 426.80 621.85 285.15 39.80

Std 53.52 74.31 88.51 173.48 83.37 34.63

SMK_CAN_187_R Avg 839.65 226.50 1617.55 1784.00 636.40 70.20

Std 185.39 127.06 505.24 437.40 316.66 34.14

Mean Rank F-test 3.30 1.80 5.00 6.00 3.70 1.20

Table 9: Comparison between the enhanced variants and the standard BGWO in terms

of selected fetaures

94.94% and 77.09%, which proved a better learning and classification process. The
BHHO scored higher accuracy results compared to the other competitors in 3 cases
(overall rank of 1.7). According to the overall rank, the BEGWO4 came in the first rank,
followed by BHHO, BWOA, BPSO, BGSA, BALO, and BBA, respectively.

By inspecting the average number of selected features in Table 12. It is clear the
superiority of BWOA in offering the minimum number of features on about 90 % of
the datasets (rank of 1.2), followed by BEGWO4 (rank of 2.10). These findings imply
that BWOA shows success in feature reduction. However, excessive feature reduction
may result in the exclusion of some relevant features, which degrade the classification
performance (see Table 11). Although BEGWO4 is given the second rank in terms of
feature reduction, it can find the most relevant subset of features that provides better
classification accuracy.

To confirm the effectiveness of the competing algorithms, the fitness value which
combines the two measures (i.e., accuracy and reduction rate) is adopted. The results in
Table 13 confirm the superiority of BEGWO4 in offering better fitness values on 70%
of the datasets. Based on the overall rank, BEGWO4 is ranked first, followed by BHHO
which outperforms the other peers in 3 cases.

Figures 12 and 13 examine the acceleration behavior of the developed BEGWO4
versus other approaches. Considering all curves, it can be observed that the BEGWO4
accelerates faster than other competitors toward better solutions in the majority of
problems (6 cases). It is also competitive to BHHO in CLL_SUB_111_R, lymphoma_R,
and Prostate_GE_R datasets. BHHO shows the second-best convergence rate. In contrast,
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Dataset Measure BGWO BEGWO BEGWO1 BEGWO2 BEGWO3 BEGWO4

ALLAML_R Avg 0.0429 0.0312 0.0618 0.0710 0.0607 0.0267

Std 0.0139 0.0157 0.0144 0.0134 0.0156 0.0108

CLL_SUB_111_R Avg 0.2767 0.2250 0.2934 0.3066 0.2564 0.2143

Std 0.0219 0.0282 0.0226 0.0170 0.0355 0.0242

colon_R Avg 0.0784 0.0709 0.0783 0.0822 0.0804 0.0685

Std 0.0092 0.0153 0.0071 0.0101 0.0098 0.0116

GLI_85_R Avg 0.0607 0.0562 0.0682 0.0728 0.0626 0.0467

Std 0.0096 0.0141 0.0145 0.0091 0.0135 0.0162

GLIOMA_R Avg 0.0942 0.0926 0.0957 0.0972 0.0950 0.0924

Std 0.0015 0.0011 0.0058 0.0018 0.0015 0.0066

lung_discrete_R Avg 0.0848 0.0904 0.0893 0.0954 0.0885 0.0896

Std 0.0173 0.0195 0.0105 0.0131 0.0129 0.0111

lung_R Avg 0.0251 0.0257 0.0313 0.0337 0.0321 0.0295

Std 0.0030 0.0042 0.0027 0.0047 0.0038 0.0046

lymphoma_R Avg 0.0446 0.0454 0.0466 0.0505 0.0593 0.0493

Std 0.0041 0.0049 0.0042 0.0044 0.0063 0.0080

Prostate_GE_R Avg 0.0569 0.0535 0.0663 0.0757 0.0648 0.0483

Std 0.0079 0.0153 0.0074 0.0097 0.0059 0.0109

SMK_CAN_187_R Avg 0.2489 0.2223 0.2663 0.2671 0.2465 0.2066

Std 0.0093 0.0160 0.0122 0.0083 0.0118 0.0159

Mean Rank F-test 2.70 2.30 4.30 5.90 4.00 1.80

Table 10: Comparison between the enhanced variants and the standard BGWO in terms

of fitness results

several stagnation problems can be detected in BALO and BBA curves in most cases.
Based on previous observations, it is recognized that BEGWO4 ensures satisfactory

results in terms of all measures. The added enhancements to the GWO improve the
capability of search agents to explore and exploit the massive search space.

5.6 Evaluation the Impact of Feature Felection

This part aims to verify the positive impact of the FS process on the performance of the
classification algorithm. Precisely, we present a deep comparison of KNN performance
before and after the application of FS methods. For this purpose, KNN without FS
(i.e., using the original feature set) is compared to the proposed wrapper FS approach
that combines BEGWO4 and KNN (BEGWO4-KNN) in addition to the Relief-based
algorithm (RBA) with KNN (RBA-KNN). The literature reveals that RBA is an efficient
filter-based FS method. It has gained appeal by striking a flexibly adapting to various
data characteristics with complex patterns of association [Urbanowicz et al., 2018]. In
this experiment, several threshold (τ ) ratios of 0.01, 0.25, 0.5, and 0.75 were tested. Here
τ represents the ratio of selected features that were given the highest weights by RBA.

The number of features and classification accuracy achieved by KNN, RBA-KNN,
and BEGWO4 are reported in Table 14. Firstly, Based on the results of the RBA-KNN
method, using 25% of the features scores better classification accuracy compared to other
ratios in 6 datasets. It is noted that excessive feature reduction (i.e., the ratio of 0.01 ) and
excessive use of features (i.e., the ratio of 0.75) degrade the classification performance
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Figure 12: Convergence curves of all compared algorithms for ALLAML_R,

CLL_SUB_111_R, colon_R, GLI_85_R, and GLIOMA_R datasets [log scale]
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Figure 13: Convergence curves of all compared algorithms for lung_discrete_R,

lung_R, lymphoma_R, Prostate_GE_R, SMK_CAN_187_R datasets [log scale]
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Dataset Measure BEGWO4 BWOA BPSO BBA BALO BHHO BGSA

ALLAML_R Avg 0.9708 0.9458 0.8813 0.8292 0.8583 0.9507 0.8632

Std 0.0118 0.0266 0.0084 0.0207 0.0116 0.0204 0.0082

CLL_SUB_111_R Avg 0.7626 0.7432 0.6338 0.5387 0.6095 0.7658 0.6059

Std 0.0268 0.0383 0.0121 0.0369 0.0161 0.0352 0.0146

colon_R Avg 0.9282 0.9089 0.9153 0.8460 0.9024 0.9194 0.8976

Std 0.0111 0.0168 0.0089 0.0206 0.0064 0.0148 0.0120

GLI_85_R Avg 0.9494 0.9218 0.9018 0.8329 0.8859 0.9294 0.8947

Std 0.0179 0.0149 0.0079 0.0287 0.0102 0.0143 0.0081

GLIOMA_R Avg 0.9000 0.8940 0.8920 0.8490 0.8820 0.8980 0.8810

Std 0.0000 0.0114 0.0101 0.0165 0.0062 0.0062 0.0045

lung_discrete_R Avg 0.9082 0.8815 0.8959 0.8425 0.8712 0.8993 0.8740

Std 0.0127 0.0260 0.0121 0.0220 0.0093 0.0092 0.0084

lung_R Avg 0.9702 0.9626 0.9650 0.9453 0.9589 0.9687 0.9613

Std 0.0052 0.0063 0.0042 0.0083 0.0037 0.0051 0.0029

lymphoma_R Avg 0.9479 0.9406 0.9380 0.9089 0.9266 0.9505 0.9323

Std 0.0089 0.0118 0.0023 0.0106 0.0079 0.0057 0.0053

Prostate_GE_R Avg 0.9471 0.9353 0.9118 0.8422 0.8868 0.9475 0.8892

Std 0.0116 0.0160 0.0101 0.0165 0.0117 0.0120 0.0096

SMK_CAN_187_R Avg 0.7709 0.7468 0.6834 0.6382 0.6674 0.7636 0.6706

Std 0.0177 0.0155 0.0064 0.0136 0.0071 0.0147 0.0074

Mean Rank F-test 1.30 3.30 3.70 7.00 5.70 1.70 5.30

Table 11: Average classification accuracy for BEGWO4 and other state-of-the-art

algorithms

in most cases compared to the ratio of 0.25. Secondly, considering all methods, the
BEGWO-KNN yielded the optimal rank of 1.1; it outperforms the other methods in 90%
of cases. RBA-KNN with a ratio of 0.025 is given the second-best rank. In contrast, the
KNN with all features yielded the worst rank of 5.30. These observations demonstrate the
importance of the FS process in improving the classification performance considerably
(see Figure 14). Taking ALLAML_R data as an example, the BEGWO-KNN contributes
to an increase of roughly 18% of accuracy with only 29 features out of 7129 features in
the original data.

6 Conclusion

This study proposed an efficient wrapper-based FS approach for improving the clas-
sification accuracy of high-dimensional biological data. An enhanced variant of the
GWO called BEGWO was introduced for exploring the search space to find an optimal
subset of features. Different S-Shaped and V-Shaped binarization schemes were applied
to transform the continuous search space into a binary one for the FS task. Following
the determination of the most effective BGWO binary variant, two enhancements were
introduced to emphasize the balance between exploration and exploitation. Firstly, a
random-based search operator was employed to ensure better global search ability at the
early stage of the optimization process. Secondly, the transition between the exploration
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Dataset Measure bEGWO4 BWOA BPSO BBA BALO BHHO BGSA

ALLAML_R Avg 29.05 18.25 3465.00 2932.80 3981.80 44.30 3467.80

Std 22.74 25.20 47.26 198.84 390.69 40.66 45.05

CLL_SUB_111_R Avg 69.80 33.55 5596.80 4562.45 8153.80 39.50 5611.30

Std 33.22 46.21 63.05 565.88 1590.93 39.45 50.02

colon_R Avg 78.95 40.55 950.35 781.95 1444.20 79.15 966.65

Std 64.43 57.01 14.73 120.22 192.41 83.07 24.71

GLI_85_R Avg 262.70 192.60 11022.35 8778.80 15011.95 431.30 11050.85

Std 140.89 277.23 73.59 987.89 2127.55 459.66 68.00

GLIOMA_R Avg 108.05 85.75 2077.50 1805.45 2372.90 147.45 2102.25

Std 48.88 64.73 44.17 130.19 321.18 85.63 28.76

lung_discrete_R Avg 22.85 22.35 144.50 124.20 207.70 26.00 151.70

Std 6.92 11.52 9.41 15.42 24.62 9.00 11.09

lung_R Avg 87.30 68.15 1583.60 1356.25 1753.60 104.40 1593.65

Std 43.31 46.44 29.74 101.81 116.39 72.58 32.89

lymphoma_R Avg 96.40 81.85 1880.35 1642.00 2103.50 146.75 1926.45

Std 61.17 32.36 27.40 103.51 165.92 47.26 34.50

Prostate_GE_R Avg 39.80 29.00 2900.45 2400.85 3747.45 46.20 2908.55

Std 34.63 45.88 37.08 188.95 540.82 82.67 45.61

SMK_CAN_187_R Avg 70.20 71.30 9951.25 8058.75 12259.75 30.20 9929.20

Std 34.14 183.83 74.38 813.27 1340.43 18.59 64.58

Mean Rank F-test 2.10 1.20 5.10 4.00 7.00 2.70 5.90

Table 12: Average number of selected features for BEGWO4 and other state-of-the-art

algorithms

Figure 14: Comparison of BEGWO-KNN, KNN, and RBA-KNN in terms of accuracy

rates
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Dataset Measure bEGWO4 BWOA BPSO BBA BALO BHHO BGSA

ALLAML_R Avg 0.0267 0.0490 0.1555 0.1723 0.1834 0.0450 0.1718

Std 0.0108 0.0240 0.0075 0.0058 0.0093 0.0185 0.0073

CLL_SUB_111_R Avg 0.2143 0.2314 0.3790 0.4253 0.4234 0.2112 0.4042

Std 0.0242 0.0345 0.0108 0.0176 0.0107 0.0318 0.0132

colon_R Avg 0.0685 0.0840 0.1237 0.1524 0.1600 0.0765 0.1405

Std 0.0116 0.0150 0.0077 0.0177 0.0114 0.0138 0.0103

GLI_85_R Avg 0.0467 0.0713 0.1379 0.1632 0.1701 0.0655 0.1444

Std 0.0162 0.0132 0.0071 0.0091 0.0107 0.0123 0.0074

GLIOMA_R Avg 0.0924 0.0973 0.1441 0.1500 0.1597 0.0951 0.1545

Std 0.0066 0.0103 0.0084 0.0109 0.0091 0.0052 0.0036

lung_discrete_R Avg 0.0896 0.1135 0.1382 0.1653 0.1798 0.0986 0.1601

Std 0.0111 0.0236 0.0108 0.0141 0.0074 0.0092 0.0077

lung_R Avg 0.0295 0.0358 0.0793 0.0767 0.0900 0.0313 0.0829

Std 0.0046 0.0053 0.0038 0.0064 0.0026 0.0049 0.0025

lymphoma_R Avg 0.0493 0.0555 0.1025 0.1076 0.1183 0.0482 0.1088

Std 0.0080 0.0104 0.0019 0.0074 0.0060 0.0054 0.0043

Prostate_GE_R Avg 0.0483 0.0587 0.1280 0.1549 0.1647 0.0480 0.1485

Std 0.0109 0.0149 0.0092 0.0138 0.0092 0.0115 0.0084

SMK_CAN_187_R Avg 0.2066 0.2282 0.3347 0.3503 0.3607 0.2129 0.3461

Std 0.0159 0.0143 0.0057 0.0083 0.0065 0.0132 0.0066

Mean Rank F-test 1.30 3.00 4.10 5.70 6.90 1.70 5.30

Table 13: Average fitness values for BEGWO4 and other state-of-the-art algorithms

Benchmark RBA-KNN

KNN 0.01 0.25 0.5 0.75 bEGWO4-KNN

Feat Acc Feat Acc Feat Acc Feat Acc Feat Acc Feat Acc

ALLAML_R 7129 0.792 71 0.958 1782 0.917 3565 0.861 5347 0.833 29.05 0.971

CLL_SUB_111_R 11340 0.477 113 0.514 2835 0.577 5670 0.514 8505 0.505 69.80 0.763

colon_R 2000 0.758 20 0.887 500 0.855 1000 0.806 1500 0.806 78.95 0.928

GLI_85_R 22283 0.824 223 0.859 5571 0.859 11142 0.835 16712 0.847 262.70 0.949

GLIOMA_R 4434 0.820 44 0.840 1109 0.820 2217 0.800 3326 0.820 108.05 0.900

lung_discrete_R 325 0.836 3 0.411 81 0.918 163 0.904 244 0.849 22.85 0.908

lung_R 3312 0.961 33 0.936 828 0.961 1656 0.961 2484 0.956 87.30 0.970

lymphoma_R 4026 0.917 40 0.844 1007 0.938 2013 0.938 3020 0.938 96.40 0.948

Prostate_GE_R 5966 0.833 60 0.931 1492 0.922 2983 0.882 4475 0.873 39.80 0.947

SMK_CAN_187_R 19993 0.679 200 0.706 4998 0.733 9997 0.706 14995 0.706 70.20 0.771

Rank (F-test) 5.30 3.60 2.65 4.00 4.35 1.10

Table 14: Comparison of wrapper FS (BEGWO-KNN) with filter method (RBA-KNN) in

terms of accuracy and feature size (Feat).
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and exploitation phases was adjusted by embedding the concept of transition parameters
using various non-linear decreasing strategies. The proposed approaches were validated
on a set of ten challenging biological datasets. It is found that the proposed improved
version BEGWO4 outperformed the other three enhanced variants as well as the con-
ventional binary version of the GWO optimizer. In addition, the BEGWO4 FS approach
has also shown better performance, especially in terms of classification accuracy, than
several optimization algorithms, including BWOA, BPSO, BBA, BALO, BHHO, and
BGSA. It can be concluded that the proposed BEGWO-based wrapper FS can satisfy
biological classification tasks with a minimal subset of features and better accuracy rates.

Although the proposed GWO-based FS approach has shown promising performance,
we still need to assess its performance in other domains such as text classification and
micro-array data classification to emphasize its robustness. The evaluation of the proposed
approach using further datasets would offer further insight for the efficacy of the proposed
approach. Our future works will focus on evaluating the proposed improved BEGWO4
algorithm on other real classification problems. In addition, the same parameter (a) that is
used for controlling the transition of the search process from exploration to exploration is
also used in other algorithms such as WOA and HHO. One of the future work directions
is to apply the same proposed decreasing strategy of the value of (a) parameter to the
same parameter in WOA and HHO algorithms to investigate their performance in the FS
domain.
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