
Journal of Universal Computer Science, vol. 27, no. 2 (2021), 170-189

 submitted: 19/4/2020, accepted: 1/2/2021, appeared: 28/2/2021 CC BY-ND 4.0

K-Step Crossover Method based on Genetic Algorithm

for Test Suite Prioritization in Regression Testing

P.K. Gupta
(Department of Computer Science and Engineering Jaypee University of Information

Technology Waknaghat, Solan, HP, India 173 234

https://orcid.org/0000-0003-0416-7097, pkgupta@ieee.org)

Abstract: Software is an integration of numerous programming modules (e.g., functions,

procedures, legacy system, reusable components, etc.) tested and combined to build the entire

module. However, some undesired faults may occur due to a change in modules while performing

validation and verification. Retesting of entire software is a costly affair in terms of money and

time. Therefore, to avoid retesting of entire software, regression testing is performed. In

regression testing, an earlier created test suite is used to retest the software system's modified

module. Regression Testing works in three manners; minimizing test cases, selecting test cases,

and prioritizing test cases. In this paper, a two-phase algorithm has been proposed that considers

test case selection and test case prioritization technique for performing regression testing on

several modules ranging from a smaller line of codes to huge line codes of procedural language.

A textual based differencing algorithm has been implemented for test case selection. Program

statements modified between two modules are used for textual differencing and utilized to

identify test cases that affect modified program statements. In the next step, test case

prioritization is implemented by applying the Genetic Algorithm for code/condition coverage.

Genetic operators: Crossover and Mutation have been applied over the initial population (i.e. test

cases), taking code/condition coverage as fitness criterion to provide a prioritized test suite.

Prioritization algorithm can be applied over both original and reduced test suite depending upon

the test suite's size or the need for accuracy. In the obtained results, the efficiency of the

prioritization algorithms has been analyzed by the Average Percentage of Code Coverage

(APCC) and Average Percentage of Code Coverage with cost (APCCc). A comparison of the

proposed approach is also done with the previously proposed methods and it is observed that

APCC & APCCc values achieve higher percentage values faster in the case of the prioritized test

suite in contrast to the non-prioritized test suite.

Keywords: Test case minimization, Test case prioritization, Genetic Algorithm, Crossover,

Mutation, Test Suite, Regression testing.

Categories: D.2, D.2.4, D.2.5

DOI: 10.3897/jucs.65241

1 Introduction

The rising growth of the software industry worldwide puts a lot of pressure on

developers and testers to complete their assigned tasks on or before the deadline. Most

of the software consists of several bugs that result in system failures and produce

incorrect, inconsistent, and incomplete results. However, software testing techniques

evolved are used to reduce various drawbacks and try to make software bug free. Still,

https://orcid.org/0000-0003-0416-7097

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

171

in particular scenarios of software development where the regular modification or reuse

of data takes place, these bugs get introduced in software knowingly or unknowingly.

If done with all test cases, system retesting cost in computation, manpower, and revenue

to the developer. As described in [Yoo and Harman 2012], mostly regression testing is

used to keep account of each modification in software and retesting of test cases that

focus only on modifications in all subsequent testing phases. In [Askarunisa,

Shanmugapriya and Ramaraj 2010] [Kaur and Goyal 2011] [Suman and Seema 2012]

[Yoo and Harman 2012] regression test prioritization is performed over test cases and

analyzed for the average percentage of code coverage. This paper presents the effect of

regression testing over a system. It provides an effective solution with 2-Phase

algorithms where Phase-1 is associated with the test case selection, and Phase-2 is

connected with the prioritization of test cases. The proposed k-step crossover method

reduces the time and cost of the testing process.

1.1 Significance of Research in Science

Typically, testing is the key and basic concept in any model to verify how much the

model is worthy, at what extent it is accurate. Before implementing any model, it is

mandatory to test that model thoroughly. For instance, biomedical researchers test the

drug on rats or other species to check the efficacy of the medicine. Once all the tests

are passed, it is implemented for human beings. Similarly, proposed genetic algorithm

presents a novel method that brings the attention to software industry and provides the

effective results on large scale complex software systems that includes web-based

systems, mobile-based system, compiled systems, automation software systems, and

management information system etc. The main motivation behind this work is derived

from Charles Darwin’s [Darwin and Wallace 1858] theory of natural selection, which

talks about selecting a particular breed concerning its ability to survive. Darwin

proposed that nature “selects” the traits that helped an animal survive, and the gene is

further transferred into the upcoming generations. Inspired by this theory, the Genetic

Algorithm, a search heuristic, was introduced. The fittest individuals or the most

optimized test cases are selected as the genes to be passed on in the next generation

through reproduction. The major focus of this work can be summarized as follows:

– Use of textual differencing implemented Longest Common Sub-sequence

Algorithm for test case selections.

– K-step crossover method used in Genetic Algorithms for prioritization of test cases.

– Analysis of test case prioritization based on APCC and APCCc.

This paper is organized into various sections. Section 2 presents the previous studies

related to using the genetic algorithm in regression testing to minimise and prioritise

the test cases. Section 3 discusses the proposed methodology and consists of a detailed

description of the proposed K-step crossover mechanism which is based on a genetic

algorithm. The proposed algorithm performs its operations into two phases. Section 4

focuses on the obtained results and at the end of phase II when prioritization is achieved

using APCC and APCCc to analyze the obtained prioritization results. This section also

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

172

includes the comparative analysis of the proposed method with the other method.

Finally, section 5 concludes the work.

2 Semantic-based Retrieval using Metadata

This section summarizes the recent trends and works for minimizing and prioritizing

the test cases using various techniques.

In [Rothermel and Harrold 2015], have discussed the test case selection algorithm

that constructs the control flow graphs (CFGs) for both the input program and the

modified version of the program used for the selection of test cases with the intent of

fault detection. In the obtained results, they have claimed that the proposed technique

reduces the cost of regression testing. In [Habtemariam and Mohapatra 2019], have

classified test cases' prioritisation as one of the NP-hard class of problems. They have

proposed a solution based on a genetic algorithm. The proposed algorithm shows a

better average percentage of fault detection (APFD) in their obtained results. In [Bajaj

and Sangwan 2019], have performed a systematic review of various test case

prioritization techniques using genetic algorithms. From their survey, it is concluded

that genetic algorithms have many advantages while working on the issue of test case

prioritization. In [Mishra, Panda, Mishra and Acharya 2019], a genetic algorithm-based

prioritization solution has been proposed. The proposed technique considers various

prioritization factors like statement coverage, total mutant coverage, and total fault

exposed. They have further measured the efficiency of the proposed algorithm by

Average Percentage of Statement Coverage (APSC) metric. In [Rothermel, Untcn, Chu

and Harrold 2001], they have described several techniques for prioritizing the test cases.

Proposed techniques consider the coverage of code and fault detection ability for the

generation of test cases. In their obtained results, it is found that the proposed technique

improves the rate of fault detection and cost-benefits trade-offs. However, they have

also stated that there is still a lot of room for further improvement in the proposed

technique. As described in [Yadav and Dutta 2019b], have focused on minimizing the

cost of regression testing and therefore they have proposed a prioritization algorithm

based on K-mean clustering techniques. In their obtained results they have claimed the

highest fault detections. In [Noemmer and Haas 2020], have focused on the test suite

minimization during regression testing of large software projects. They have compared

the four different algorithms, and it is found that there is a reduction of 69% of test

cases with the proposed algorithms. However, on the dark side of the proposed

algorithm, it takes more execution time and loss in fault detection. In [Agrawal et al.

2020], a safe regression test case selection method is based on the hybrid whale

optimization algorithm. They have also compared the proposed approach with various

other nature-based computing techniques like Bat Search, ACO- based approach, etc.

In [Harikarthik, Palanisamy and Ramanathan 2019], have discussed a regression test

case prioritization approach that generates and forms the cluster of test cases using the

fuzzy c-means clustering technique. This technique makes the relevant and irrelevant

cluster of test cases to maximize the probability of fault detection. In [Yadav and Dutta

2019a], have discussed an object-oriented test case selection and prioritization

approach. They have used the dependency graphs to find the program's changes, and

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

173

then select test cases performed using object-oriented models. In their results, they have

achieved the high value of the average percentage of fault detection. In [Vokolos and

Frankl 1998], have focused on implementing textual differencing and implemented

selective regression testing technique that compares the old and new version of source

code files. The obtained results found that textual differencing is very fast and reduces

a significant number of test cases.

3 Proposed Methodology

As discussed in the literature survey, the test case prioritization and selections are two

major challenges in regression testing. In this section, a K-step crossover methodology

has been proposed, which is based on a genetic algorithm. The proposed methodology

is divided into two phases and represented in the Algorithm 1. According to proposed

methodology, phase I performs regression test selection in which two source codes

under test are converted into their canonical forms. Then a difference between two

source codes is obtained.

Further, to determine the coverage of modified statements and their execution trace

a decision to decision (DD) path graph has been constructed. In phase II, test case

prioritization has been performed in which a pool of genetic chromosomes has been

created that consist of the randomly selected test cases. A pair of randomly selected

chromosomes that fulfils the fitness criterion is further processed with genetic operators

like crossover and mutation to obtain a prioritized chromosome. The fitness criterion

selected for the algorithm is code/condition coverage which is managed through a DD

path graph. This chromosome is used to obtain the prioritized test suite.

Algorithm 1: Two phase methodology for regression test selection and test case

prioritization.

Input: Original Source Code, Modified Source Code, and Test Cases.

Output: Prioritized Test Cases (Reduced).

BEGIN PHASE I;

1. K-form ă source codes into canonical form;

2. Differencer ă modified statements in source code

3. Generate Test Execution Trace based on DD-path graph;

4. Select only test cases that assess modified statements;

END;

BEGIN PHASE II;

5. Generate initial population of n chromosomes;

6. Initialize chromosomes with m Test cases;

7. Set fitness function criterion for coverage of code;

8. Select the best 2 chromosomes based on fitness function;

Do Crossover for selected Chromosome(s)

 for k ă 1 to 3

9. Interchange alternate k test cases between 2 chromosomes;

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

174

if (all conditions are covered) then

10. Break;

endif

end

IF Crossover Fails

11. GO TO 9

Do Mutation

12. Remove Duplicate Test Cases;

13. Minimize Test Cases in the chromosome (all conditions are covered);

14. Obtained chromosome is Prioritized Test Cases;

END;

3.1 Phase I: Reduction of Test Cases

a) Both original and modified source codes are presented in Appendix A in

listing 1(a) and listing 1(b), respectively, has been considered an input to K

Form function.

K Form Function - removes all comments and non-executable statements

from there except executable statements in the codes.

b) The canonical form of original source code and modified source codes are

presented in Appendix A in Listing 2(a) and Listing 2(b) respectively, are

textually compared based on the longest common sub-sequence and results

out the modified statement in the source code. The modified statements in

the source code are found using the Longest Common Sub-sequence based

textual differencing.

Canonical form – refers to the most straightforward representation of

the considered source code. As shown in Appendix A, Listing 2(a) and Listing

2(b) represents the canonical forms of the codes as presented in listing 1(a)

and listing 1(b), respectively, with a smaller number of lines in the code.

Differencer – it is a function that performs the comparison and finds

the three types of modifications known as change, addition and deletion in the

codes.

c) Basic Test Block Identifier is responsible for the generation of Test Execution
Trace. This test execution trace activity is performed with various independent
paths generated from the DD path graph as constructed for the code presented
in Listing 2(b) and shown in Table 3. In other words, the DD path graph is a
modified subset of a control flow graph, constructed by combining all non-
decisive intermediate nodes into a single node(s). Test cases from the test case
suite always follow one of these independent paths. Therefore, the knowledge
of test cases following a particular path is stored as a test execution trace. Test
Case Selection is the final step of Phase I in which modified statements
obtained from the differencer function are used to determine modified edges
in the DD-path graph. Finally, these test cases from the test execution trace are
selected that consist of modified edges.

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

175

Figure 1: Reduction of test cases

d) The methodology for the reduction of test cases is shown in Fig. 1. Here,
both original and modified source codes and their canonical forms and
differences are shown in Listing 1 and Listing 2, respectively. K Form
function removes all the comments and header files from the source code,
and differencer provides the modified statements along with their line
numbers, as shown in Table 1.

Original Canonical form [see

Listing 2(a) in Appendix A]

Modified Canonical form [see

Listing 2(b) in Appendix A]

10. cout << “Young

whippersnapper,” <<name<<”!

\n”;

10. cout << “You young Citizen

” <<name<<”! \n”;

11. cout <<”You can Vote !!”;

18. cout << “Existing”

<<age<<”,” <<name<<”? \n”;

19. cout << “Really” <<age<<”,”

<<name<<”? \n”;

Table 1: Differencer provides modified program segments along with their line

numbers

e) Table 2 presents the test case structure for the code segment, as shown in

Listing 2(a) and Listing 2(b), respectively. The designed test suite consists

of 20 such test cases that have been used. Basic Test Block Identifier maps

these 20 test cases on DD path graph of the source code as shown in Fig. 2,

and the results of a test execution trace along the various independent paths

are shown in Table 4. Here, various independent paths also consist of the cost

of condition coverage. Test case selection based on textual differencing

considers the differences in code and selects only those test cases from test

execution traces consisting of modified edges. A reduced test execution trace

is shown in Table 5.

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

176

ID Input Output

I1 Name=XYZ, Age=15 Young whippersnapper, XYZ!

I2 Name=ABC, Age=35 ABC, you're still in your prime!

I3 Name=XYZ, Age=55 You're over the hill, XYZ!

I4 Name=ABC, Age=75 I bow to your wisdom, ABC!

I5 Name=XYZ, Age=95 Existing 95, XYZ?

I6 Name=6782, Age=-5 Young whippersnapper, 6782!

Table 2: Example of Test Cases

Figure 2: DD path graph of modified canonical program code

Line Number[see

listing 2(b)]

Type of Node Corresponding

DD Path Node

1-8 Sequential A

9 Decision B

10-11 Sequential D

12 Decision C

13 Sequential F

14 Decision E

15 Sequential H

16 Decision G

17 Sequential J

18-19 Decision and

Sequential

I

20 Sequential K

21 Sequential L

Table 3: Line numbers from the Canonical Modified program source code

corresponding to respective DD Path Node.

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

177

Test Independent Path Covered Cost

T1 A-B-D-K-L 1

T2 A-B-C-F-K-L 1

T3 A-B-C-E-H-K-L 1

T4 A-B-C-E-G-J-K-L 1

T5 A-B-C-E-G-I-K-L 1

T6 A-B-C-E-G-I-K-L 1

T7 A-B-C-E-H-K-L 1

T8 A-B-C-F-K-L 1

T9 A-B-D-K-L 1

T10 A-B-C-E-G-J-K-L 1

T11 A-B-C-E-H-K-L 1

T12 A-B-C-E-G-J-K-L 1

T13 A-B-C-E-G-I-K-L 1

T14 A-B-C-E-G-I-K-L 1

T15 A-B-C-E-H-K-L 1

T16 A-B-C-F-K-L 1

T17 A-B-D-K-L 1

T18 A-B-C-E-G-J-K-L 1

T19 A-B-D-K-L 1

T20 A-B-C-E-G-J-K-L 1

Table 4: Test Execution Trace

Test Independent Path Covered

T5 A-B-C-E-G-I-K-L

T6 A-B-C-E-G-I-K-L

T9 A-B-D-K-L

T13 A-B-C-E-G-I-K-L

T14 A-B-C-E-G-I-K-L

T17 A-B-D-K-L

T19 A-B-D-K-L

Table 5: Reduced Tests Execution Trace

3.2 Phase I: Reduction of Test Cases

In this phase, one of the structural testing techniques known as path testing has been
implemented for prioritization based on total code coverage. Path testing identifies
the set of independent test paths with the help of a control flow graph. To achieve total
code coverage, all independent paths need to be exercised at least once during path
testing. Further, the use of genetic algorithm provides the better optimal solution for

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

178

the desired population. The selected fitness criterion is the total code coverage for
generation and initialization of test cases. Genetic operations known as crossover and
mutation are used to obtain the prioritized test case. Here, crossover recombines the
two individuals, and mutation randomly swaps them and removes the redundant test
cases. A detailed model of test case prioritization is shown in Fig 3. In the following
section, various steps, as implemented by the proposed model, have been discussed.

Figure 3: Model for Test Case Prioritization

a) Select test suite: The fitness Criterion selected for the algorithm is the total
code coverage, and all the unique independent paths have been identified for
the example as mentioned above. Every fit chromosome must cover all
independent paths to ensure test cases and further implement genetic
operation on them. Since the proposed algorithm applies prioritization over
reduced test suite but for more clarity of concept and explanation, the
example's original test suite has been used. It is because, the reduced test
suite is too small to be used for demonstrating the detailed process. However,
it does not affect the quality of the obtained results.

b) Generation of chromosomes: is the first ad important step of prioritization.
It is because all the genetic operations are applied to the generated
chromosomes only. Chromosomes are the combination of numerous test
cases and two conditions must be followed while generating chromosomes:
i) the number of chromosomes is at-least equal to the number of test cases,
and ii) the number of test cases in a chromosome is at least equal to its
cyclomatic complexity of code for which prioritization is being done.
Chromosomes generated are a randomized selection of test cases.

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

179

Chromosomes Initialization of Chromosomes

C1 T20 T14 T18 T15 T2 T9 T3 T6 T10 T11

C2 T8 T13 T10 T17 T9 T16 T7 T15 T14 T3

C3 T19 T11 T10 T13 T8 T1 T4 T15 T9 T6

C4 T12 T8 T13 T18 T2 T3 T15 T6 T11 T5

C5 T11 T1 T17 T3 T8 T18 T7 T12 T4 T13

C6 T2 T19 T17 T18 T7 T15 T5 T14 T8 T10

C7 T13 T1 T17 T6 T11 T15 T12 T10 T16 T19

C8 T20 T7 T4 T11 T14 T15 T2 T17 T8 T16

C9 T19 T18 T10 T15 T14 T11 T3 T12 T16 T9

C10 T1 T4 T12 T19 T18 T6 T16 T17 T10 T5

C11 T9 T7 T19 T15 T16 T5 T17 T13 T2 T8

C12 T20 T3 T4 T12 T15 T7 T14 T2 T8 T17

C13 T13 T7 T18 T8 T1 T19 T12 T2 T11 T15

C14 T12 T5 T6 T16 T17 T15 T9 T8 T10 T4

C15 T5 T2 T14 T15 T19 T6 T12 T10 T4 T13

C16 T11 T8 T14 T17 T15 T12 T9 T5 T3 T7

C17 T7 T19 T14 T3 T16 T6 T20 T13 T17 T9

C18 T7 T15 T6 T1 T2 T11 T9 T8 T10 T17

C19 T4 T18 T3 T14 T16 T11 T17 T13 T12 T20

C20 T5 T8 T17 T14 T1 T20 T3 T6 T15 T7

Table 6: Chromosome Population

c) Genetic operators: are applied on two fit chromosomes randomly selected
from the population, as provided in Table 6. Chromosomes fulfilling fitness
criterion, i.e. total code coverage, are supposed to cover all the DD path
graphs' independent paths. Here, one condition that must be followed is that
both chromosomes should have the same length. The following genetic
operators are applied to these chromosomes:

Crossover: is a process of yielding new pair of chromosomes. Initially,
operator Crossover is applied over two fit chromosomes i.e. C2 and C1 and
provides 1-step Crossed Chromosomes, as shown in Fig. 4, (a), 2-step
Crossed Chromosomes shown in Fig. 4(b), and 3-step Crossed Chromosomes
shown in Fig. 4(c). Stepping only occurs in crossover when both crossed

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

180

chromosomes fail total code coverage (fitness criterion). Fig. 4 represents an
implementation of a k-step crossover method on chromosomes that
interchanges alternate ‘k’ test cases between the selected chromosome pair.

(a)

(b)

(c)

Figure 4: K-step Crossovers (a) 1-step crossover, (b) 2-step crossover & (c) 3-step

crossover

Mutation: alters an individual in the population by randomly replacing the part of
chromosome. Crossed chromosomes obtained may have both fit chromosomes or only
one chromosome is fit. If both the chromosomes are fit, one chromosome is selected
for mutation from either of the chromosomes. In case, if only one chromosome is fit
then the fit chromosome is selected for mutation. The mutation is performed by
randomly interchanging of a test case in the chromosome. Mutated Chromosome is
after that sent to remove redundant test cases from it. As in the current example,
crossed chromosomes obtained are both fit chromosomes. For mutation first, one is
selected, and two test cases are randomly interchanged as shown in Fig. 5(a). After
those two redundant test cases i.e. T14 and T9 are removed from the chromosome as
shown in Fig. 5(b).

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

181

(a)

(b)

Figure 5: Mutated Chromosome (a) Interchanging of test cases (b) removal of

redundant test cases.

d) Removal of redundant test cases: mutated chromosomes are free from
redundant test cases. However, there is a possibility that the chromosome has
still more than enough test cases required to cover all conditions. Thus, the
minimization of the chromosome is an essential step to get a minimum
number of test cases covering all conditions. A prioritized chromosome is
the minimized mutated chromosome.

e) Minimization of chromosome: for minimization purposes greedy approach
has been used. In the first iteration, arbitrarily one test case from the
chromosome is selected as a seed chromosome and is merged with all other
test cases in the chromosome to form chromosomes. After the end of the
iteration, the seed chromosome is the chromosome with the highest
conditions covered with the minimum number of test cases, are used.

f) Prioritized chromosome: resulted after the minimization of the mutated
chromosome obtained in the previous step will speed up the testing of
modified statements. A prioritized test suite as shown in Fig. 6 will contain
test cases of prioritized chromosome first and the rest will be the remaining
test cases of the used test suite.

Figure 6: Prioritized Test Suite

4 Result Analysis

In this section, a detailed analysis of obtained results has been done for the proposed

test suite prioritization algorithm by using various performance evaluation metrics.

As per the discussed scenario, there is a total of 20 test cases in the test suite, and only

program statements at line numbers 10 & 18 have been modified. At the end of phase

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

182

I, test cases covering only line numbers 10 & 18 have been selected which provide

intermediate results in the form of reduced test cases counting to 7, in the test suite.

Here, a significant drop of 65% test cases has been observed. Similarly, in the case of

edge covering the total number of edges covered by the test suite are 118 and the total

number of edges covered by the reduced test cases is 40, thus cutting by 66%. In phase

II, several intermediate values and results have been obtained, ordered as Test Cases

along Unique Paths, Unique Edges, Unique Nodes, Chromosomes, Fit Chromosomes,

Crossed Chromosomes, Mutated Chromosome, and Prioritized Chromosome that

provides the intermediate results for used Genetic Algorithm. Prioritized

Chromosomes obtained contain a minimized number of test cases from Mutated

Chromosome, supported by Total Condition Coverage. When prioritisation is

achieved at the end of phase II, Average Percentage Condition Coverage (APCC) and

Average Percentage Condition Coverage with cost (APCCc) have been used to

analyze the obtained prioritization results. APCC measures the rate at which a

prioritized test suite covers the conditions. In contrast, APCCc measures the number

of test cases covering particular conditions and vice versa, which is used as cost. The

APCC for test suite T’ and APCCc of The weighted average percentage condition

coverage during the execution of test suite T’ is given by the following equations:

1 2(...) 1
1

2

mTF TF TF
APCC

nm n

+ + +
= - + (1)

1

1 1

1
(())

2 i

i

n n

i i TF

i i TF

c n m

i i

i i

c t t

APCC

t c

= =

= =

³ -

=

³

ä ä

ä ä
 (2)

Where, Ὕ ɴtest suite, ὲ ɴnumber of test cases, ά ɴset of covered conditions, ¸ὧɴ

reduced test suite, ὝὊ ɴfirst test case in ordering Ὕ′of Ὕ which covers condition Ὥ in

the test suite, ὸ ɴthe number of conditions covered by the Ὥℎ test case, ὧ ɴcost of

Ὥℎ test cases covering ά conditions.

In the results, the value of APCC and APCCc obtained for non-prioritized test suite

are 83.50% and 84.25% respectively [see Fig. 7(a) and Fig. 7(b)]. Similarly, the value

of APCC and APCCc obtained for the prioritized test suite is 87.50% and 87.25%

respectively. In a similar approach, results obtained for APCC and APCCc for non-

prioritized reduced test suite are 85.71% and 86.73% respectively [see Fig. 7(a) and

Fig. 7(b)]. Also, results obtained for APCC and APCCc for prioritized reduced test suite

91.62% and 92.38% respectively [see Fig. 8(a) and Fig. 8(b)].

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

183

(a)

(b)

Figure 7: Original Test Suite a) APCC b) APCCc

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

184

(a)

(b)

Figure 8: Reduced Test Suite a) APCC b) APCCc

The obtained results have been compared with other approaches like Particle Swarm

Optimization and Genetic algorithm with GA order as shown in Table 7. From the

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

185

obtained results, APCC & APCCc values achieve higher percentage values faster in the

case of the prioritized test suite in contrast to the non-prioritized test suite. This ensures

that the reduced test suite obtained from the proposed algorithm will provide complete

and effective testability analysis of the provided source code.

Approach Test Suite APCC %

Particle Swarm Optimization

[Kaur and Bhatt 2011]

Proposed Order 87.80

Genetic Algorithm [Kaur and

Goyal 2011]

GA Order 88.30

Proposed Approach Non-Prioritized Test

Suite

83.50

Prioritized Test Suite 87.50

Non-Prioritized

Reduced Test Suite

85.71

Prioritized Reduced

Test Suite

91.62

Table 7: Comparison with other test case prioritization approaches.

5 Conclusion

The proposed work discusses the implementation of two regression testing techniques

designed to achieve better testability for any software system. Here, “any software

systems” addresses mobile-based systems, web-based systems, and compiled systems

as the objective of regression testing is to reduce the efforts and overall cost of the

testing process. One can test the new version of the system(s) with reduced effective

test cases. As a part of test case reduction, the textual differencing based test case

selection method has been used. A large test case suite for entire software is reduced to

a subset of test cases concerning only the software module's modifications. Genetic

Algorithm, an evolutionary strategy is further used for test case prioritization which

uses code/condition coverage as a fitness criterion. The obtained results for APCC and

APCCc provide a higher percentage of test case prioritization with fewer test cases

required to maximize code/condition coverage, which ensures that the reduced test suite

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

186

obtained by the proposed algorithm will provide complete and effective testability

analysis of the provided source code. In future work, the proposed work can be

extended to consider interprocedural control flow. Test case selection by using path

analysis will provide an upper hand compared to textual differencing. Similarly,

prioritization based on fault detection will also provide better testability than

code/condition coverage.

Appendix

A) Program Listings

This appendix presents the detailed listing of programs used for developing a model for

test case selection, and test case prioritization. Original and Modified source codes have

been presented in these listings. The modified statements in the source code are found

using Longest Common Sub-sequence based Textual differencing.

(a)

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

187

(b)

Listing 1: General program source code a) Original b) Modified

(a)

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

188

(b)

Listing 2: Canonical forms of program source code a) Original b) Modified

References

[Agrawal et al., 2020] Agrawal, A. P., Choudhary, A., Kaur, A.: “An effective regression test

case selection using hybrid whale optimization algorithm”; International Journal of Distributed

Systems and Technologies, 11, 1 (2020), 53–67, https://doi.org/10.4018/IJDST.2020010105

[Askarunisa, Shanmugapriya and Ramaraj, 2010] Askarunisa, M. A., Shanmugapriya, M. L.,

Ramaraj, D. N.: "Cost and Coverage Metrics for Measuring the Effectiveness of Test Case

Prioritization Techniques"; INFOCOMP Journal of Computer Science, 9, 1 (2010), 43-52,

http://infocomp.dcc.ufla.br/index.php/infocomp/article/view/289

[Bajaj and Sangwan, 2019] Bajaj, A., Sangwan, O. P.: "A Systematic Literature Review of Test

Case Prioritization Using Genetic Algorithms"; IEEE Access, 7 (2019), 126355–126375,

https://doi.org/10.1109/ACCESS.2019.2938260

[Darwin and Wallace, 1858] Darwin, C., Wallace, A.: "On the Tendency of Species to form

Varieties; and on the Perpetuation of Varieties and Species by Natural Means of Selection";

Zoological Journal of the Linnean Society, 3, 9 (1858), 45-62, https://doi.org/10.1111/j.1096-

3642.1858.tb02500.x

[Habtemariam and Mohapatra, 2019] Habtemariam, G. M., Mohapatra, S. K.: "A Genetic

Algorithm-Based Approach for Test Case Prioritization"; Communications in Computer and

Information Science (Vol. 1026). Springer International Publishing (2019),

https://doi.org/10.1007/978-3-030-26630-1_3

https://doi.org/10.4018/IJDST.2020010105

Gupta P.K.: K-Step Crossover Method based on Genetic Algorithm…

189

[Harikarthik, Palanisamy and Ramanathan, 2019] Harikarthik, S. K., Palanisamy, V.,

Ramanathan, P.: "Optimal test suite selection in regression testing with testcase prioritization

using modified Ann and Whale optimization algorithm"; Cluster Computing, 22, 5(2019),

11425–11434. https://doi.org/10.1007/s10586-017-1401-7

[Kaur and Bhatt, 2011] Kaur, A., Bhatt, D.: "Particle Swarm Optimization with CrossOver

Operator for Prioritization in Regression Testing"; International Journal of Computer

Applications, 27, 10 (2011), 27-34, https://doi.org/10.5120/3336-4589

[Kaur and Goyal, 2011] Kaur, A., Goyal, S.: "A genetic algorithm for regression test case

prioritization using code coverage"; International Journal on Computer Science and Engineering

(2011). 3, 5 (2011), 1839-1847, http://www.enggjournals.com/ijcse/abstract.html?file=11-03-

05-144

[Mishra, Panda, Mishra and Acharya, 2019] Mishra, D. B., Panda, N., Mishra, R., Acharya, A.

A.: "Total fault exposing potential based test case prioritization using genetic algorithm";

International Journal of Information Technology, 11, 4 (2019), 633–637,

https://doi.org/10.1007/s41870-018-0117-0

[Noemmer and Haas, 2020] Noemmer, R., Haas, R.: "An Evaluation of Test Suite Minimization

Techniques"; Lecture Notes in Business Information Processing, 371 LNBIP (2020), 51–66,

https://doi.org/10.1007/978-3-030-35510-4_4

[Rothermel and Harrold, 2015] Rothermel, G., Harrold, M. J.: "A safe, efficient regression test

selection technique"; ACM Transactions on Software Engineering and Methodology (TOSEM),

6, 2 (2015), 173–210, https://doi.org/10.1145/248233.248262

[Rothermel, Untcn, Chu and Harrold, 2001] Rothermel, G., Untcn, R. H., Chu, C., Harrold, M.

J.: "Prioritizing test cases for regression testing"; IEEE Transactions on Software Engineering,

27, 10 (2001), 929–948, https://doi.org/10.1109/32.962562

[Suman and Seema, 2012] Suman, Seema: "A Genetic Algorithm for Regression Test Sequence

Optimization"; International Journal of Advanced Research in Computer and Communication

Engineering (2012), 1, 7(2012), 478-481, https://ijarcce.com/wp-content/uploads/2012/03/A-

Genetic-Algorithm-for-Regression-Test-Sequence.pdf

[Vokolos and Frankl, 1998] Vokolos, F. I., Frankl, P. G.: "Empirical evaluation of the textual

differencing regression testing technique"; In Conference on Software Maintenance (1998),

https://doi.org/10.1109/icsm.1998.738488

[Yadav and Dutta, 2019a] Yadav, D. K., Dutta, S.: "Regression test case selection and

prioritization for object oriented software"; Microsystem Technologies, 26, 5 (2019a), 1463–

1477. https://doi.org/10.1007/s00542-019-04679-7

[Yadav and Dutta, 2019b] Yadav, D. K., Dutta, S. K.: "Test case prioritization using clustering

approach for object oriented software"; International Journal of Information System Modeling

and Design, 10, 3 (2019b), 92–109, https://doi.org/10.4018/IJISMD.2019070106

[Yoo and Harman, 2012] Yoo, S., Harman, M.: "Regression testing minimization, selection and

prioritization: A survey"; Software Testing Verification and Reliability (2012), 22, 2 (2012), 67-

120, https://doi.org/10.1002/stv.430

