
PREPRINT

Author-formatted, not peer-reviewed document posted on 21/08/2024

DOI: https://doi.org/10.3897/arphapreprints.e135147

Similar drivers but distinct patterns of woody and
herbaceous alien plant invasion

David Gregory,  Matt White,  Jane Catford

https://doi.org/10.3897/arphapreprints.e135147
https://orcid.org/0000-0003-2120-0071
https://orcid.org/0000-0003-0582-5960


 1 

Similar drivers but distinct patterns of woody and herbaceous alien plant 1 

invasion  2 

 3 

David Gregory1, Matt White2 and Jane A. Catford1,3,4* 4 

1Department of Geography, King’s College London, 40 Aldwych, London, WC2B 5 

4BG, UK 6 

2Arthur Rylah Institute for Environmental Research, Department of Environment, 7 

Land, Water & Planning, Victoria, Australia  8 

3School of Agriculture, Food & Ecosystem Sciences, The University of Melbourne, 9 

Vic 3010, Australia 10 

4Fenner School of Environment & Society, Australian National University, Canberra, 11 

ACT 2601, Australia 12 

 13 

*Corresponding author: Jane Catford, jane.catford@kcl.ac.uk, ORCID 0000-0003-14 

0582-5960 15 

 16 

Running header: Similarities and differences in woody and herbaceous invasion  17 

Keywords: Alien vegetation management, invasive plant species risk, plant growth 18 

form, ecosystem invasibility, Habitat suitability models, Boosted Regression Trees, 19 

species distribution models  20 

 21 

  22 

Author-formatted, not peer-reviewed document posted on 21/08/2024. DOI:  https://doi.org/10.3897/arphapreprints.e135147

mailto:jane.catford@kcl.ac.uk


 2 

Abstract 23 

The extent of alien plant invasion and numbers of invasive species are increasing, 24 

exacerbating invasion impacts. Effective and efficient management requires 25 

understanding the drivers and distribution of plant invasions at the landscape scale. 26 

In this study, we used a species distribution modelling approach to determine 27 

whether the patterns and correlates of alien invasion vary by plant growth form. 28 

Focusing on the occupancy and abundance of forbs, graminoids and woody 29 

vegetation, we used boosted regression trees (BRTs) to characterise alien plant 30 

invasion risk in two major catchment regions in Victoria, Australia. Of 7,630 quadrats 31 

surveyed between 1970 and 2019, 69% contained alien plants, with forbs being the 32 

most prevalent. Alien plants constituted 22% of the total number of plant species 33 

recorded. Alien species cover varied widely, with forbs and graminoids showing 34 

higher mean cover compared to woody plants. Abiotic conditions, particularly 35 

temperature and precipitation, had the greatest influence on alien plant invasion 36 

overall, explaining 41-76% of observed variation. Summer mean maximum 37 

temperature was a strong predictor across all growth forms. Forbs and graminoids 38 

showed increased occupancy with higher vegetation cover but lower proportional 39 

cover, while woody plants had a negative relationship with their own cover type. High 40 

levels of invasion were predicted in areas with intensive land use, such as urban and 41 

agricultural zones. Forbs had a high probability of occupancy throughout the region, 42 

even in higher elevations, while graminoids and woody vegetation were more 43 

restricted to lower elevations and areas with human activity. The study highlights that 44 

alien plant invasion is influenced by a complex interplay of abiotic factors, propagule 45 

pressure, human activity and biotic conditions. The findings underscore that while 46 

there are common drivers across growth forms, specific patterns and influences 47 

vary. For instance, forbs are more widespread but less dominant in high vegetation 48 

areas, while woody plants were less common and more constrained by existing 49 

vegetation. Management strategies should prioritize maintaining and restoring native 50 

vegetation to limit the dominance of alien species and controlling invasive plants 51 

after disturbance. Although single-species models remain valuable, our study shows 52 

that species distribution models based on growth form offer a practical approach for 53 

assessing plant invasions across diverse landscapes.   54 
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INTRODUCTION 55 

Increases in trade and travel have increased incidence of human-mediated alien 56 

species introduction, and human-induced environmental change has facilitated 57 

higher rates of alien plant establishment (Seebens et al. 2018, Pyšek et al. 2020b). 58 

Invasive alien species, including plants, are considered one of the major threats to 59 

global biodiversity and have the potential to cause substantial environmental and 60 

economic damage (Diagne et al. 2021, Novoa et al. 2021, IPBES 2023). In Australia 61 

alone, estimates of the cost of alien plant invasions exceed AU$13.6 billion per year 62 

(Hoffmann and Broadhurst 2016), with totals of at least AU$299 billion since the 63 

1960s (Bradshaw et al. 2021). The efficient and effective management of alien 64 

species is of high economic, social and ecological importance. However, to be able 65 

to manage alien plant species effectively, it is vital to understand what drives 66 

invasion, how these drivers might differ across different groups of plants, and how 67 

this information can be used to spatially predict the location of alien species on a 68 

landscape scale.  69 

Many ecosystems are invaded by multiple alien plant species (Kuebbing et al. 2013) 70 

and vegetation management organisations are often mandated to control multiple 71 

invasive species across a landscape (Brandt et al. 2023). Invasive species 72 

management is more cost effective when multiple species are managed in concert, 73 

rather than individually (Januchowski-Hartley et al. 2011, Lohr et al. 2017). Effective 74 

spatial prioritisation of invasive species control requires information about where 75 

alien plants occur in the landscape, enabling hotspots of invasion to be targeted. 76 

Because vegetation surveys are limited and data on invasive species distributions 77 

are imperfect, there is a need to predict areas that are likely to experience high 78 

levels of invasion. Such predictive approaches must be applicable to a wide range of 79 

plant species and habitats. However, understanding about the factors that drive alien 80 

plant invasions across various landscapes is still limited and even less is known 81 

about how these drivers may differ across types of plants. 82 

Species distribution models (SDMs) are commonly used to predict the spatial 83 

distribution of individual invasive species. However, SDMs can be data- and 84 

resource-demanding with many individual SDMs required to provide a general 85 

picture of alien plant invasion. For example, at least 175 individual SDMs would be 86 
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required to estimate the spatial distribution of alien graminoids that occur in a 42,000 87 

km2 region of Victoria, Australia. Such an exercise would require considerable time, 88 

and the lack of temporally and spatially unbiased data for individual species could 89 

result in unreliable predictions (Cordier et al. 2020). Trait-based studies that examine 90 

characteristics associated with species invasiveness provide insight into general 91 

drivers of plant invasion, combining data from tens to hundreds of species (Catford 92 

et al. 2016, Fristoe et al. 2021, Palma et al. 2022). However, these studies also 93 

demand considerable amounts of data and most trait-based studies do not provide 94 

spatially explicit predictions (Catford et al. 2019, Junaedi et al. 2021, Palma et al. 95 

2021). A major axis of variation among plants is growth form, with different growth 96 

forms responding to environmental gradients and anthropogenic pressures in distinct 97 

ways (Giorgis et al. 2016, Šímová et al. 2018, Bartlett et al. 2023). Growth form 98 

information is readily available for all known taxa. When combined with species 99 

occupancy and abundance records, this enables group-based distribution models of 100 

invasion risk on a landscape scale (Catford et al. 2011). Growth form-based 101 

distribution models could enable spatial prioritisation of multi-species alien 102 

vegetation management without the need to build hundreds of individual SDMs.  103 

In this study, we use a species distribution modelling approach to determine whether 104 

the patterns and correlates of alien invasion vary by plant growth form. Focusing on 105 

the occupancy and abundance of forbs, graminoids and woody vegetation, we use 106 

boosted regression trees (BRTs) to characterise alien plant invasion risk at a 107 

landscape scale in two major catchment regions in Victoria, Australia to address two 108 

questions:  109 

1) How does the relative influence of variables linked to propagule pressure, 110 

human disturbance, biotic and abiotic characteristics differ between alien 111 

forbs, graminoids and woody vegetation?  112 

2) how do spatial patterns in alien plant invasion differ between the three 113 

growth forms?  114 

To provide context, we also examine the extent of invasion in the study region. 115 

Identifying how landscape vulnerability to invasion varies between different plant 116 
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growth forms will enable more efficient mapping and monitoring techniques, 117 

facilitating management prioritisation (Foxcroft et al. 2017).  118 

METHODS 119 

Study region 120 

This study focuses on a region encompassing two Catchment Management 121 

Authorities within Victoria, south-eastern Australia: West Gippsland and Goulburn 122 

Broken (Fig. 1). The Catchment Management Authorities are responsible for 123 

planning and coordination of environmental management within their catchments. 124 

West Gippsland (~17,700 km2) stretches from the Bass Strait coast in the south to 125 

the Great Dividing Range where it borders with Goulburn Broken (~24,300 km2), 126 

which extends to the agricultural floodplains of the River Murray in the north.  127 

The southern catchment management area in the study region (West Gippsland) 128 

experiences dry hot summers with the majority of the ~850 mm annual rain occurring 129 

in winter months, with the central uplands often receiving triple that of the southern 130 

lowlands (Bureau of Meteorology and CSIRO 2019b). The climate of the northern 131 

catchment area (Goulburn Broken) varies with topography resulting in annual rainfall 132 

ranging from 1600 mm at Lake Mountain to 460 mm in Kyabram in the north (Bureau 133 

of Meteorology and CSIRO 2019a). The study region has a total population of 134 

approximately 415,000 people who mainly reside in regional cities and rural towns 135 

(WGCMA 2019). More than 50% of land is under private ownership and is mainly 136 

used for agriculture resulting in habitat fragmentation. Public lands associated with 137 

the Great Dividing Range experience significantly lower levels of human activity 138 

(GBCMA 2013, WGCMA 2019).   139 

The study region contains a variety of habitats ranging from coastal salt marshes, 140 

mangroves and heathlands in the south to alpine and heavily forested regions in the 141 

centre to floodplain forests and semi-arid woodlands in the north. The study region 142 

was selected based on its wide variety of environmental and anthropogenic 143 

conditions, high levels of invasion, and invasive plant management interest from 144 

management agencies.  145 
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     146 

Figure 1: A map of the study region in Victoria, Australia. The map illustrates areas 147 

of the two Catchment Management Authorities: Goulburn Broken (outlined in red) 148 

and West Gippsland (outlined in yellow), which were combined to create the study 149 

region. The map highlights the main characteristics of the study region including 150 

major towns and cities, roads, national parks, landforms, and locations of the 7,630 151 

vegetation quadrat survey sites. 152 

 153 

Vegetation composition  154 

We used vegetation survey data collected from 7,630 quadrats between 1970 and 155 

2019 by the Victorian Department of Environment, Land, Water and Planning 156 

(DELWP). These data provide information on plant occupancy (presence/absence) 157 

and cover abundance for all native and alien (non-native to Australia) plant species 158 

in the study region.  159 
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The coordinates of the centre of each 30 m x 30 m quadrat were recorded with either 160 

a map (pre-1993: ±100m accuracy) or Geographical Positioning System (post 1993 161 

±7m accuracy). Foliage cover of all plant taxa found within the quadrats was 162 

estimated using the Braun-Blanquet scale (Kent and Coker 1992). For the purposes 163 

of statistical analyses, Braun-Blanquet scale values were converted to percentages 164 

on a proximal ordinal scale (+: 1%, 1: 2%, 2: 10%, 3: 30%, 4: 60%, 5: 80%) to 165 

estimate growth form and total vegetation cover abundance for each quadrat. Total 166 

cover abundance values per quadrat could exceed 100% where multiple layers of 167 

vegetation (e.g. ground and aerial cover) were present.  168 

The cover abundance of combined alien taxa was then calculated as a percentage of 169 

total (i.e. native and alien) plant cover. Cover of alien forbs, graminoids and woody 170 

plants was taken as a percentage of their total growth form cover. By producing alien 171 

cover abundance as a proportion of total cover, exotic species contribution to the 172 

surrounding flora community can be better understood (Catford et al. 2011). 173 

Environmental variables 174 

We assembled a range of environmental variables as proxies for propagule 175 

pressure, human activity, abiotic and biotic conditions that are likely to influence alien 176 

plant invasion (Catford et al. 2009, Catford et al. 2011, Szymura et al. 2018, Pyšek et 177 

al. 2020a). Raw data for over 30 variables was sourced from DELWP and VicData 178 

before being compiled in QGIS 3.14 where variable data was sampled for each 179 

quadrat survey location. Although boosted regression trees (BRTs) are robust to 180 

effects of moderate multicollinearity amongst independent variables (Elith et al. 181 

2008), we used correlation analysis and the literature to reduce the number of 182 

variables to avoid model overfitting (De Marco and Nóbrega 2018). Correlation 183 

analysis highlighted variables with high levels of correlation (Pearson correlation 184 

coefficient >|0.7|). When multicollinearity was found, the variable(s) most distal in its 185 

influence on plant invasion was removed in favour of the more proximal. For this 186 

reason, temperature and rainfall variables were chosen ahead of latitude and 187 

longitude due to their more proximal influence on plant growth. The model for 188 

combined alien taxa included 19 variables and the models for woody, forb and 189 

graminoids included 20 environmental variables following the addition of a variable 190 

for each specific growth form (Table 1). 191 
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Table 1: Independent variables used in the study and their corresponding number ID 192 

and descriptive statistics. B indicates biotic conditions; A indicates abiotic conditions; 193 
P indicates propagule pressure; H indicates human activity. Descriptions of the 194 

independent variables can be found in Table S1 and their correlations in Fig. S1.  195 

 196 

 197 

A landcover variable (Tables 1 & S1) was included to maximise the ability of BRT 198 

models to predict areas susceptible to alien invasion to a fine resolution. The 199 

landcover classifications used in this study were split into five-year periods between 200 

ID Independent Variable Mean (SE) Range 

1 Forb coverB 25.7 (0.3) 1 – 290 

2 Graminoid coverB 32.2 (0.4) 1 – 317 

3 Woody vegetation coverB 57.7 (0.5) 1 – 425 

4 January mean maximum temperatureA 24.2 (0.04) 15.7 – 30.9 

5 Land use intensityPH 2332.0 (47) 0.643 – 26526.5 

6 Survey yearP 1996 (0.1) 1972 – 2019 

7 GeologyA Sandstone 
(Mode) 

See Table S1 

8 Land coverPAH Native Trees 
(Mode) 

See Table S1 

9 Vegetation coverB 120 (0.6) 1 – 665 

10 Wind expositionPA 1.1 (0.002) 0.8 – 1.4 

11 January mean rainfallA 58.3 (0.2) 28 – 103 

12 Radio-element ThoriumA 8.6 (0.06) -0.26 – 38.7 

13 Vertical Height Above River (HAR)A  0.79 (0.002) 0 – 1.0 

14 Normalise Difference Vegetation Index 
(NDVI)B 

0.67 (0.002) -0.33 – 0.91 

15 Road-demographic cost distance 
analysisPH 

11.2 (0.02) 0 – 15.1  

16 July mean rainfallA 101 (0.6) 38 – 223 

17 Distance to riverPA 0.43 (0.01) 0 – 11.2 

18 Time since fireA 35 (0.4) 0 – 98 

19 Diurnal anisotropic heating x ruggedness 
indexA 

0.01 
(0.0001) 

0.3 x10-5 – 0.09 

20 July mean minimum temperatureA 2.9 (0.02) -2.7 – 6.7 

21 Historical land use 1888PAH Dryland 
Agriculture 
(Mode) 

See Table S1 

22 Topographic wetness indexA 0.62 (0.002) 0.18 – 1.0 
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1985-2019 and contained 19 landcover categories (Table S1). By selecting the 201 

landcover period closest to that of the survey date, landcover classification accuracy 202 

at each quadrat site was maximised. To ensure the invasion models can be applied 203 

to large regions, not just small specific areas, the landcover categories used were 204 

broad enough to be used internationally across various climatic environments (e.g. 205 

“urban”, “irrigated horticulture”, “native trees”; Table S1). 206 

Gap analysis 207 

We undertook gap analysis to ensure the training data on which the model was built 208 

(i.e. quadrat survey locations) encompassed the full extent of environmental 209 

conditions found across the study region. The maximum, minimum and mean values 210 

of the environmental variables used as model training data were compared to values 211 

across the study region to confirm the quadrat environmental conditions were 212 

representative of the study region. The values of independent variables from quadrat 213 

survey locations were found to represent up to 100% of those experienced across 214 

the study region. The lack of scores over 100% suggest that models did not 215 

extrapolate beyond conditions found within the training data and study region. 216 

Modelling 217 

We ran eight models, using boosted regression trees (BRTs), to model relationships 218 

between the environmental variables and the occupancy and cover abundance of 219 

combined alien taxa, and alien forbs, graminoids and woody vegetation growth 220 

forms. BRTs use a two-stage modelling method, which fits a series of simple 221 

regression tree analyses and then combines their results in a forward stagewise 222 

manner using iterative machine learning algorithms to maximise predictive power 223 

with high accuracy (De'ath 2007). BRTs are robust when modelling ecological data 224 

due to their ability to handle various data types (continuous and discrete), missing 225 

data and non-linear relationships whilst providing strong performing predictive and 226 

explanatory models (Elith et al. 2008). BRTs are also useful for predicting alien 227 

invasion due to their ability to provide simple graphical and numerical interpretations 228 

of complex relationships between independent variables (De'ath 2007, Elith et al. 229 

2008). 230 
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This study followed the BRTs methods set out by Elith et al. (2008) and Elith & 231 

Leathwick (2017) to model the relationships between independent variables and 232 

alien plant invasion. BRTs for alien occupancy and cover abundance were run 233 

separately, with the cover abundance models only using quadrat sites where alien 234 

species were present. This was done to ensure currently unoccupied sites that are 235 

otherwise suitable for high levels of alien invasion were not inadvertently excluded. 236 

The separation of occupancy and cover abundance models overcomes issues 237 

associated with data containing a high zero count, allows easy interpretation, and 238 

also provides insight into how invasion drivers differ among invasion metrics (Catford 239 

et al. 2012). Occupancy models provide insight into alien species ability to occupy 240 

sites and thus tolerate their biotic and abiotic conditions, while cover abundance 241 

models indicate when an alien species becomes dominant at a site, resulting in 242 

increased impacts on the native ecosystem structure and function.  243 

BRTs were run in R (version 1.3.1056) using packages “gbm” (version 2.1.8; 244 

Ridgeway 2019) and “dismo” (version 1.1-4; Hijmans et al. 2017) and code provided 245 

in Elith et al. (2008) and Elith and Leathwick (2017). Bernoulli (binomial) and 246 

Gaussian error distribution models were fitted for occupancy and cover abundance 247 

models respectively. Upon inspection of the models’ residual plots, cover abundance 248 

models for combined alien taxa and alien growth forms (forbs, graminoids and 249 

woody vegetation) were normalised using log-transformations. BRT models were 250 

adjusted to maximise performance with alien plant occupancy models run using a 251 

learning rate of 0.01, a tree complexity of four and a bag fraction of 0.7 to maximize 252 

predictive performance, following Catford et al. (2011). The parameters remained the 253 

same for the alien proportional cover models except for tree complexity, which was 254 

increased to five. 255 

We used three performance metrics to select the best performing models for each 256 

dependent variable: 1) Percentage deviance explained, expressed as a percentage 257 

of the null deviance for each response variable (Leathwick et al. 2008), provided a 258 

‘goodness-of-fit’ metric between predicted and raw values by predicting to data 259 

excluded from the original model training data; 2) a CV correlation analysis indicated 260 

correlation between predicted values and raw data unused in model training; and 3) 261 

Area Under the receiver operating Characteristic curve (AUC) was used to determine 262 

Author-formatted, not peer-reviewed document posted on 21/08/2024. DOI:  https://doi.org/10.3897/arphapreprints.e135147



 11 

occupancy models’ ability to discriminate between quadrats with or without alien 263 

species (Leathwick et al. 2008). An AUC score of 1.0 indicates perfect discrimination 264 

and a score of 0.5 suggests no discrimination accuracy.  265 

We then used the selected models to predict occupancy and cover abundance of 266 

three plant growth forms (forbs, graminoids and woody vegetation) across the study 267 

region in Victoria, Australia. These predictions were mapped in R, using the “raster” 268 

package (version 3.3-13; Hijmans 2019), to provide study region wide spatial 269 

predictions of combined alien taxa and individual alien growth form predicted 270 

probability of occupancy and expected proportional cover (with resolution limited to 271 

50 m x 50 m due to the resolution of independent variables). To produce a more 272 

realistic representation of alien invasion, expected cover was produced by 273 

multiplying the predicted percentage cover with the probability of an alien species 274 

being present, as carried out by Catford et al. (2011). 275 

RESULTS 276 

Level of invasion 277 

Of the 7,630 quadrats surveyed, 69% contained alien plant species, and alien 278 

species made up 22% of the 3,087 plant species recorded (688 alien species, of 279 

which 14.2% were Woody plants, 25.4% Graminoids and 71.7% Forbs). The mean 280 

species richness across all quadrats was 28.4 (0.16 SE), ranging from 1-115 281 

species. Total vegetation cover was weakly correlated with species richness (r = 282 

0.248; P < 0.001), but no relationship was found with total vegetation cover and alien 283 

species richness (r = 0.067; P < 0.001). When examining only the 5,239 quadrats 284 

that contained alien species, the mean alien proportional cover was 16.67% (0.31% 285 

SE) but this ranged from 0.19-100%, while the mean alien species richness per 286 

quadrat was 6.6 (0.09 SE) and ranged from 1-45 species. Total vegetation cover 287 

was strongly correlated with total native cover (r = 0.877; P < 0.001) but not with total 288 

alien cover (r = 0.263; P < 0.001) or total alien proportional cover (r = - 0.078; P < 289 

0.001). Both alien proportional cover and alien proportional species richness were 290 

negatively correlated with total native cover and native species richness. 291 
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Relative influence of environmental variables on level of invasion 292 

As expected, all eight BRT models demonstrated that alien plant occupancy and 293 

cover were linked to numerous biotic and abiotic factors, propagule pressure and 294 

human activity (Fig. 2). Although the relative influence of specific variables varied 295 

somewhat across response variables (most notably in relation to vegetation cover, 296 

as discussed below), drivers of forb, graminoid and woody invasion were similar 297 

overall (Fig. 2). Variables representing abiotic conditions had the strongest links with 298 

invasion in general, with their summed relative influences varying from ~41% to 299 

~76% (Fig. 2). The alien forb occupancy model differed, however, having the 300 

strongest association with biotic conditions (B) with summed relative influences of 301 

47.7% (Table S2). January (summer) mean maximum temperature was among the 302 

top two most influential variables in six of the eight models and was among the top 303 

six variables for the other two models. Relationships between January mean 304 

maximum temperature and invasion were very similar across all response variables; 305 

occupancy and cover of combined alien taxa and individual growth forms increases 306 

sharply at ~23C January mean maximum until levels plateaued around 25-26C 307 

(Fig. 3).  308 

For each alien growth form occupancy and cover model, total cover of the respective 309 

growth form (e.g. forbs for forbs) was among the top two most influential 310 

independent variables, and the most influential biotic variable (Fig. 2), except for the 311 

woody vegetation occupancy model. The occupancy of combined alien taxa was 312 

positively associated with total vegetation cover, while proportional cover was 313 

negatively associated with total vegetation cover (Fig. 4). This trend extended to the 314 

relationships between alien forb and graminoid occupancy and proportional cover 315 

with their respected total growth form cover. As their respective growth form cover 316 

increased, the alien forb and graminoid occupancy increased while their proportional 317 

cover decreased (Fig. 4). Unlike forbs and graminoids, both the occupancy and 318 

proportional cover of alien woody plants were negatively associated with total woody 319 

plant cover.  320 

Survey year had a strong relationship with all alien cover variables, with cover 321 

increasing over time. The probability of alien occupancy rose gradually between 322 

1972 and c. 2015, after which it dropped sharply (Fig. 5).  323 
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  324 

Figure 1: Stacked bar charts showing the relative explanatory power of the 325 

independent variables used to model the occupancy and cover of combined alien 326 

taxa, alien forbs, zalien graminoids and alien woody vegetation across the study 327 

region. Variables were grouped by whether they represent: abiotic characteristics 328 

(A), propagule pressure and abiotic characteristics (PA), propagule pressure (PP), 329 

biotic characteristics (B). ‘HD’ indicates variables capturing human activity. 330 

Bracketed numbers relate to the independent variable numbers in Table 1. Models fit 331 

in the CV analyses explained 38.0-59.4% of the reduction in the null deviance, had 332 

CV correlations of between 0.62 and 0.78 and AUC scores of between 0.90 and 333 

0.94. The difference between training AUC and CV AUC was always less than 0.01 334 

suggesting overfitting of the models was not an issue. 335 
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 336 

Figure 2: Partial dependence plots illustrating the marginal effect of mean maximum 337 

temperature in January on the probability of (a) alien occupancy, (b) alien forb 338 

occupancy, (c) alien graminoid occupancy, (d) alien woody occupancy, and the 339 

expected (e) alien cover, (f) alien forb cover, (g) alien graminoid cover, and (h) alien 340 

woody cover across the study region. Markings on the inner x-axis denote the 341 

training data deciles. Expected cover was log-transformed in all cases. 342 

 343 

 344 

Figure 3: Partial dependence plots illustrating the marginal effect of total vegetation 345 

cover on (a) the probability of alien occupancy, (e) log-transformed alien cover, and 346 

the marginal effect of total growth form cover on the probability of  (b) alien forb 347 

occupancy, (c) alien graminoid occupancy, (d) alien woody occupancy, and the 348 

expected (f) log-transformed alien forb cover, (g) log-transformed alien graminoid 349 

cover, and (h) log-transformed alien woody cover across the study region. Markings 350 

on the inner x-axis denote the training data deciles.  351 
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352 
Figure 5: Partial dependence plots illustrating the marginal effect of survey year on 353 

the probability of (a) alien occupancy, (b) alien forb occupancy, (c) alien graminoid 354 

occupancy, (d) alien woody occupancy, and the log-transformed expected (e) alien 355 

cover, (f) alien forb cover, (g) alien graminoid cover, and (h) alien woody cover 356 

across the study region. Markings on the inner x-axis denote the training data 357 

deciles.  358 

 359 

Spatial predictions of invasion  360 

Predictions of invasion indicate that, for almost any given location across the study 361 

region, there was a high probability of occupancy of alien taxa from at least one 362 

growth form, especially forbs (Fig. 6). Higher elevation areas, sandplains and regions 363 

of low human settlement were predicted to have lower levels of alien plant 364 

occupancy and cover, although this pattern varied among growth forms. Alien 365 

graminoids and woody vegetation predictions indicated very low levels of invasion 366 

across the Great Dividing Range, but alien forbs still exhibited high occupancy in 367 

these higher elevation areas (Fig. 6b), though levels of alien forb cover remained low 368 

(Fig. 8b). Despite the lower probability of alien taxa occupancy in the Great Dividing 369 

Range (>500 m above sea level), probabilities still reached ~0.80 in areas of high 370 

vegetation cover (Fig. 6). This contrasts with combined alien cover, which remained 371 

very low (<3.0% expected alien cover) across this elevated region and across 372 

national parks and reserves located in southern West Gippsland, which are 373 

characterised by high tree and vegetation cover (Figs 1 & 6).  374 
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Consistent with the similarity in their drivers (Figs 2-5), the predicted levels of 375 

invasion were highly correlated across the eight response variables we examined: 376 

maps with combined alien taxa, alien forb and alien graminoid models displayed 377 

similar patterns of both occupancy and expected relative cover. Predicted invasion of 378 

alien woody vegetation was notably lower across the study region compared to forbs 379 

and graminoids (Fig. 6). Areas characterised by high levels of human activity and 380 

land use intensity were predicted to have high levels of alien occupancy and cover. 381 

Areas of high land use intensity, such as agriculture and urban areas, had the 382 

highest levels of predicted occupancy and cover (>0.90 occupancy probability, >50% 383 

cover). This was most obvious for alien forb and graminoids where towns and cities 384 

(e.g. Mansfield, Seymour and Benalla in Goulburn Broken; Sale and Traralgon in 385 

West Gippsland) had predicted occupancy of >0.90 and proportional cover levels 386 

were frequently >70%. Despite woody vegetation invasion levels not being as high at 387 

these locations, urban regions were still more vulnerable to alien woody plant 388 

invasion (~0.70 occupancy probability; ~8% proportional cover) compared to more 389 

rural areas (<0.45; <5%). 390 

 391 
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 392 

Figure 6: Maps showing predicted probability of occupancy (left panels) and 393 

proportional cover, dependent on the probability of occupancy (right panels), for: (a & 394 

b) combined alien taxa; (c & d) alien forbs; (e & f) alien graminoids; and (g & h) alien 395 

woody vegetation.  396 

[continued on next page] 397 
 398 
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 399 

[Figure 6 continued: Maps showing predicted probability of occupancy (left panels) 400 

and proportional cover, dependent on the probability of occupancy (right panels), for: 401 

(a & b) combined alien taxa; (c & d) alien forbs; (e & f) alien graminoids; and (g & h) 402 

alien woody vegetation].  403 

 404 

 405 

 406 
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DISCUSSION 407 

By examining drivers and patterns of plant invasion in south-eastern Australia, in this 408 

study we identified common themes in alien forb, graminoid and woody vegetation 409 

occupancy and abundance at the landscape-scale. While there was some variation 410 

in the influence of specific drivers across the eight response variables, the boosted 411 

regression tree (BRT) model results confirm that plant invasion is multifaceted and 412 

the result of interactions between propagule pressure, biotic and abiotic conditions, 413 

and influenced by human activity (Fig. 2; Catford et al. 2009, Pyšek et al. 2020a, 414 

Hulme et al. 2023). The most vulnerable areas to invasion in the 42,000 km2 study 415 

region were in lower elevation regions close to human activity, especially for forbs 416 

and graminoids, which reached higher predicted levels of occupancy and cover 417 

abundance than woody alien vegetation. Identifying similarities and differences 418 

across plant growth forms can inform invasion science and management.  419 

Factors associated with invasion of alien graminoids, forbs and woody plants 420 

Variables indicating abiotic conditions (e.g., January mean maximum temperature 421 

and mean precipitation, geology, landcover) had the strongest link with alien plant 422 

occupancy and cover abundance. This is consistent with hypotheses proposing that 423 

resource availability and climatic conditions are the major limiting factors of invasion 424 

(Davis et al. 2000, D’Antonio et al. 2017). However, it may have also reflected the 425 

spatial grain of our study, which was based on 30 m x 30 m quadrats. We thus less 426 

likely to detect effects of biotic interactions, which typically manifest at finer 427 

resolutions, at least for herbaceous plants (Brian and Catford 2023, Pérez-Navarro 428 

et al. 2023). Occupancy and abundance of all growth forms were positively 429 

associated with summer maximum temperature, presumably because warmer 430 

conditions were more hospitable for plant growth regardless of invader growth form.  431 

While temperature had a consistent relationship across response variables, 432 

relationships with quadrat vegetation cover varied, with alien occupancy generally 433 

increasing with vegetation cover and invader abundance declining. The positive 434 

relationship between alien herb occupancy and vegetation cover is consistent with 435 

ideas related to habitat filtering (Catford et al. 2009, Enders et al. 2020). Alien 436 

colonisation was likely elevated in areas of high vegetation cover because growing 437 
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conditions were suitable for most plant species, thereby increasing the probability of 438 

an alien plant being present (Catford et al. 2011). Conversely, proportional cover 439 

likely remained low in high-cover areas because of high competition from resident 440 

plants (Nunez-Mir et al. 2017). Unlike forbs and graminoids, alien woody occupancy 441 

and abundance both declined with increasing woody vegetation cover (Fig. 4). This 442 

may reflect biotic resistance from resident biota, but also likely reflects that denser 443 

woody vegetation is more intact, with likely lower levels of human-mediated 444 

disturbance and introduction of alien plant propagules. The relationships with 445 

vegetation cover highlight how factors facilitating invasion can vary between growth 446 

forms and stages of invasion (Catford et al. 2022). 447 

Spatial patterns of invasion 448 

Alien plant invasion was predicted to be highest in areas with intensive land use, 449 

where urban and agriculture are the dominant landcover, and areas immediately 450 

adjacent to roads where habitat is fragmented and propagule pressure and resource 451 

availability are high (Fig. 6). These patterns are consistent with those elsewhere and 452 

point to the role of human activities and human-mediated dispersal in facilitating 453 

invasion (González-Moreno et al. 2014, Rauschert et al. 2017, Szymura et al. 2018).  454 

Despite similar responses of alien woody and herbaceous vegetation to human 455 

activities, there was some variation in the level and spatial distributions of the three 456 

growth forms examined (Fig. 6). Forbs could be found almost everywhere in the 457 

study region, though their cover was lower in the high elevation areas. Compared 458 

with alien forbs and woody vegetation, graminoid invasion was largely confined to 459 

lower elevation areas dominated by human activities and was much more limited in 460 

areas dominated by native vegetation, like in national parks and reserves and in the 461 

Great Dividing Range (Figs 1 & 6). Giorgis et al. (2016) also found that graminoid 462 

invasion was lower in native woodlands. Woody invasion was much more limited 463 

than herbaceous invasion, which may reflect a range of factors including lower 464 

colonisation and propagule pressure, lower habitat suitability and shorter effective 465 

residence times (i.e. especially when considering species generation times).  466 

Management implications 467 
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Our study has illustrated that invasion is driven by a suite of factors, many of them 468 

shared across different growth forms, highlighting multiple vulnerabilities and levers 469 

for management. Focusing on proportional abundance of alien taxa, our results 470 

suggest that further native vegetation loss will facilitate alien plant dominance in the 471 

study region. Deforestation, wildfire and other land use changes that disturb native 472 

vegetation thus all pose a risk for further invasion. The study region – and south-473 

eastern Australia more broadly – is prone to wildfire, as the devastating bushfires of 474 

2019-2020 demonstrated, a risk that is set to rise as climate change strengthens 475 

(Turbelin and Catford 2021). Our results highlight the importance of maintaining or 476 

restoring native vegetation to limit dominance of alien plants, especially for woody 477 

alien species that may otherwise struggle to colonise. By extension, our findings also 478 

confirm the value of actively managing alien plant populations while native 479 

vegetation recovers from disturbances like fire (Lindenmayer et al. 2015) 480 

As well as reducing native vegetation and associated biotic resistance, urban and 481 

agricultural expansion will increase habitat fragmentation and propagule pressure, 482 

likely increasing invasion in areas that currently have low levels of invasion. Based 483 

on our study, alien graminoids should benefit the most from this sort of landcover 484 

change (Fig. 6e-f). In addition to increasing wildfire risk, climate change may 485 

facilitate invasion in the study region by increasing temperatures (Fig. 3, Catford and 486 

Jones 2019). Counteracting these changes (among others; Nolan et al. 2021) with 487 

local and regional management measures, like strategic land use planning or 488 

vegetation restoration, will be important for limiting further invasion (O’Reilly-Nugent 489 

et al. in press).  490 

Identifying common drivers of invasion, and regions highly susceptible to invasion, 491 

can help identify areas and actions that should be prioritised for management. While 492 

useful to examine trends of all alien plants combined, grouping species by growth 493 

form enables more targeted science and management. Single-species models will 494 

remain a key tool in understanding and managing invasive plants, but more general 495 

models based on plant growth form offer an efficient and informative approach for 496 

assessing plant invasion across variable landscapes.  497 

 498 
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