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Abstract Due to the high complexity of real problems, a considerable amount of research that

deals with high volumes of information has emerged. The literature has considered new applications

of data analysis for high dimensional environments in order to manage the difficulty in extracting

knowledge from a database, especially with the increase in social and professional networks. Tri-

adic Concept Analysis (TCA) is a technique used in the applied mathematical area of data analysis.

Its main purpose is to enable knowledge extraction from a context that contains objects, attributes,

and conditions in a hierarchical and systematized representation. There are several algorithms that

can extract concepts, but they are inefficient when applied to large datasets because the compu-

tational costs are exponential. The objective of this paper is to add a new data structure, binary

decision diagrams (BDD), in the TRIAS algorithm and retrieve triadic concepts for high dimen-

sional contexts. BDD was used to characterize formal contexts, objects, attributes, and conditions.

Moreover, to reduce the computational resources needed to manipulate a high-volume of data, the

usage of BDD was implemented to simplify and represent data. The results show that this method

has a considerably better speedup when compared to the original algorithm. Also, our approach

discovered concepts that were previously unachievable when addressing high dimensional contexts.
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1 Introduction

Initially proposed by Rudolf Wille [Wille, 1982], Formal Concept Analysis (FCA) uses
the lattice concept theory to design and analyze conceptual hierarchies from a set of
objects and their properties [Davey and Priestley, 2001]. In FCA, concepts that are part of
a conceptual hierarchy correspond to abstractions of the problem domain, which contain
one or more attributes, describing one or more objects. FCA can be used in knowledge
representation and organization, and to identify formal concepts and their dependencies.

Despite the benefit of FCA, which is to transform data into intelligible information
(knowledge), it has some limitations, for example, the limitation to represent only the
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relationship between attribute and objects. Although dyadic approaches have been suc-
cessful in many applications [Tang et al., 2015] [Zhang et al., 2013], there have been
situations suggesting an extension of formal concepts by a third component. This demand
extends FCA, based on a formalization of the triadic relation, connecting formal objects,
attributes and conditions. Similar to dyadic contexts, triadic contexts can be represented
by three-dimensional cross tables. Triconcepts and trilattices have similar forms with
formal concepts and concept lattices, respectively. Therefore, Triadic Concept Analysis
(TCA) was proposed to deal with the third element that was added to the dataset (condi-
tions) [Lehmann and Wille, 1995] [Wille, 1996]. TCA can provide an approach to solve
existing problems among three-dimensional data, such as Folksonomy, in which users,
tabs, and sources have a relation between them (three dimensions).

In 2006, an algorithm that works with the Triadic Formal Context to extract concepts
was proposed. In [Jaschke et al., 2006], due to the problem of finding all the triadic
concepts using a formal context, they proposed the algorithm known as TRIAS which
performs dyadic projections to determine the dilemma. They changed the dyadic idea of
mining all the item sets of the dyadic context to a triadic approach [Pei et al., 2000] .

The advance of technology has facilitated the process of collecting and storing data,
leading to an increase in processing and storage requirements. This amount of data from
various sources makes analysis impractical, especially when it has to generate intelligent
information. Therefore, for triadic domains, techniques are needed to process, or assist
in the acquisition of triadic information from data.

To improve performance in a high-dimensional context, different approaches that
used Binary Decision Diagrams (BDD) were identified. BDDs are structures used to
describe Boolean formulas canonically. Using these structures, it is possible to reduce
space and simplify the number of operations, and consequently, reduce the number of
computational resources utilized to manipulate data.

An algorithm to extract formal concepts using BDD was proposed by [Yevtushenko,
2002]. The BDD was used to express the list of concepts. Contexts with 900 objects x 50
attributes were used and it was proven to have a better runtime only in contexts with high
density. Unlike [Yevtushenko, 2002], in [Rimsa et al., 2009] BDD was used to extract
concepts, but the goal was to check different BDD libraries and ensure which library
was the best option to be used in FCA. The goal was to obtain a set of intentions and
its use of brute force methods, and BDDs were applied to represent the extensions. The
algorithms that had the BDD structure proven to be more efficient, in terms of runtime,
than the original version.

In [Santos et al., 2018], the author’s modifications proposed to extract proper impli-
cations [Ganter et al., 2005], ProperIm, from dyadic formal context, adding BDDs in
the data structure. The ProperImplicBDD algorithm, proposed by the authors, presented
better speedup. They tested several contexts, varying the quantity of attributes and density
for 120,000 defined objects. In all the existing literature, BDDs have thus been applied
successfully to work as a more efficient data structure in all approaches.

The main objective of this paper is to improve the performance of the TRIAS al-
gorithm using an alternative data structure based on Binary Decision Diagrams (BDD)
to represent formal contexts. As a consequence of these performance gains with BDD,
manipulating high dimensional formal contexts, in terms of object quantity, attributes
and conditions, obtains triadic formal concepts efficiently. The TRIAS algorithm was
chosen for this work because it projects, from a triadic context, dyadic contexts to retrieve
triadic concepts. Once projected, it enables the usage of a binary structure (BDD) that
can easily manipulate data and perform logical operations directly in memory efficiently.
Therefore, it is possible to work with a large volume of data allowing us to deal with
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high dimensional triadic contexts.
Additionally, we applied the efficient strategies of searching on BDDs in the TRIAS

algorithm, specifically in the derivation operators (main operators of FCA and TCA
theory) to extract formal concepts. Our approach allows the representation of triadic
contexts using BDD in order to store andmanipulate high-dimensional contexts efficiently
[Akers, 1978].

The results from the TRIAS and the proposed algorithm TRIAS-BDDwere compared.
The results from the TRIAS-BDD were up to 56% faster than those without the BDD
structure. Moreover, the TRIAS-BDD achieved results (concepts) that the original TRIAS
was not able to achieve - considering high dimensional contexts (120,000 objects x 15
attributes x 5 conditions).

The remainder of this paper is organized as follows. Section 2 presents the related
work. Section 3 introduces the main definitions of FCA, TCA, BDD, TRIAS and SCGaz.
The details of the proposed algorithm are described in Section 4. The experiments and
results are presented in Section 5. Finally, Section 6 draws conclusions and proposes
future work.

2 Related Work

In the literature, there are various works, some of them dating back to 1995 [Wille,
1995] [Lehmann andWille, 1995], that have focused on triadic context analysis, concepts,
diagrams and algorithms.

In [Trabelsi et al., 2012], the authors compared the results from three different triadic
algorithms: TRICONS, TRIAS and DATA-PEELER. The same approach was used
in [Ignatov et al., 2015]. The authors presented several definitions of optimal patterns
for triadic data and the results of experimental comparisons of three triadic algorithms
applied to both the real-world and synthetic datasets - including TRIAS.

There are many papers about applications of TCA, especially for analyzing data
such as Folksonomy [Ignatov et al., 2011] [Trabelsi et al., 2012]. Recently, the idea
of triadic decision contexts was proposed by combining triadic contexts and the rule
acquisition method [Tang et al., 2016]. Analogously to FCA, many problems in TCA
can be solved, such as acquisitions of triadic concepts, mining rules and the extraction of
triadic association and implication rules.

In order to find common patterns in a substantial transactional database, BDDs were
applied to record transaction logs as a truth table [Salleb et al., 2002]. Therefore, it was
possible to load all the transactions into the main memory, eliminating the process for it
to be stored on the hard disk, thereby presenting more efficient results.

In [Santos et al., 2018], alterations to extract implications ProperIm in a dyadic
formal context were proposed, applying BDDs in the structure to extract and manipulate
proper rules. The ProperImplicBDD solution had a better execution runtime. The tests
changed the density percentage and quantity of attributes for 120,000 objects.

Other important research is to handle the complexity of large contexts in FCA. There
are some approaches in the literature that deal with this problem, such as: using proper
implications extracted from a reduced concept lattice to represent the behavior of the
process being studied in a symbolic and qualitative form [Dias et al., 2020]

However, no triadic approaches have been found that use the efficient manipulation
provided by BDDs. Therefore, this work presents an approach for triadic contexts by
way of BDDs through dyadic projections.
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Planets Small Medium Big Near Far Moon_Yes Moon_No

Mercury × × ×

Venus × × ×

Earth × × ×

Mars × × ×

Jupiter × × ×

Saturn × × ×

Uranus × × ×

Neptune × × ×

Pluto × × ×

Table 1: Formal Context - Planets

3 Background

3.1 Formal Context

Formally, a dyadic context is defined by the triple (G,M, I), where G is defined by the
set of objects,M is defined through a set of attributes, and I is the relationship of the
objects and their attributes - I ⊆ G×M [Ganter et al., 2005].

Table 1 exemplifies a formal context. In this example, objects correspond to planets,
attributes are the characteristics, and the relationship of incidence represents whether or
not the planet has that characteristic. A planet has that characteristic if and only if there
is an ”X” at the intersection between the row and the respective column.

3.2 Formal Concepts

Let (G,M, I) be a formal context, A ⊆ G a subset of objects and B ⊆ M a subset of
attributes. Formal concepts can be defined through the pair (A,B) where A ⊆ G is
known as an extension and B ⊆ M is known as an intention. This pair must follow the
conditions where A = B′ and B = A′ [Ganter et al., 2005]. The relation between them
is defined through the derivation operator ( ′ ):

A′ = {m ∈ M | ∀ g ∈ A, (g,m) ∈ I}
B′ = { g ∈ G| ∀m ∈ B, (g,m) ∈ I}

If A ⊆ G, then A′ is a set of attributes common to the objects of A. The derivation
operator (′) can be reapplied in A′ resulting in a set of objects again (A′′). Intuitively,
A′′ returns the set of all objects that have the attributes of A′ in common; note that A ⊆
A′′. The operator is similarly defined for the attribute set. If B ⊆M , then B′ returns the
set of objects that have the attributes of B in common. As a result, B′′ returns the set of
attributes common to all objects that have the attributes of B in common; consequently,
B ⊆ B′′. For example, the concepts described in Table 2 were extracted from Table 1.

3.3 Triadic Concept Analysis

Initially, TCA was defined by Lehmann and Wille [Lehmann and Wille, 1995] which
extends FCA, but a new dimension was added [Wille, 1995].
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Objects Attributes

{Mercury,Venus,Earth,Mars,Jupiter,Saturn,Uranus,Neptune,Pluto} {}

{Mercury,Venus,Earth,Mars,Pluto} {Small}

{Earth,Mars,Jupiter,Saturn,Uranus,Neptune,Pluto} {Moon_Yes}

{Mercury,Venus,Earth,Mars} {Near,Small}

{Earth,Mars,Pluto} {Small,Moon_Yes}

{Jupiter,Saturn,Uranus,Neptune,Pluto} {Far,Moon_Yes}

{Mercury,Venus} {Big,Near,Small}

{Earth,Mars} {Small,Near,Moon_Yes}

{Pluto} {Small,Far,Moon_Yes}

{Jupiter,Saturn} {Big,Far,Moon_Yes}

{Uranus,Neptune} {Medium,Far,Moon_Yes}

{} {Small,Medium,Big,Near,Far,Moon_Yes,Moon_No}

Table 2: Concepts extracted from the Planets Formal Context - Table 1

3.4 Triadic Formal Context

Formally, a triadic context is given by the quadruple (K1,K2,K3,Y ), where K1, K2

andK3 is defined by the sets and Y the relation of theK1,K2 andK3, i.e., Y ⊆K1 x
K2 x K3, the elements of K1, K2, and K3 are called (formal) objects, attributes, and
conditions, respectively, and (g,m, b) ∈ Y is read: the object g has the attributem under
the condition b. An example of a triadic context is represented in Table 3. This example
shows the dataset with 3 dimensions: Customers, Suppliers and Products. We have the
Customers {1,2,3,4,5} as objects, Suppliers {P,N,R} as attributes and Products {a,b,c,d}
as conditions.

K P N R K P N R

a b c d a b c d a b c d

1 abd abd ac 1 X X X X X X X X

2 ad bcd abd ≡ 2 X X X X X X X X

3 abd d ab 3 X X X X X X

4 abd bd ab 4 X X X X X X X

5 ad ad abd 5 X X X X X X X

Table 3: Triadic formal context example - Customers {1,2,3,4,5} , Suppliers {P,N,R}

and Products {a,b,c,d}

3.5 Triadic Concepts

LetK = (K1,K2,K3,Y ) be a triadic context, it gives rise to the following dyadic projected
context:

– T = (K1,K2 xK3, Y
(1)) where gY (1)(m, b) ⇐⇒ (g,m, b) ∈ Y (1) - Table 4.

The definition described above yields the derivation operators of the dyadic projected
context T . Let K = (K1,K2,K3, Y ) be a triadic context, for X1 ⊆ K1 and (X2,X3) ⊆
K2 xK3, the derivation operator (

′) is defined by [Lehmann and Wille, 1995]:

X ′
1 = {(a2, a3) ∈ K2 × K3 | (a1, a2, a3) ∈ Y ∀a1 ∈ X1} (1)
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(X2, X3)
′ = {a1 ∈ K1 | (a1, a2, a3) ∈ Y ∀(a2, a3) ∈ X2 ×X3} (2)

T Pa Pb Pc Pd Na Nb Nc Nd Ra Rb Rc Rd

1 X X X X X X X X

2 X X X X X X X X

3 X X X X X X

4 X X X X X X X

5 X X X X X X X

Table 4: Customers, Suppliers, Products context projected by Suppliers x Products

{Pa,Pb,Pc,Pd,Na,Nb,Nc,Nd,Ra,Rb,Rc,Rd}

Triadic concepts can be defined using the derivation operators from Equations 1 and
2. Let K = (K1,K2,K3,Y ) be a triadic context, A1 ⊆K1. If B = A′

1 = (A2, A3) for A2

⊆K2 andA3 ⊆K3. IfB
′ = (A2, A3)

′ =A1, then (A1, A2, A3) is called a triadic concept,
where A1, A2 and A3 are called the extent, the intent, and the modus, respectively.

The concept {5,PNR,ad} is an example from Table 3. First, it determines the set
of all attributes which all objects of A2 have under all conditions of X3; second, A1 is
extended to the set of all objects having all those attributes under all conditions of X3;
and third, A3 is extended to the set of all conditions under which each of the derived
objects has each of the derived attributes. Table 5 presents all the concepts found.

3.6 Binary Decision Diagram

Initially presented by [Akers, 1978] and improved by [Bryant, 1986], BDD provides a
representation in a canonical format for a more compressed Boolean formula than normal
disjunctive and conjunctive forms. It is substantially more compact than these traditional
structure forms and it can be manipulated much more efficiently [Bryant, 1986]. Thus,
in general, it is more efficient in handling data.

In terms of structure, it is a directed acyclic graph, and it has two different nodes:
nonterminal and terminal. The nonterminal nodes determine the variables of the Boolean
formula, and the two terminal nodes are represented by the values 1 or 0. It occurs when
the function has a false or true value. The dotted line represents a false transition, and
the continuous line represents a positive transition.

Figure 1 represents a binary decision tree for Table 6, and Figure 2 shows an example
of how BDD can be used to illustrate the binary decision tree presented in Figure 1.
Note that solid lines illustrate that a specific object has that attribute, and dotted-lines
illustrates that the object does not have that attribute.

As presented, it is feasible to characterize the same information through a more
compact structure than the previous one. In the proposed approach, the goal is to define
the formal context as BDD. As example, Equation 3 represents the Boolean formula
that corresponds the formal context of Table 7. For a better understanding of the formal
context, the object label was replaced by numbers and attributes changed to letters: James
( 1 ), Greg ( 2 ), Catheryn ( 3 ), David ( 4 ), Shannon ( 5 ) and Google (a), YouTube (b),
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Object(s) Attribute(s) Condition(s)

{} {P,N,R} {a,b,c,d}

{5} {P,N,R} {a,d}

{4} {P,N,R} {b}

{3,4} {P,R} {a,b}

{2} {N} {b,c,d}

{2} {N,R} {b,d}

{2,5} {R} {a,b,d}

{2,5} {P,R} {a,d}

{2,5} {P,N,R} {d}

{2,4} {N,R} {b}

{2,3,4,5} {R} {a,c}

{1} {R} {a,c}

{1} {P,N} {a,b,d}

{1,5} {P,N} {a,d}

{1,5} {P,N,R} {a}

{1,4} {P,N} {b,d}

{1,3,4} {P} {a,b,d}

{1,2,4} {N} {b,d}

{1,2,3,4,5} {P} {ad}

{1,2,3,4,5} {P,R} {a}

{1,2,3,4,5} {P,R} {a}

{1,2,3,4,5} {} {a,b,c,d}

{1,2,3,4,5} {P,N,R} {}

Table 5: Triadic Concepts extracted from Table 3

X Y Z F (X, Y, Z)

0 0 0 1

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 0

1 1 0 1

1 1 1 1

Table 6: Binary Decision Tree Table Example

Facebook(c), Wikipedia (d). As an example, object 1 (James) is represented by the path
Google, YouTube, Facebook, Wikipedia.

f(a, b, c, d) = abcd+ abcd+ abcd+ abcd+ abcd (3)

It must be noted that Equation 3 represents all the instances of the formal context
(Table 7). The attribute a, without the slash over it, is true and it means that the part of
the function is valid. In other words, this object has this attribute a, while a means the
contrary. The abcd part was created to attest the James and David objects, abcd was
generated to attest the Shannon and Greg objects, and abcd to confirm the Catheryn
object.
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Figure 1: Binary Decision Tree example

Figure 2: BDD Example from Figure 1

Google (a) Youtube (b) Facebook (c) Wikipedia (d)
James (1) X . X .

Greg (2) . X X X

Catheryn (3) . X . .

David (4) X . X .

Shanon (5) . X X X

Table 7: An example of the formal context

BDD which corresponds to the context presented in Table 7 - described by Equation
3 - is illustrated in Figure 3. Although BDD is a substantially more compact structure
than traditional forms, some limitations should be considered during its use since spatial
complexity depends on the order in which its variables are added. In [Bryant, 1986] the
author uses, as an example, two variables (a and b) that work as a two-bit comparator.
The variable a is composed by bits a1 and a2 and the variable b by the bits b1 and b2.
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Figure 3: BDD that represents Table 7

The value of a is equal to the value of b, when a1 = b1 and a2 = b2, otherwise they
are different. If the BDD is built using the order a1 < a2 < b1 < b2 the result has 11
nodes. However, if we kept the related variables closer, in the order a1 < b1 < a2 < b2
the resulting BDD would have 8 nodes. In other words, according to [Bryant, 1986],
depending on the order in which variables are added to the BDD, the complexity can
become exponential. In our work, we used the BDD package which decides the best
variable ordering by itself.

In order to build the BDD structure for a formal context, the BDD library CUDD
(Colorado University Decision Diagram) was chosen for providing function packages
to work with Binary Decision Diagrams (BDDs) besides having more recent updates
[Javabdd, 2019].

3.7 TRIAS Algorithm

In [Jaschke et al., 2006], the authors defined the mining problem of all triadic concepts
from a formal context. Finally, the TRIAS algorithm was proposed, which aims to
resolve the problem through dyadic projections. They assumed the dyadic idea approach
of mining all the item sets of the formal context, defined in [Pei et al., 2000] for a triadic
context. They also introduced the TRIAS algorithm to compute all the frequent triadic
concepts of a folksonomy formal context. Given K = (K1,K2,K3, Y ) a triadic context,
the TRIAS algorithm builds a dyadic context T = (K1,K2 ×K3, Y )where columns are
related to a tuple (pairs of elements) that belongs toK2 andK3 and through projection.
Then, the process to extract all concepts.
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The TRIAS algorithmwas developed usingNextClosure generating concepts [Jaschke
et al., 2006]. Thus, it was decided to use the same approach. However, the original
implementation, defined in [Ganter, 2010] uses a bit structure to store objects and their
attributes and conditions. The proposed approach was implemented using BDD that will
be explained in the following section.

3.8 SCGaz - Synthetic Context Generator

Due to the high complexity to obtain a database from real scenarios, the usage of a
synthetic dataset to generate triadic formal contexts is an interesting approach. The real
database requires pre-processing, and if not performed correctly, may impact the results
directly. Therefore, it is important to use tools that can simulate real data. It is also
useful to compare and analyze results among algorithms, as realized in [de Moraes et al.,
2016] [Santos et al., 2018].

The SCGaz is a synthetic random generator for dyadic formal contexts [Rimsa et
al., 2013]. It is feasible to determine the quantity of objects, attributes and density for
a formal context. The density values may vary according to the dimensions or can be
determined in advance for a given context. The context created is irreducible. In other
words, at least one attribute shares one object and vice-versa. In FCA, objects that share
the same attributes are considered redundant. In this case, they will not be added to the
generated context.

4 Proposed Algorithm

4.1 Applying Binary Decision Diagram in TCA

Given a formal triadic context (K1,K2,K3, Y) whereK1 is a set of objects,K2 a set of
attributes,K3 a set of the conditions, and Y the relation ofK1,K2 andK3, the projection
approach is applied in a triadic context (Table 8), and as a result, a dyadic context is
defined (K1,K2 ×K3, Y) (Table 9).

K1/K2-K3 c1 c2 c3
a1 a2 a1 a2 a1 a2

o1 × × ×
o2 × × ×
o3 × × × ×

Table 8: Triadic Context (K1,K2,K3, Y)

The proposed projection is the result of a combination of attributes and conditions.
Each attribute is labeled according to the condition it belongs to. The retrieval and
manipulation of attributes and conditions have to be done by the label defined to each
attribute. In the context shown in Table 9, the dyadic incidence is defined by the tuple
(o1, a1c1), and it is the same as the triadic incidence given by the triple (o1, a1, c1) of
the context shown in Table 8.

After the triadic context is projected to a dyadic context, it can be expressed by a
BDD, converting the context from its normal structure to Boolean formulas that will be
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K1/K2×K3 a1c1 a2c1 a1c2 a2c2 a1c3 a2c3
o1 × × ×
o2 × × ×
o3 × × × ×

Table 9: Projecting to a Dyadic Context (K1,K2 × K3, Y)

used to generate the analogous BDD. Table 9 presents the triadic context projected to
a dyadic context. Equation 4 shows it through disjunctive and conjunctive operations
between objects and attributes. The symbols with a slash over the letter represent the
attribute as false.

f(a1c1, a2c1, a1c2, a2c2, a1c3, a2c3) = (a1c1 · ¯a2c1 · ¯a1c2 · a2c2 · a1c3 · ¯a2c3)

+( ¯a1c1 · a2c1 · a1c2 · ¯a2c2 · ¯a1c3 · a2c3) + (a1c1 · ¯a2c1 · a1c2 · ¯a2c2 · a1c3 · a2c3)
(4)

Figure 4: A Formal Context represented by a BDD.

Figure 4 illustrates the triadic context through the dyadic projection that was defined
by Expression 4. This representation allows manipulating triadic contexts using a BDD,
providing efficient manipulation and storage [Bryant, 1986]. Given a triadic context
projected and represented by a BDD, it is possible to provide strategies for recovering
objects, attributes and conditions, since any algorithm that uses this representation
requires retrieving and changing these elements.
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Given the context shown in Table 9, retrieving objects can be performed, as an
example, from logical operations OR or AND under Equation 4. If it is necessary to
obtain all objects that have the attribute a1c2, it has to create a BDD that contains the
attribute and perform a logical operation AND between BDDs. Figure 5 shows this
operation, which returns a new BDD with objects o2 and o3 since both are sharing the
same attribute a1c2.

Figure 5: Logical operation - attribute a1c2 x BDD Context.

If it is necessary to retrieve all objects that have, as an example, attributes a1c1 and
a1c3, the operation demonstrated previously can be used (Figure 6).

Figure 6: Logical operation - attribute a1c1 and a1c3 x BDD Context.

As presented in our experimental results (Table 13), TRIAS did not return any
concept when submitted to process high-dimensionality contexts - as an example, it did
not provide a concept from a context with 120,000 objects, 15 attributes and 5 conditions
within 14 days. The proposed algorithm in this work includes the BDD structure which
is used to represent the triadic context. Algorithm 1 gets the input file where the lines
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are the incidences that represent a formal triadic context. Additionally, each line defines
if that object possesses that attribute x condition. The algorithm runs through all the
objects, attributes x conditions and, if an object possesses the attribute x condition, the
BDD variable indicated by (g,m, b) ∈ I is included in the temporary BDD (node is
true). Differently, a false node will be added. Lastly, it joins the BDD which represents
the objects (BDDTemp) to the BDD which corresponds to the context (ContextBDD).

Algorithm 1: LoadTCAContext() - Function to create the triadic context using

Binary Decision Diagram

Input :Formal Triadic Context (G,M,B, I)
Output :Formal Triadic Context structured as a BDD (ContextBDD)

1 BDDTemp = ∅
2 ContextBDD = ∅
3 forall g ∈ G do
4 forallm ∈ M do
5 forall b ∈ B do
6 if (g,m, b) ∈ I then
7 BDDTemp = BDDTemp.nodeTrue
8 else
9 BDDTemp = BDDTemp.nodeFalse ;

10 end
11 ContextBDD = ContextBDD ∪ BDDTemp
12 end

13 end

14 end
15 return ContextBDD

After the BDD which represents the formal context is created, it is simple to execute
some operations. Then, using the advantage of the inherited optimization to the structure
shown in Algorithm 4. The algorithm provides a BDD containing all the objects that
have the attributes and conditions defined. In our example, Table 9, there are conditions
and attributes such as c1a1, c1a2, c1a3, c2a1, c2a2, c2a3, c3aC1, c3a2 and c3a3. Note
that it requires only a logical AND operation with BDD. As a result, the ”Objects”
variable will contain a BDD that represents objects that shares attributes and conditions
c1a1, c1a2, c1a3, c2a1, c2a2, c2a3, c3a1, c3a2 and c3a3.

4.2 Extracting Triadic Concepts through BDD

As explained in subsection 3.7, TRIAS was implemented using the NextClosure structure
[Jaschke et al., 2006]. The basic logic of Algorithm NextClosure was not modified.
However, modifications have been implemented to this Algorithm to support the new
structure (BDD) - it has been denominated NextClosureBDD. The difference is the data
type used to represent the formal context, objects, attributes and conditions. All of these
structures are represented using BDDs.

The Concepts Extraction() function described in Algorithm 2 is the one responsible
to identify and extract the formal concepts.

The module responsible for loading the formal context, LoadTCAContext(), receives
as an input the file in TXT format, which describes the formal context that needs to
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Algorithm 2: Concepts Extraction

Require :Formal triadic context
Ensure :Set of all formal concepts

1 LoadTCAContext(TXTFile, Context)
2 X = θ
3 whileX.size() < Context.NumAttributesConditions.size() do
4 X = NextclosureBDD(X,ExtentBDD, IntentBDD)
5 ConceptList.add(ExtentBDD, IntentBDD)
6 end

be processed. A bit matrix stores the data. When an object has a certain attribute and
condition, the corresponding attribute and condition bit is set to a true value. All other
operations performed in the context also handle data in this format. It initializes the
attribute and condition set (variableX , in Algorithm 2) with an empty set. The variable
increases in lexicographical order until it has all the attributes and conditions of the con-
text. The Algorithm calls NextClosureBDD while the attributes and conditions set is not
complete. Internally, AlgorithmNextClosure calls the functionDoublePrime (Algorithm
3) which is responsible for the double derivation. The computational complexity of the
NextClosure algorithm is θ (|2G | G |M | B |) [Carpineto and Romano, 2005].

Algorithm3 returns a set of attributes x conditions derived from the provided attribute
set. Basically, the algorithm uses two operations. In the first one, the Extent of provided
attributes and conditions are computed. In other words, all objects sharing the attributes
and conditions provided as parameters are extracted from the formal context. The second
function (Intent) computes the final derivation, which returns the intents of the object set
returned by the first derivation. The function identifies all attributes x conditions that
were shared by the objects obtained from the function extent. This attribute set represents
the final derivation of the original attribute set.

Algorithm 3: DoublePrime Algorithm - (′′) operator

Require :Attribute and Condition setX ⊂ (M,B)
Ensure :X′′ = Attribute and Condition set derived from X

1 X ′ = ExtentBDD(FormalContext,X)
2 X ′′ = IntentBDD(FormalContext,X ′)
3 returns X ′′

In order to obtain the extent, Algorithm 4 was implemented to manipulate BDDs.
For each searched attribute and condition, the algorithm process through all structure,
eliminating objects which do not have the specified attribute x condition. Therefore, for
each attribute and condition, the BDD is reduced to the incidence for the same attribute
and condition of the formal context. The computational complexity of the algorithm
is θ(|G| x |X|). Regarding the extraction of the intent, Algorithm 5 also manipulates
attributes and conditions in BDD structure. The algorithm checks the attributes and
conditions in the set of objects passed as a parameter, and only attributes and conditions
present in an object are passed forward to be tested in the next object.

The function responsible for processing the conjunctions of the two BDDs and
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Algorithm 4: ExtentBDD - Retrieves a set of objects that contains the attributes

x conditions of the X

Require :Set of attributes x conditionsX ⊂ (M,B) and Formal Context (G,M,B,Y)
Ensure :Set of objects that contains the attributes x conditions in X

1 X ′ = BDDAnd(ContextBDD,BDDAttributesCondition)′

2 returns X ′

returning the resulting BDD is BDDAnd(). The first BDD is the representation of the
formal context. The second BDD is the set of attributes x conditions that will be shared
by the context of the object. As described in Algorithm 1, the context BDD is formed by
a sequence of BDDs representing objects and linked by OR operators, whose attributes
and conditions are nodes of that BDD.

Algorithm 5: IntentBDD - Retrieves the set of attributes x conditions shared

for all the objects in X′

Require :The objects setX ′ ⊆ G (BDD)
Ensure :Set of attributes x conditions that were shared by the objects in X′

1 for (all m ∈ M ) & (all b ∈ B) do
2 BDDAttributeCondition = (m, b)
3 BDDtmp = BDDAnd(X ′, (m, b))
4 if BDDtmp = X ′ then
5 AttributeConditionList = (m, b) ∪AttributeConditionList
6 end

7 end
8 for all attributecondition ∈ AttributeConditionList do
9 X ′′ = BDDAnd(X ′′, attributecondition)

10 end

11 returnsX ′′

Algorithm 5 receives the BDD which represents the set of objects. The algorithm
loops through all attributes and conditions of the formal context, assembling BDDs for
each one. If the concomitance of the attribute x condition BDD and the object BDD
results is the same BDD as the original object BDD, it implies that all the represented
objects by that object BDD have the attribute x condition by that BDD (attribute x
condition). This attribute x condition is added into a separate list (attribute x condition).
Afterward, it creates a BDD that contains all the attributes x conditions shared by the
objects. This idea is the same used by the original algorithm; the difference is that the
solution approach does not test every object individually. The computational complexity
of the algorithm is θ(|M |x|B|x|X ′|).

5 Experiments and Results Analysis

Our experiments considered two types of triadic contexts - synthetic (subsection 5.1)
and real contexts (subsection 5.2). The results (time execution) were compared for both
TRIAS and TRIAS BDD Algorithms.
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The experiments were run on an Intel Core i7-4790 3.60GHz with 8 cores, 16 threads,
32GB RAM and Ubuntu 18.04 LTS operating system. Our approach was developed
using sequential processing.

5.1 Results for the synthetic triadic contexts

The random synthetic generator SCGaz was used to generate several contexts. The
main objective was to evaluate the performance of TRIAS and TRIAS BDD in the
concept extraction. Initially, synthetic triadic contexts with an arbitrary number of objects,
dimensions, conditions and densities were generated to be used in both algorithms. In
this work, contexts with 500, 1,500, 3,000, 5,000 and 10,000 objects were created with
10, 15 and 20 attributes and 5 conditions. The density was fixed at 30%, 50% and 70%
for all contexts.

In order to perform an adequate statistical analysis, 10 different contexts were gener-
ated for each testing scenario randomly.

The results presented in Table 10, Table 11, Table 12 and Table 13 correspond to
the time execution average of the 10 contexts. In Table 10, Table 11 and Table 12, cells
with the “-” symbol show that the algorithm failed to complete the concepts extraction
processing within 7 days.

The proposed algorithm (TRIAS BDD) consumed less memory and allowed the
algorithm to extract concepts in larger and denser contexts. The cells in bold present the
fastest times.

First, the number of objects of each context was increased while maintaining the
number of attributes, conditions and density. Second, the density of each context was
varied. Lastly, the number of attributes were increased to make our contexts more
complex in order to test both algorithms and observe their behaviors in high-dimensional
scenarios.

As presented in Table 10, which considers 10 attributes and 5 conditions, it can be
seen that the TRIAS BDD algorithm showed a higher speedup than TRIAS, varying
between 28% and 36%, for 30% density and between 12% and 22% for 50% density.

Considering the density of 30%, there was no relationship of proportionality between
the increase in the number of objects and the percentage variation of speedup. However,
when the 50% density is observed, a reduction in speedup is directly proportional to
the number of objects, up to 5,000 objects. For 10,000 objects, TRIAS BDD’s speedup
percentage gain compared to TRIAS was exactly the same achieved for 500 objects
(22%).

Analyzing the density of 70%, it can be observed that TRIAS BDD obtained a
speedup greater than TRIAS for 500, 1,500 and 5,000 objects, presenting a variation
between 6% and 19%. However, for 3,000 objects, TRIAS showed a speedup greater
than TRIAS BDD by 5%.

It is important to note that TRIAS did not obtain results for 10,000 objects and a
density of 70% in the same context of attributes and conditions, which did not allow the
comparison between the algorithms.

As can be seen in Figure 7, considering the context of 10 attributes, 5 conditions and
30% density, for processing context with 500 objects, TRIAS spent 4.55 minutes and
TRIAS BDD spent 3.57 minutes, a difference of 0.98 minutes in favor of TRIAS BDD.
For processing context with 1,500 objects, TRIAS spent 19.36 minutes and the proposed
algorithm spent 13.16 minutes, which is a difference of 6.2 minutes less. For processing
context with 3,000 objects, the original algorithm spent 30 minutes and the proposed
algorithm spent 21.70 minutes. This difference corresponds to 8.3 minutes in favor of
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Context

(GxMxB)
Density (%) Incidences

TRIAS

(Minutes)

TRIAS BDD

(Minutes)
SpeedUp (%)

500x10x5 30 7,500 4.55 3.57 22%

1,500x10x5 30 22,500 19.36 13.16 32%

3,000x10x5 30 45,000 30.00 21.70 28%

5,000x10x5 30 75,000 55.18 35.32 36%

10,000x10x5 30 150,000 119.53 82.48 31%

500x10x5 50 12,500 7.09 5.53 22%

1,500x10x5 50 37,500 31.62 25.61 19%

3,000x10x5 50 75,000 54.85 46.62 15%

5,000x10x5 50 125,000 130.37 114.72 12%

10,000x10x5 50 250,000 292.19 227.91 22%

500x10x5 70 17,500 9.09 7.37 19%

1,500x10x5 70 52,500 39.52 33.20 16%

3,000x10x5 70 105,000 62.22 65.33 -5%

5,000x10x5 70 175,000 128.76 121.03 6%

10,000x10x5 70 350,000 - 269.61 -

Table 10: Results for TRIAS x TRIAS BDD Algorithms - 10 attributes and 5 conditions

TRIAS BDD. For processing context with 5,000 objects, TRIAS spent 55.18 minutes and
TRIAS BDD spent 35.32 minutes, which corresponds to a difference of 19.86 minutes in
favor of the proposed algorithm. For processing context with 10,000 objects, TRIAS spent
119.53 minutes while TRIAS BDD spent 82.48 minutes, corresponding to a difference
of 37.05 minutes.

Figure 7: Contexts with 10 attributes, 5 conditions and 30% density

As shown in Figure 8, considering the context of 10 attributes, 5 conditions and
50% density, for processing context with 500 objects TRIAS spent 7.09 minutes and
TRIAS BDD spent 5.53 minutes, a difference of 1.56 minutes in favor of the proposed
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algorithm. For processing context with 1,500 objects, TRIAS spent 31.62 minutes and
TRIAS BDD spent 25.61 minutes, which corresponds to a difference of 6.01 minutes
less for the proposed algorithm. For processing context with 3,000 objects, TRIAS spent
54.85 minutes and TRIAS BDD spent 46.62 minutes. This difference corresponds to
8.23 minutes in favor of TRIAS BDD. For processing context with 5,000 objects, the
original algorithm spent 130.37 minutes and the proposed algorithm spent 114.72, which
corresponds to a difference of 15.65 minutes in favor of the proposed algorithm. For
processing context with 10,000 objects, TRIAS spent 292.19 minutes while TRIAS BDD
spent 227.91 minutes, corresponding to a difference of 64.28 minutes.

Figure 8: Contexts with 10 attributes, 5 conditions and 50% density

As can be seen in Figure 9, considering the context of 10 attributes, 5 conditions and
70% density, for processing context with 500 objects, TRIAS spent 9.09 minutes and
TRIAS BDD spent 7.37 minutes, a difference of 1.72 minutes in favor of TRIAS BDD.
For processing context with 1,500 objects, the original algorithm spent 39.52 minutes and
the proposed algorithm spent 33.20 minutes, which corresponds to a difference of 6.32
minutes less. For processing context with 3,000 objects, TRIAS spent 62.22 minutes and
TRIAS BDD spent 65.33 minutes. This difference corresponds to 3.11 minutes in favor
of TRIAS. For processing context with 5,000 objects, the original algorithm spent 128.76
minutes and the proposed algorithm spent 121.03, which corresponds to a difference of
7.73 minutes in favor of the proposed algorithm. For processing context with 10,000
objects, the TRIAS BDD spent 269.61 minutes. TRIAS did not generate results within 7
days. Thus, it was not possible to compare the algorithm’s results.

As presented in Table 11, it can be seen that the TRIAS BDD algorithm presented a
higher speedup than TRIAS, with variations between 19% and 22%, for 30% density and
between 5% and 18% for 50% density. It is important to point out that TRIAS did not
show results, at densities - 30% and 50%, for 10,000 objects, considering 15 attributes
and 5 conditions. Therefore, it was not possible to compare the algorithm’s results.

Analyzing the density of 70%, it is observed that the TRIAS BDD obtained results
for the five contexts with the quantity of the following objects: 500, 1,500, 3,000, 5,000
and 10,000. However, TRIAS only presented results for 500 and 1,500 objects. For
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these values, TRIAS BDD showed a higher speedup than TRIAS, by 22% and 19%,
respectively.

Figure 9: Contexts with 10 attributes, 5 conditions and 70% density

Context

(GxMxB)
Density (%) Incidences

TRIAS

(Minutes)

TRIAS BDD

(Minutes)
SpeedUp (%)

500x15x5 30 11,250 42.68 34.39 19%

1,500x15x5 30 33,750 212.48 166.60 22%

3,000x15x5 30 67,500 376.20 297.49 21%

5,000x15x5 30 112,500 768.8 595.97 22%

10,000x15x5 30 225,000 - 1,348.12 -

500x15x5 50 18,750 53.20 50.28 5%

1,500x15x5 50 56,250 284.56 256.36 10%

3,000x15x5 50 112,500 575.94 488.09 15%

5,000x15x5 50 187,500 1,564.42 1,282.31 18%

10,000x15x5 50 375,000 - 3,155.67 -

500x15x5 70 26,250 122.35 95.48 22%

1,500x15x5 70 78,750 583.78 474.26 19%

3,000x15x5 70 157,500 - 839.92 -

5,000x15x5 70 262,500 - 1,738.24 -

10,000x15x5 70 525,000 - 4,183.66 -

Table 11: TRIAS x TRIAS BDD Algorithms Results 15 attributes and 5 conditions

In all contexts with 15 attributes, the TRIAS BDD was more efficient in all five
object variations with speedup up to 22%. However, in contexts with 10 attributes and 5
conditions, the BDD implementation was faster for contexts with 30% and 50% densities.
For density equal 70%, 3,000 objects, 10 attributes and 5 conditions the original algorithm
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was 5% faster. The main benefit provided by the BDD was to manipulate a more complex
data structure.

As can be seen in Figure 10, considering the context of 15 attributes, 5 conditions
and 30% density, for processing context with 500 objects TRIAS spent 42.68 minutes
and TRIAS BDD spent 34.39 minutes, a difference of 8.29 minutes in favor of TRIAS
BDD. For processing context with 1,500 objects, the original algorithm spent 212.48
minutes and the proposed algorithm spent 166.60 minutes, which corresponds to a
difference of 45.88 minutes less. For processing context with 3,000 objects, TRIAS spent
376.20 minutes and TRIAS BDD spent 297.49 minutes. The difference corresponds
to 78.71 minutes in favor of TRIAS BDD. For processing context with 5,000 objects,
the original algorithm spent 768.8 minutes and the proposed algorithm spent 595.97,
which corresponds to a difference of 172.83 minutes in favor of the proposed algorithm.
For processing context with 10,000 objects, the TRIAS BDD spent 1,348.12 minutes.
TRIAS did not generate results within 7 days. Thus, it was not possible to compare the
algorithm’s results.

Figure 10: Contexts with 15 attributes, 5 conditions and 30% density

As presented in Figure 11, considering the context of 15 attributes, 5 conditions and
50% density, for processing context with 500 objects TRIAS spent 53.20 minutes and
TRIAS BDD spent 50.28 minutes, a difference of 2.92 minutes in favor of TRIAS BDD.
For processing context with 1,500 objects, the original algorithm spent 284.56 minutes
and the proposed algorithm spent 256.36 minutes, which is a difference of 28.2 minutes
less. For processing context with 3,000 objects, TRIAS spent 575.94 minutes and TRIAS
BDD spent 488.09 minutes. The difference corresponds to 87.85 minutes in favor of
TRIAS BDD. For processing context with 5,000 objects, the original algorithm spent
1,564.42 minutes and the proposed algorithm spent 1,282.31, which corresponds to a
difference of 282.11 minutes in favor of the proposed algorithm. For processing context
with 10,000 objects, the TRIAS BDD took 3,155.67 minutes. TRIAS did not generate
results within 7 days. Thus, it was not possible to compare the algorithm’s results.

As can be observed in Figure 12, considering the context of 15 attributes, 5 conditions



Neves J.C.V., Zarate L.E., SongM.A.J.: Extracting concepts from triadic ... 611

Figure 11: Contexts with 15 attributes, 5 conditions and 50% density

and 70% density, for processing context with 500 objects TRIAS spent 122.35 minutes
and TRIAS BDD spent 95.48 minutes, a difference of 26.87 minutes in favor of TRIAS
BDD. For processing context with 1,500 objects, the original algorithm spent 583.78
minutes and the proposed algorithm spent 474.26 minutes, which corresponds to a
difference of 109.52 minutes less. For processing context with 3,000, 5,000 and 10,000
objects, TRIAS BDD spent 839.92, 1,738.24 and 4,183.66 minutes, respectively. TRIAS
did not generate results within 7 days for 3,000, 5,000 and 10,000 objects. Thus, it was
not possible to compare the algorithm’s results.

Figure 12: Contexts with 15 attributes, 5 conditions and 70% density

As presented in Table 12, it can be seen that the TRIAS BDD algorithm showed a
higher speedup than the TRIAS for contexts with 500, 3,000 and 5,000 objects, corre-
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sponding 6%, 22% and 30%, for density equal to 30%. For context with 1,500 objects,
TRIAS had a speedup 4% higher than TRIAS BDD. TRIAS did not obtain results for
the processing context with 10,000 objects, with 30% density for 20 attributes and 5
conditions. Thus, it was not possible to compare the algorithm’s results.

Analyzing the results for 50% density, it is observed that the proposed algorithm
presented a percentage of speedup higher than the original algorithm in 9% for context
with 500, 16% for context with 1,500, 19 % for context with 3,000 and 56 % to context
with 5,000 objects. It was not possible to perform comparative analysis for 10,000 objects
in view of the fact that the original algorithm did not present any result.

Analyzing the same results for context with 70% density, it is observed that the
TRIAS algorithm presented processing results only for contexts with 500 and 1,500
objects. For these results, TRIAS BDD showed a higher speedup than TRIAS, at 34%
and 36%, respectively.

The concept extractions performed in contexts that have more than 250,000 inci-
dences, TRIAS BDD was able to process contexts that the original implementation was
not able to handle. Thus, the use of the BDD was mandatory in these cases to enable
concept extraction. For instance, contexts with 5,000 objects, 20 attributes, 5 conditions
and 70% density - only TRIAS BDD was able to extract the concepts.

As a summary, the execution time for TRIAS became faster than TRIAS BDD in
only two contexts (3,000 objects x 10 attributes x 5 conditions x 70% density and 1,500
objects x 20 attributes x 5 conditions x 30% density). However, the speedup in both
cases was 5% and 4%, respectively, when compared to TRIAS BDD. On the other hand,
TRIAS BDD was faster in all remaining contexts (42 of 45 in total).

Context

(GxMxB)
Density (%) Incidences

TRIAS

(Minutes)

TRIAS BDD

(Minutes)
SpeedUp (%)

500x20x5 30 15,000 54.56 51.29 6%

1,500x20x5 30 45,000 271.00 281.84 -4%

3,000x20x5 30 90,000 479.95 374.36 22%

5,000x20x5 30 150,000 1,293.28 903.89 30%

10,000x20x5 30 300,000 - 2,462.38 -

500x20x5 50 25,000 70.93 64.55 9%

1,500x20x5 50 75,000 379.41 318.70 16%

3,000x20x5 50 150,000 767.93 622.02 19%

5,000x20x5 50 250,000 2,885.89 1,279.88 56%

10,000x20x5 50 500,000 - 5,259.46 -

500x20x5 70 35,000 223.56 147.31 34%

1,500x20x5 70 105,000 958.98 614.45 36%

3,000x20x5 70 210,000 - 1,119.89 -

5,000x20x5 70 350,000 - 2,317.66 -

10,000x20x5 70 700,000 - 7,578.21 -

Table 12: TRIAS x TRIAS BDD Algorithms Results 20 attributes and 5 conditions

As presented in Figure 13, considering the context of 20 attributes, 5 conditions and
30% density, for processing context with 500 objects, TRIAS spent 54.56 minutes and
TRIAS BDD spent 51.29 minutes, a difference of 3.27 minutes in favor of TRIAS BDD.
For processing context with 1,500 objects, TRIAS spent 271.00 minutes and TRIAS
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BDD spent 281.84 minutes, which corresponds to a difference of 10.84 minutes less
for TRIAS. For processing context with 3,000 objects, the original algorithm required
479.95 minutes and the proposed algorithm required 374.36 minutes. This difference
corresponds to 105.59 minutes in favor of the proposed algorithm. For processing context
with 5,000 objects, TRIAS spent 1,293.28 minutes and TRIAS BDD spent 903.89, which
corresponds to a difference of 389.39 minutes in favor of TRIAS BDD. For processing
context with 10,000 objects, TRIAS BDD spent 2,462.38 minutes. TRIAS did not
generate results within 7 days. Thus, it was not possible to compare the algorithm’s
results.

Figure 13: Contexts with 20 attributes, 5 conditions and 30% density

As can be seen in Figure 14, considering the context of 20 attributes, 5 conditions and
50% density, for processing the context with 500 objects TRIAS spent 70.93 minutes and
TRIAS BDD spent 64.55 minutes, a difference of 6.38 minutes in favor of TRIAS BDD.
For processing the context with 1,500 objects, the original algorithm spent 379.41minutes
and the proposed algorithm spent 318.70 minutes, which corresponds to a difference of
60.71 minutes less. For processing the context with 3,000 objects, TRIAS spent 767.93
minutes and TRIAS BDD spent 622.02 minutes. This difference corresponds to 145.91
minutes in favor of TRIAS BDD. For processing context with 5,000 objects, the original
algorithm spent 2,885.89 minutes and the proposed algorithm spent 1,279.88, which
corresponds to a difference of 1,606.01 minutes in favor of the proposed algorithm. For
processing context with 10,000 objects, TRIAS BDD spent 5,259.46 minutes. TRIAS did
not generate results within 7 days. Thus, it was not possible to compare the algorithm’s
results.

As presented in Figure 15, considering the context of 20 attributes, 5 conditions
and 70% density, for processing the context with 500 objects TRIAS spent 223.56
minutes and TRIAS BDD spent 147.31 minutes, a difference of 76.25 minutes in favor of
TRIAS BDD. For processing the context with 1,500 objects, the original algorithm spent
958.98 minutes and the proposed algorithm spent 614.45 minutes, which corresponds to
a difference of 344.53 minutes less. For processing the contexts with 3,000, 5,000 and
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Figure 14: Contexts with 20 attributes, 5 conditions and 50% density

10,000 objects, TRIAS BDD spent 1,119.89, 2,317.66 and 7,578.21 minutes, respectively.
TRIAS did not generate results within 7 days for 3,000, 5,000 and 10,000. Therefore, it
was not possible to compare the algorithm’s results.

In 2006, the ICFCA (International Conference on Formal Concept Analysis) at
Desdren [Old and Priss, 2006] discussed the main challenges of formal analysis. Since
that date, the requirements to deal with dense and high-dimensional formal contexts have
been discussed, such as contexts with 120,000 objects and 70,000 attributes, which are
considerably larger than the experiments that were performed here. In order to attend
partially to the challenge, new synthetic triadic contexts were created using SCGaz
(Table 13). Tests were performed and compared TRIAS and TRIAS BDD results for the
contexts with 120,000 objects, 5, 10 and 15 attributes, 5 and 10 conditions and 30%, 50%
and 70% density. First, the number of objects and density of each context were fixed at
120,000 and 30% while changing the number of attributes and conditions. Second, the
density of each context was varied.

In Table 13, cells with the “-” symbol show that the algorithm failed to complete the
concepts extraction processing within 14 days. It must be noted that in these scenarios
the algorithms were dealing with contexts that have a high number of incidences, varying
from 1,776,769 to 6,299,886.

As presented in Table 13, in none of the experiments was the TRIAS algorithm able
to extract concepts within 14 days. The algorithm was not able to deal with those contexts
called high-dimensional. However, TRIAS BDD retrieved concepts in view of the 14
days in all cases of contexts with 30% density. For instance, it completed the execution
in 10.88 days for a context with a density of 30%, 120,000 objects, 10 attributes and
5 conditions. It was also able to extract concepts for contexts with a density of 50%
considering the limit of 2,999,948 incidences. In these cases, with the use of BDDs
optimizing the representation, it was confirmed to be an efficient solution. Thus, the use
of BDD is an interesting approach in high-dimensional contexts.

Table 13 shows the results obtained for high-dimensional contexts. Considering
120,000 objects, for densities 30%, 50% and 70%, three different combinations between
the number of attributes and conditions were tested, such as: 15 attributes and 5 conditions,
10 attributes and 5 conditions and 5 attributes and 10 conditions.
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Figure 15: Contexts with 20 attributes, 5 conditions and 70% density

Context

(GxMxB)
Density Incidences

TRIAS

(Days)

TRIAS BDD

(Days)

120,000x15x5 30% 2,699,984 - 12.79

120,000x10x5 30% 1,776,769 - 10.88

120,000x5x10 30% 1,776,769 - 10.46

120,000x15x5 50% 4,498,986 - -

120,000x10x5 50% 2,999,948 - 13.16

120,000x5x10 50% 2,999,948 - 13.54

120,000x15x5 70% 6,299,886 - -

120,000x10x5 70% 4,199,988 - -

120,000x5x10 70% 4,199,988 - -

Table 13: Results for High-dimensional Contexts (TRIAS x TRIAS BDD)

According to Table 13, considering the density of 30%, it can be seen that TRIAS did
not generate results for the three combinations of attributes and conditions. TRIAS BDD
spent 12.79 days to process context with 120,000 objects, 15 attributes and 5 objects.
The processing of the context with 120,000 objects, with 10 attributes and 5 conditions,
TRIAS BDD spent 10.88 days. Also, for processing the context with 120,000 objects,
5 attributes and 10 conditions, TRIAS BDD spent 10.46 days. A variation of 3.86% is
perceived between the time spent by both.

Moreover, it can be observed in Table 13, considering the density of 50%, TRIAS did
not generate results for the three combinations of attributes and conditions. TRIAS BDD
did not generate results for context with 120,000 objects, 15 attributes and 5 conditions.
A variation of 2.88% is perceived between the time spent by TRIAS BDD for processing
context with 120,000 objects, 10 attributes and 5 conditions (13.16 days) and the time
spent by TRIAS BDD for processing context with 120,000 objects, 5 attributes and 10
conditions (13.54 days).

Also, according to Table 13, it is observed that, considering the density 70%, context
with 120,000 objects and the three combinations of attributes and conditions (15 attributes
x 5 conditions, 10 attributes x 5 conditions and 5 attributes x 10 conditions), neither
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TRIAS nor TRIAS BDD were able to generate results.
However, it must be noted that even this new solution is not efficient when the

number of incidences exceeds 3,000,000 - both algorithms were not able to complete
the concept extractions for all contexts with 70% density within 14 days. But, for the
contexts presented in Table 13, only the TRIAS BDD was able to extract the concepts.

5.2 Real datasets contexts results

One possible and interesting strategy to evaluate algorithms is using synthetic datasets.
However, understanding the algorithm’s behavior in real scenarios is very important
to evaluate its real efficiency. Considering that, TRIAS and TRIAS BDD algorithms
were applied to an extensive dataset that contains movie rates calledMovieLens1. The
database has more than 6,000 users and approximately 4,000 movies. Also, it has more
than 1,000,000 records that consist of a classification rate from 1 to 5 by the user per
movie. This dataset is considered sparse because it is not possible to confirm that users
rated the exact same movies. For instance, it is not possible to confirm if user A has rated
the same movies as user B. Additionally, in the movies range (attributes) that is required
to be evaluated, it is not possible to confirm that the user rated (conditions) all movies. In
other words, the user may have evaluated only a single movie within the possible movies
available in the context.

The contexts created from the database have users as a set of objects, movies
as attributes and rates received as conditions. Then, the context is defined as K =
(K1,K2,K3, Y ) whereK1 is the set of users,K2 is the set of movies,K3 is the set of
rates and Y is the relation among users x movies and its rates.

In Table 14, cells with the “-” symbol show that the algorithm failed to complete
the concepts extraction processing within 7 days. It shows the results of the algorithms
applied to the real dataset MovieLens. We fixed the number of objects (users) and
conditions (rates), utilizing the maximum quantity of objects available. We also varied
the number of attributes (movies).

Context (G,M,B)

(G = Users × M = Movies × B = Rates)
Density Incidences

TRIAS

(Days)

TRIAS BDD

(Days)

6,000x100x5 17.3% 105,986 - 5.88

6,000x150x5 16.4% 158,029 - 6.12

6,000x200x5 14.3% 203,898 - 6.85

Table 14: TRIAS x TRIAS BDD Algorithms results for MovieLens dataset

As presented in Table 14, the TRIAS and TRIAS BDD algorithms were applied
to theMovieLens dataset. Three different scenarios were considered, such as: 1) 6,000
users (objects), 100 movies (attributes) and rates (conditions) equal to 5; 2) 6,000 users,
150 movies and 5 rates; 3) 6,000 users, 200 movies and 5 rates. It is noticeable that, the
number of users and the rate were maintained in all analyzes. Only the quantity of movies
was varied between 100, 150 and 200. For the context of 100 movies, a density of 17.3%
was considered. For 150 movies, a density of 16.4% was considered and, finally, for 200
movies, a density of 14.3% was considered.

1 https://grouplens.org
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It must be noted that the TRIAS Algorithm did not complete the computation of all
formal concepts, during a period of seven days. TRIAS BDD obtained results for 100
and 150 movies, spending 5.88 days and 6.12 days, respectively. TRIAS BDD was not
able to generate results for 600 users, 200 films and 5 rates, in seven days.

6 Conclusion and future work

The approach that used BDD has shown better results for almost all triadic contexts. The
main reason is that BDD allows the algorithm to execute contexts that could be difficult
to analyze. As presented, the algorithm proposed had a better speedup in almost all the
contexts used. In some cases, it was up to 56% faster than TRIAS - see Table 10.

Also, for the synthetic contexts with 120,000 objects, the TRIAS BDD algorithm
finalized the concepts extraction before 14 days - see Table 13. Nevertheless, TRIAS
did not retrieve any results in 14 days.

In the real dataset, presented in Table 14, the TRIAS, within 7 days, was not able to
extract concepts in the contexts that contain more than 100,000 incidences. However,
using TRIAS BDD the algorithm retrieved triadic concepts before 7 days in two scenarios.
In other words, it was able to find concepts that the original algorithm was not.

As planned future work, it is intended to reduce the processing time by distributing
the workload, paralleling the generation of the BDD and/or the concurrent extraction
of the concepts. Furthermore, we intend to parallelize the algorithms through threads
and/or GPU (Graphics Processing Unit). The main idea is to distribute the algorithm
execution on different computers.
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