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Abstract 16 

Recreational angling is a major introduction pathway for non-native fish into freshwaters, 17 

where multiple non-native fishes are often released into waterbodies to diversify the angling 18 

opportunities. When these non-native fishes are taxonomically similar, then there is concern 19 

that their hybridisation will result in F1 generations comprising of novel phenotypes that 20 

outperform their parental species, resulting in the impacts of these ecological engineering 21 

species being accelerated. Across two water temperatures (18oC, 26oC), comparative functional 22 

response analyses (CFR) quantified the consumption patterns of the globally invasive 23 

freshwater fish carp Cyprinus carpio and goldfish Carassius auratus, plus their  F1 hybrids, 24 

before then testing differences in their specific growth rates (SGRs). In CFRs, carp consumed 25 

significantly more prey at 18oC than the other fishes, and with no differences between any of 26 

the fishes at 26oC. SGRs also did not differ substantially between the fishes at either 27 

temperature. These results suggest that hybridisation between the high impacting parental 28 

species did not produce novel phenotypes of high ecological performance that could accelerate 29 

their ecological impacts in invaded ecosystems. Accordingly, the ecological risks of their use 30 

in recreational angling remain an issue that is primarily associated with the parent populations, 31 

and this can be reflected in their invasion management. 32 

 33 

Key words: Common carp, goldfish, heterosis, comparative functional response.  34 
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 3 

Introduction 35 

Recreational angling remains an important introduction pathway for alien freshwater fishes, 36 

where the aims of introductions include diversification of target species and to increase angler 37 

satisfaction with their catch related experiences (Carpio et al. 2019; Hirsch et al. 2021). 38 

However, these introduced fishes often develop invasive populations, with biological invasions 39 

recognised as a major driver of biodiversity loss (Britton 2023). Given fishes released for 40 

freshwater angling enhancement are generally large bodied and of high trophic position then 41 

their invasive populations can have strong top-down effects that disrupt ecosystem functioning 42 

(Eby et al. 2006; Britton 2023).  43 

 44 

Introductions of freshwater fishes for angling has resulted in a relatively small number of non-45 

native fishes developing invasive populations globally, such as the North American largemouth 46 

bass Micropterus salmoides (Pereira and Vitule 2019). Ecological concerns on their invasive 47 

populations relate to the interactions with native prey fishes, where their increased predation 48 

pressure can lead to substantial declines in prey population abundances (Gratwicke and 49 

Marshall 2001). However, species that concomitantly have both top-down and bottom-up 50 

effects (i.e. middle-out effects) are arguably even more damaging ecologically, given their 51 

impacts across multiple trophic levels are through both direct and indirect processes (Weber 52 

and Brown 2009; Vilizzi et al. 2015). Species such as common carp Cyprinus carpio and brown 53 

goldfish Carassius auratus have been used to enhance recreational fisheries across much of 54 

Europe, with releases of both species being commonplace in many waters, despite high 55 

ecological concerns through middle-put effects (Britton et al. 2010).    56 

 57 

Where introductions of multiple non-native species are released into novel communities that 58 

are taxonomically similar, such as carp and goldfish, then this raises additional concerns over 59 
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their hybridisation, as this can alter the functional traits and ecological interactions of the 60 

hybridised progeny versus their parental species (Horvick and Whitney 2014; Selz and 61 

Seehausen 2019). This results from the generation of novel phenotypes arising from the 62 

combining of alleles that have not segregated before in the same population (Selz and 63 

Seehausen 2019). Although hybridisation results in a general surge of genetic variation from 64 

the admixed divergent genomes and the acquisition of specific adaptive traits through lateral 65 

gene transfer and introgression (Seehausen 2004), its effects on ecological performance are 66 

unpredictable. For example, providing that the interactions between the alleles do not result in 67 

intrinsic incompatibilities then transgressive segregation can result in the hybrids 68 

outperforming parental taxa via adaptive diversification from the novel combination of parental 69 

traits and/ or expression of new traits (Kagawa and Takimoto 2018; Nieto Feliner et al. 2020). 70 

Conversely, introgression can result in the performance and fitness of hybrids being lower than 71 

their parental species through outbreeding depression (Pregler et al. 2023). In hybrids of the 72 

F1 generation, the general patterns tend to be an expression of high hybrid vigour through 73 

heterosis, where their expressed traits are superior in performance to those of their parents 74 

(Šimková et al. 2021; Dong et al. 2022).  75 

 76 

Heterosis in the F1 generation is especially important to consider when the parental species are 77 

both high impacting non-native species of global concern, such as in carp and goldfish. Both 78 

species are highly invasive globally with foraging behaviours that drive dietary overlaps with 79 

native fishes and strongly modify ecosystem functioning (Britton et al. 2010; Britton 2023). In 80 

recreational freshwater fisheries where these fishes co-exist, fertile hybrids are often produced 81 

(Hänfling et al., 2005). In the England and Wales, hybrids between these species are produced 82 

in hatcheries and are then frequently released into lentic catch-and-release fisheries to enhance 83 

angling performance. However, the ecological performance of these hybrids and the outcomes 84 
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for invaded ecosystems remain untested, including across a range of environmental contexts. 85 

Accordingly, to provide the evidence base for the risk analysis of hybrids arising from the 86 

introgression of genes between taxonomically similar species, we use carp and goldfish here 87 

as model species to experimentally test their foraging behaviours (as comparative functional 88 

responses, CFR) and growth performance (as specific growth rate, SGR) versus their first-89 

generation (F1) hybrids in contexts of two contrasting temperatures. We predict that the 90 

ecological performance of the F1 fish will be superior to both non-hybrid carp and goldfish, 91 

with this heterosis being independent of temperature.   92 

 93 

Materials and Methods 94 

Experimental Fish 95 

The experimental carp, goldfish and F1 hybrids were from the same hatchery in Southern 96 

England, where the fish were produced from the same parental lines, and with experimental 97 

fish exposed to the identical rearing conditions. Both parental species have thermal optima 98 

>20oC and critical thermal maxima >30oC (Britton et al. 2010; Ferreira and Farrell 2014). All 99 

fish were age 0+ years and of initial body mass 2.0 to 6.0 g on arrival in the laboratory, where 100 

they were then individually tagged (7 mm passive integrated transponder tag), and acclimated 101 

for 20 days (18oC; 16:8 h light: dark cycle). Outside of experiments, the fish were fed a 102 

maintenance diet of crushed pelletized fishmeal. 103 

 104 

Comparative Functional Response Experiments 105 

For CFR experiments, individual fish were exposed to Chironomid larvae as prey resources in 106 

10 L tanks at 18oC following a 24-hour starvation period and a 4 hour acclimation period to 107 

their experimental tank. Food densities were 4, 8, 16, 32 and 64 larvae (and 128 for 26oC 108 

experiment). Food exposure was for one hour, after which the number of larvae consumed was 109 

Author-formatted, not peer-reviewed document posted on 13/05/2024. DOI:  https://doi.org/10.3897/arphapreprints.e127245



 6 

quantified, with three replicates per prey density per species. When all replicates were 110 

completed, the water temperatures were increased to 26oC over 8 days and, following a 5-day 111 

acclimation period, the CFR experimental process was repeated. With the fish being PIT 112 

tagged, no individual fish was used more than twice in CFRs, with a minimum of five days 113 

between use. 114 

 115 

Values of the CFR parameters attack rate (a) and handling time (h) were calculated for each 116 

species and temperature using maximum likelihood estimation (MLE) in the Random Predator 117 

Equation [13], completed in the R package ‘Frair’ (Pritchard et al. 2017). The equation 118 

assumes a Type II functional response and the non-replacement of prey, where Ne = N0 (1 – 119 

exp(a(Neh-T))), with Ne = number of prey eaten, N0 = initial density of prey, a = attack rate, h 120 

= handling time and T = total time. Analyses also provided the significance of differences in a 121 

and h between the species (Pritchard et al. 2017; Cuthbert et al. 2019). To visualise uncertainty, 122 

2000 non-parametric bootstraps enabled empirical 95% confidence intervals to be fitted around 123 

the functional responses, which were  used to provide CFR plots between the parental species/ 124 

F1s, and water temperature.  125 

 126 

Specific Growth Rate Experiments 127 

Following completion of CFRs, water temperatures were returned to 18oC and the fish 128 

acclimated for 10 days. The growth performance of the fishes was then tested in co-habitation 129 

experiments completed in tanks of 25L. Experimental treatments used controls (species/hybrid 130 

in allopatry; n=6) and treatments (combinations of two species in sympatry; n=3+3; and all 131 

species in sympatry; n=2+2+2), each replicated three times. Each species per experimental 132 

treatment was batch weighed (to 0.01 g) before released into their tanks, where they were held 133 

at 18oC and fed a daily food ration (crushed pelletised fishmeal) at a mean of 2% starting body 134 
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mass. After 15 days, the fish were removed from their tanks, re-weighed, returned to their tanks 135 

and the water temperature increased to 26oC over five days before the experimental process 136 

was repeated.  For each species/hybrid, control and treatment, and water temperature, SGR was 137 

determined from ([(lnWt+1) lnWt) ⁄ t]/n) x 100 (Equation 1), where Wt = total starting weight of 138 

the species in the tank, Wt+1 = total finishing weight, n = number of fish, and t = number of 139 

days between Wt and Wt+1. A generalised linear model (GLM) tested the differences in SGR 140 

between treatments for each species, where SGR was the dependent variable, treatment was 141 

the independent variable, and total starting mass of fish per replicate used as an initial covariate 142 

and retained in final models when its effect was significant. Model outputs were the overall 143 

significance of the model and the mean SGR values (± 95 % CI) according to species and 144 

treatment. All analyses were performed in R (version 4.2.3; R Core Team 2023). 145 

 146 

Results 147 

Comparative functional responses 148 

The functional responses of all species at all temperatures were Type II and significant (Fig. 149 

1). The 95% confidence limits of consumption rates at 18oC suggested carp had significantly 150 

higher rates than goldfish and hybrids, which had similar values to each other (Fig. 1). All 151 

species revealed higher consumption rates at 26oC versus 18oC, with no significant differences 152 

between them.  Handling times and attack rates of carp and hybrids were also significantly 153 

higher at 26oC versus 18oC, but not for goldfish. There were also significant differences in 154 

these metrics between the species at both temperatures, with the attack rate of goldfish being 155 

lower than the other fishes at both temperatures (Table 1).  156 
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 157 

Figure 1. Comparative functional response curves for carp (green), goldfish (red) and their F1 

hybrids (blue) at 18oC (left) and 26oC (right). Shaded areas around the curves represent 95 % 

confidence intervals generated by boot-strapping. Note differences in values on both axes 

between the plots. 

 

Table 1. (A) First order linear coefficient results from logistic regressions for the predator and 

prey combinations. All values indicate a Type II functional response. (B) Parameters of the 

comparative functional responses, with statistically significant differences in the parameters 

between species (α = 0.05) in bold. a = attack rate, h = handling time. Z and P values are 

statistical outputs from regression that indicate whether a and h differ significantly between 

the comparator species. 
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h 0.04/0.05 0.04/0.01 0.05/0.01 

Z 1.10 8.11 8.77 

P 0.27 < 0.001 < 0.001 

26 oC    

a 42.18/6.89 42.18/3.46 6.89/3.46 

Z -8.55e7 -19.59e7 3.28 

P < 0.001 < 0.001 0.001 

h 0.010/0.008 0.010/0.008 0.008/0.008 

Z -3.39 -12.54 -0.19 

P < 0.001 < 0.001 0.87 

 158 

Specific Growth Rates 159 

Increased fish mass occurred in all SGR treatments at both temperatures (Fig. 2). The effect of 160 

treatment on SGR was significant for each species (GLM: carp: Wald χ2 = 452.39, df = 22, p 161 

< 0.0001; goldfish: Wald χ2 = 130.91, df = 23, p < 0.001; hybrid: Wald χ2 = 128.92, df = 22, p 162 

= 0.002), where starting mass as a covariate was significant for carp (p = 0.01) and hybrids (p 163 

= 0.03) (retained in final models), but not goldfish (p = 0.16; removed from final model). At 164 

both temperatures and all species, SGRs in the allopatric controls were generally lower than in 165 

the sympatric treatments, but with the effect of temperature on SGR being minor; where 166 

elevated SGRs were apparent then this was at 18oC rather than 26oC (Fig. 2). 167 
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 168 

Figure 2. Mean specific growth rates of cohabitation experiments for (A) carp (‘Ca’), (B) 

goldfish (‘GF’), and (C) their F1 hybrids (‘F1’) at 18oC (‘18’) and 26oC (‘26’). 
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 169 

Discussion  170 

There was no evidence to suggest heterosis was apparent in the performance of the F1 hybrids 171 

across both experiments, with their performance in CFRs being weak versus carp at 18oC and 172 

differences in consumption rates not being significant at 26oC. Their CFR metrics were 173 

significantly higher at the elevated water temperature, but this was also apparent in goldfish, 174 

with the maximum consumption rates of all of the fishes being similar at this elevated 175 

temperature. The SGR experiment also did not indicate any substantially enhanced 176 

performance in the F1 fish versus the other fishes, nor was there a strong effect of temperature 177 

on SGR, most likely due to the feed rations being maintained at a constant level across both 178 

temperatures.  179 

 180 

Heterosis is a common outcome of hybridisation in early generations, as observed in invasive 181 

plants (Hahn and Riesberg 2017), where admixture can increase performance across multiple 182 

generations (Li and van Kleunen 2018), and in fishes, where similar patterns of heterosis were 183 

detected in crosses of three-spine stickleback Gasterosteus aculeatus from different lake 184 

populations (Thompson and Schluter 2022). Interspecific hybridisation is common in 185 

freshwater fishes (Bolnick 2009), with the few performance studies on inter-specific 186 

hybridisation involving invasive fishes in the wild being equivocal in their results. For 187 

example, low larval mortality in the F1 generation of non-native red shiner Cyprinella lutrensis 188 

and native blacktail shiner Cyprinella  venusta stigmatura was suggested as being evidence of 189 

heterosis (Blum et al. 2010). However, in early generation hybrids of Asian bighead carp 190 

species (Hypophthalmichthys spp.), nutritional performance was intermediate between the 191 

parental lines, with advanced generations then becoming increasingly similar to parental 192 

species (Liss et al. 2016). Heterosis in the performance of F1 generations of fishes mixed in 193 
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aquaculture is more evident (Šimková et al. 2022) where advantages can be through decreased 194 

viral susceptibility and faster growth rates (Bryden et al. 2004). We nevertheless argue that our 195 

results, generated using hybrids and parental species in controlled conditions, represent novel 196 

outcomes in that we could find no similar studies comparing the ecological performance of 197 

such high impacting alien species versus their F1 generation.   198 

 199 

This absence of transgressive segregation and heterosis in the hybrids of these globally invasive 200 

pest fishes is then important for their risk screening within management frameworks regulating 201 

the release of non-native fishes in recreational fisheries (Vilizzi et al. 2019; Copp et al. 2021). 202 

Both parental species have been assessed in risk screening as being of high ecological risk 203 

where, for example, they were assessed as representing the highest ecological risk of all non-204 

native fishes introduced into freshwaters in England (Britton et al. 2010). Consequently, there 205 

was high concern that their hybrids would be composed of novel phenotypes that result from 206 

combinations of alleles that were previously always segregated (Selz and Seehausen, 2019). 207 

Given there was no evidence that the F1 generation had superior performance in their foraging 208 

and growth rate, especially at 18oC where carp were superior, but also at 26oC where 209 

differences between the species were generally not significant, then this represents an 210 

important outcome for their scientifically informed management. Accordingly, the ecological 211 

concern with introductions of these species remain with their parental populations and so where 212 

risk-based invasion management programmes are implemented to minimise the impact and 213 

dispersal of these species, they do not need to account for the possibility of these species 214 

producing hybrids that will accelerate their ecological impacts. This means that where invasive 215 

populations develop from fishes initially introduced for recreational angling then control and 216 

containment programmes could be effective in reducing the impacts of their populations 217 
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(Britton et al. 2023), with the evidence base for such management decisions enhanced by the 218 

results presented here.  219 

 220 
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