First report of a histozoic Henneguya (Cnidaria, Endocnidozoa) infecting a synbranchid potamodromous fish from South America: Morphostructural and biological data

Patrick D. Mathews¹,², Omar Mertins², Luis L. Espinoza³, Julio C. Aguiar¹, Tiago Milanin⁴

¹ Department of Parasitology, Institute of Biosciences, São Paulo State University, 18618-689 Botucatu, Brazil
² Laboratory of Nano Bio Materials, Department of Biophysics, Paulista Medical School, Federal University of Sao Paulo, 04023-062 São Paulo, Brazil
³ Laboratory of Biology and Molecular Genetics, Faculty of Veterinary Medicine, Universidad Nacional Mayor de San Marcos, Lima 15021, Peru
⁴ Department of Basic Sciences, Faculty of Animal Science and Food Technology, University of São Paulo, 13635-900, Pirassununga, Brazil

https://zoobank.org/7D9E1775-A6FC-49D0-9B89-EBF51D3DC912

Corresponding author: Patrick D. Mathews (patrickmathews83@gmail.com)

Abstract

In this study, a Henneguya myxosporean species is described to infect an ecological, biological, and evolutionary important fish from Amazon biome. The myxosporean was found in the skin of only one specimen of marbled swamp eel, Synbranchus marmoratus caught in a small stream from Peruvian Amazon floodplain. Mature myxospores have ovoid shape from the valvular view, measuring 32.2 ± 0.6 μm (31.6–32.8) in total length, 21.5 ± 0.3 μm (21.2–21.8) in spore body length, 11.7 ± 0.5 μm (11.2–12.2) in width and 10.6 ± 0.9 μm (9.7–11.5) in thickness. Non-bifurcate caudal appendage, measuring 10.7 ± 0.4 μm (10.3–11.1) in length. Two polar capsules elongated aubergine in shape, equal in size and measuring 4.9 ± 0.2 μm (4.7–5.1) in length and 3.1 ± 0.5 μm (2.6–3.6) in width. Polar tubules coiled in 7–8 turns. This is the first report of a Henneguya species parasitizing a fish of the order Synbranchiformes from Amazon basin and the first to describe this parasite infecting a potamodromous fish from South America.

Key Words

Henneguya, myxosporean, marbled swamp eel, skin, Peru

Introduction

Myxosporean are a biologically diverse group of microscopic cnidarians of wide distribution around the world (Atkinson et al. 2018). They mostly innocuous parasites with complex life cycles that involve invertebrate and vertebrate hosts (Okamura et al. 2015). Although, most myxosporean species have fish hosts, they have radiated sporadically into other groups of vertebrates, including amphibians, reptiles, waterfowl and small mammals (Okamura et al. 2015). Within myxosporean, Henneguya Thélohan, 1892 is one of the most species rich genera with more than 250 species described taxonomically (Eiras 2002; Rangel et al. 2023). Although the Amazon basin is one of the main biodiversity hotspots, the myxosporean fauna is poorly known. To date only 19 Henneguya species have been reported in fish from this geographic region with almost all reported data so far coming from the Brazilian part of the Amazon basin (Eiras and Adriano 2012; Mathews et al. 2016; Naldoni et al. 2018). In the Peruvian Amazon, despite a recording of over 650 fish species, there is a gap in the knowledge of myxosporean diversity. Indeed, only three Henneguya species have been described (Mathews et al. 2017, 2018, 2020).

The marbled swamp eel Synbranchus marmoratus Bloch, 1795 is considered a potential predator and it can be found throughout flooded forests, small streams and associated swamps subject to water level changes, between the rainy season and the dry period (Heisler 1982; Favorito et al. 2005;
Junges et al. 2010). This species of fish is a protogynous diandric, meaning that females will change their sex and become males (Allsop and West 2003). It is a potamodromous species which is capable of switching from exclusive water breathing to exclusive air breathing (Heisler 1982). Despite, the ecological, biological, and evolutionary importance of the marbled swamp eel, little is known about its parasitic fauna, particularly the ones concerning myxosporean parasites.

This study aims to contribute to the increase of knowledge of diversity cnidarian myxosporean and their interaction with fishes from Amazon biome. Thus, spore morphology features using light, scanning and transmission electron microscopy as well as other important biological characters such as tissue tropism and host-specificity are provided.

Materials and methods

Six specimens of *S. marmoratus* (ranging from 18.1 to 21.6 cm in length) that died during transport were donated by local fishers for ornamental fishes in March 2018. According to the fishers, these fish were caught in a small stream near of the Village Oran (3°21’0"S, 72°31’0"W), Omagua Region, Department of Loreto, Peru.

Morphometric analysis was performed following the criteria outlined by Lom and Arthur (1989). Measurements and photographs were taken from 30 randomly selected formalin-fixed mature myxospores, using a computer equipped with Axiovision 4.1 image capture software coupled to an Axioplan 2 Zeiss microscope (Carl Zeiss AG, Oberkochen, Germany). Spore length, thickness, polar capsule length, width, and caudal appendage length were measured and given in micrometers (μm) and expressed as a mean ± standard deviation, followed by the range in parentheses where appropriate. Permanent slides containing mature myxospores stained with Giemsa were mounted and deposited in the cnidarian collection of the Zoology Museum at the University of São Paulo – MZUSP, São Paulo, Brazil (Hapantotype MZUSP 8733).

Histological analysis was performed on fresh tissue fragments containing plasmodium. Infected tissue was fixed in 10% buffered formalin solution, then dehydrated with increasing series of ethanol, dianhydridized, embedded in paraffin, cut into serial sections 5 μm thick using an HM 340E electron microscope (Thermo Scientific v3.1 cycle sequencing kit (Applied Biosystems Inc., California, USA) in an ABI 3730 DNA sequencing analyzer.

Results

Of six wild specimens of *S. marmoratus*, a single wild specimen of *S. marmoratus* examined, was infected in the skin by an unknown cnidarian myxosporean species. Based on the phenotypic characters of the mature myxospores, this species was assigned to the genus *Henneguya*. The fish presented five plasmodia distributed in the body skin. The same were not found in any other organ.

Taxonomic summary

Phylum: Cnidaria Verrill, 1865.

Subphylum: Endocnidozoa Schuchert, 1996.

Class: Myxosporea Bütschli, 1881.

Order: Bivalvulida Shulman, 1959.

Family: Myxobolidae Thélohan, 1892.
Genus *Henneguya* Thélohan, 1892

Species. *Henneguya* sp. (We suggest that this isolate, after determination by molecular phylogenetic data, be named as (*H. atingae*) based on host species common name in Peru.

Type host. *Symbranchus marmoratus* (Teleostei: Symbranchidae).

Site of infection. Stratus corneum of epidermis layer of the skin.

Type locality. Small stream, adjacent area of Oran Village, Loreto Department, Peru (3°21'0"S, 72°31'0"W).

Description. Morphological observations by light microscopic showed mature myxospores have ovoid shape from the valvular view, measuring 32.2 ± 0.6 μm (31.6–32.8) in total length, 21.5 ± 0.3 μm (21.2–21.8) in spore body length, 11.7 ± 0.5 μm (11.2–12.2) in width and 10.6 ± 0.9 μm (9.7–11.5) in thickness (Fig. 1a, c). Non-bifurcate caudal appendage, measuring 10.7 ± 0.4 μm (10.3–11.1) in length (Fig. 1a, c). Two polar capsules elongated aubergine in shape, equal in size and measuring 4.9 ± 0.2 μm (4.7–5.1) in length and 3.1 ± 0.5 μm (2.6–3.6) in width (Fig. 1b, c). Sporoplasm evidenced two nuclei in valvular view and sutural line was noticeable in side view (Fig. 1b, c).

Surface topography analyses of mature myxospores in valvular view revealed smooth valve cell with presence of mucous in a small area (Fig. 2a). In sutural view myxospore evidence a conspicuous sutural line (Fig. 2c). The density of caudal appendage is likely be identical to that of its valve (Fig. 2b). Internal ultrastructural observations showed binucleated sporoplasm contained sev-

Figure 1. *Henneguya* sp. parasite from the skin of *Symbranchus marmoratus*. a: formalin-fixed myxospores in valvular view showing appendage caudal (large arrows) and two polar capsules in the anterior pole of spore occupied only the anterior third of the myxospore body (small blue arrows). b: mature myxospores stained with Giemsa with noticeable binucleate sporoplasm (double arrow) and polar capsules with aubergine shape (large arrow). c: schematic illustration of mature myxospore with polar tube inside of polar capsule. Scale bars: 5 μm.

Figure 2. Surface topography by SEM of *Henneguya* sp. infecting skin of *Symbranchus marmoratus*. a: mature myxospore in valvular view showing smooth valve cell with presence of mucous (white star) in a small area and caudal appendage. Scale bar. 1 μm. b: amplified area of the caudal appendage evidencing density of caudal appendage likely to be identical to that of its valve. Scale bar. 200 nm c: myxospore evidence a conspicuous sutural line in sutural view. Scale bar: 100 nm.

Figure 3. Internal ultrastructure by TEM of myxospore of *Henneguya* sp. infecting skin of *Symbranchus marmoratus*. a: sporoblast in young developmental stage showing binucleated sporoplasm (n) contained several sporoplasmosomes (asterisk), valve-forming materials (white arrow) and polar capsules (pc) with absence of polar tubule. b: polar capsule (pc) with capsular nuclei, polar tubule internalized contained seven to eight coils (pt), sporoplasm binucleated (spl/n) and contained sporoplasmosomes (asterisk) at a more advanced sporoblast developmental stage. c: Spores with sutural lines (small arrows), sporoplasm with numerous sporoplasmosomes (asterisk) and caudal appendage (large arrow). Scale bars: 2 μm.
eral sporoplasmosomes and valve-forming materials in young sporoblast developmental myxospore stage (Fig. 3a). Polar capsule with polar tubule internalized and contained seven to eight coils at a more advanced sporoblast developmental stage (Fig. 3b). Caudal appendage and conspicuous sutural line in mature spores. (Fig. 3c).

Histologic evidenced tissue tropism of the myxosporean under study, occurring in the stratus corneum of epidermis layer of the skin (Figure 4). The parasites induced no apparent tissue destruction, ulcerations, necrosis or inflammatory response. For molecular procedures, partial 18S rDNA gene was successfully amplified by PCR (Fig. 5), however, sequencing failed.

Discussion

Despite the growing description of myxosporean infecting South American fishes (Sousa et al. 2021; Adriano and Oliveira 2022), the diversity of these ancient metazoans in this neotropical realm remains largely unknown (Okamura et al. 2018; Mathews et al. 2022b). In this context, our study describes a histozoic myxosporean species of *Henneguya*, infecting skin of the Amazonian potamodromous fish *S. marmoratus*. In the Amazon biome, *Henneguya* encompasses 22 recognized species (Table 1), reported infecting Characiform, Perciform, Cichlidiform, Gymnotiform and Siluriform fishes (Mathews et al. 2017, 2018; Adriano and Oliveira 2022; Rangel et al. 2023). However, to the best of our knowledge, this is the first report of a *Henneguya* species parasitizing a fish of the order Synbranchiformes from Amazon basin and the first to describe this parasite infecting a potamodromous fish from South America. Thus, our results contribute to freshwater myxobolids taxonomy and to increasing our knowledge of cnidarian myxosporean diversity.

The morphological data of the mature myxospore isolated were first compared considering *Henneguya* species previously described from Peruvian Amazon freshwater fishes. Nevertheless, these differ from the new isolated in myxospore body length (18.7 ± 0.9 μm in length for *H. multiradiatus*, 14.3 ± 0.1 μm for *H. loretoensis*, 13.4 ± 0.9 μm for *H. peruviensis* and 21.5 ± 0.3 μm to the new isolated), polar capsule length (9.1 ± 0.1 μm in *H. multiradiatus*, 5.1 ± 0.2 μm in *H. loretoensis*, 3.3 ± 0.2 μm in *H. peruviensis* and 4.9 ± 0.2 μm in the new isolated), number of coils of the polar tubule (10–11 in *H. multiradiatus*, five in *H. loretoensis*, four to five in *H. peruviensis* and seven to eight in the new isolated) and in the length of the caudal appendage (25.8 ± 0.6 μm in *H. multiradiatus*, 21.9 ± 0.1μm in *H. loretoensis*, 10.7 ± 0.1 μm in *H. peruviensis* and 10.7 ± 1.2 μm in the new isolated). Compared with the all other freshwater *Henneguya* species reported to infect Amazonian fishes, the new isolated differed in at least one characteristic (shape of spore, size of spore or polar capsule, presence or absence or number of valve striations, size of caudal appendage and number of polar tubules turns), tissue and host preference as showed in the Table 1.

According to Molnár and Eszterbauer (2015), for freshwater histozoic myxosporean particularly for *Henneguya* and *Myxobolus* species, the site of infection is considered an important taxonomic key for identification due to high organ and/or tissue specificity of these group of parasites. Accordingly, differences are observed because plasmodia
Table 1. Comparative data of *Henneguya* sp. with other *Henneguya* species parasites of Amazon fish. Spore dimensions, infection sites, and fish host are given. TL: total length; BL: body length; APCL: caudal appendage length; SW: spore width; ST: spore thickness; PCL: polar capsule length; PCW: polar capsule width; NCT: number of coils of polar tubules, *: Peru. All measurements are in μm and/or means ± SD. Source: Rangel et al. 2023, Eiras, 2002.

<table>
<thead>
<tr>
<th>Species</th>
<th>TL ± SD</th>
<th>BL ± SD</th>
<th>APCL ± SD</th>
<th>SW ± SD</th>
<th>ST ± SD</th>
<th>PCL ± SD</th>
<th>PCW ± SD</th>
<th>NCT</th>
<th>Site of infection</th>
<th>Fish species</th>
</tr>
</thead>
<tbody>
<tr>
<td>Henneguya sp.</td>
<td>32.2 ± 0.6</td>
<td>21.5 ± 0.3</td>
<td>10.7 ± 0.4</td>
<td>11.7 ± 0.5</td>
<td>10.6 ± 0.9</td>
<td>4.9 ± 0.2</td>
<td>3.1 ± 0.5</td>
<td>7–8</td>
<td>skin</td>
<td>Synbranchus marmoratus</td>
</tr>
<tr>
<td>Henneguya longisporoplasma</td>
<td>53.4 ± 2.9</td>
<td>12.6 ± 0.6</td>
<td>40.7 ± 2.8</td>
<td>5.7 ± 0.5</td>
<td>5.3 ± 0.5</td>
<td>3.5 ± 0.3</td>
<td>1.9 ± 0.2</td>
<td>4–5</td>
<td>Gill filaments, fins</td>
<td>Plagiocies squamosissimus</td>
</tr>
<tr>
<td>Henneguya multiradiatus</td>
<td>44.5 ± 0.6</td>
<td>18.7 ± 0.9</td>
<td>25.8 ± 0.6</td>
<td>7.1 ± 0.2</td>
<td>5.5 ± 0.3</td>
<td>9.1 ± 0.1</td>
<td>1.7 ± 0.1</td>
<td>10–11</td>
<td>Abdominal cavity serosa</td>
<td>Brochis multiradiatus</td>
</tr>
<tr>
<td>Henneguya peruviensis</td>
<td>24.2 ± 1.3</td>
<td>13.4 ± 0.9</td>
<td>10.7 ± 1.2</td>
<td>3.9 ± 0.1</td>
<td>–</td>
<td>3.3 ± 0.2</td>
<td>1.6 ± 0.2</td>
<td>4–5</td>
<td>Gill filaments</td>
<td>Hyphessobrycon loretoensis</td>
</tr>
<tr>
<td>Henneguya loretoensis</td>
<td>36.2 ± 0.2</td>
<td>14.3 ± 0.1</td>
<td>21.9 ± 0.1</td>
<td>5 ± 0.2</td>
<td>–</td>
<td>5 ± 0.2</td>
<td>2.4 ± 0.3</td>
<td>5</td>
<td>Gill filaments</td>
<td>Corydoras leucomelas</td>
</tr>
<tr>
<td>Henneguya tucunarei</td>
<td>43.8 ± 4.1</td>
<td>14 ± 0.8</td>
<td>28.1 ± 4.3</td>
<td>6.1 ± 0.7</td>
<td>–</td>
<td>3.4 ± 0.5</td>
<td>1.98 ± 0.3</td>
<td>3–4</td>
<td>Gill filaments</td>
<td>Cichla monilis</td>
</tr>
<tr>
<td>Henneguya tapajensis</td>
<td>54.6 ± 3.9</td>
<td>16.4 ± 1.2</td>
<td>39 ± 3.9</td>
<td>7 ± 0.4</td>
<td>5 ± 0.1</td>
<td>4.2 ± 0.5</td>
<td>2.1 ± 0.4</td>
<td>4–5</td>
<td>Gill filaments</td>
<td>Cichla pinimia</td>
</tr>
<tr>
<td>Henneguya jariensis</td>
<td>46.7 ± 1.5</td>
<td>13.4 ± 0.7</td>
<td>33.1 ± 1.7</td>
<td>6.5 ± 0.5</td>
<td>–</td>
<td>4 ± 0.3</td>
<td>2 ± 0.1</td>
<td>4</td>
<td>Gill filaments</td>
<td>Cichla monilis</td>
</tr>
<tr>
<td>Henneguya paranensis</td>
<td>42.3 ± 0.3</td>
<td>12.8 ± 0.4</td>
<td>29.5 ± 0.7</td>
<td>8.6 ± 0.3</td>
<td>–</td>
<td>7.4 ± 0.1</td>
<td>2.6 ± 0.1</td>
<td>5–7</td>
<td>Gill filaments</td>
<td>Cichla monilis</td>
</tr>
<tr>
<td>Henneguya melini</td>
<td>40.8 ± 0.3</td>
<td>15.5 ± 0.2</td>
<td>25.3 ± 0.1</td>
<td>4.7 ± 0.1</td>
<td>–</td>
<td>4.8 ± 0.5</td>
<td>1.7 ± 0.3</td>
<td>5–6</td>
<td>Gill filaments</td>
<td>Corydoras melini</td>
</tr>
<tr>
<td>Henneguya auriculata</td>
<td>41 ± 1.5</td>
<td>15 ± 0.9</td>
<td>27 ± 0.6</td>
<td>6 ± 0.8</td>
<td>–</td>
<td>3 ± 0.3</td>
<td>3 ± 0.3</td>
<td>4–6</td>
<td>Gill filaments</td>
<td>Aequidens plagiozonatus</td>
</tr>
<tr>
<td>Henneguya torpedo</td>
<td>48.62 ± 0.5</td>
<td>28.53 ± 0.3</td>
<td>19.64 ± 0.4</td>
<td>7.25 ± 0.31</td>
<td>3.06 ± 0.2</td>
<td>6.41 ± 0.2</td>
<td>1.84 ± 0.1</td>
<td>5–6</td>
<td>Brain and spinal cord</td>
<td>Brachyhypopomus pinicauicdatus</td>
</tr>
<tr>
<td>Henneguya arapaima</td>
<td>51.6 ± 3.4</td>
<td>14.2 ± 0.8</td>
<td>38.3 ± 2.9</td>
<td>5.7 ± 0.5</td>
<td>4.9 ± 0.2</td>
<td>6.5 ± 0.2</td>
<td>6.3 ± 0.1</td>
<td>5</td>
<td>Gill arch</td>
<td>Arapaima gigas</td>
</tr>
<tr>
<td>Henneguya rondoni</td>
<td>17.7</td>
<td>7</td>
<td>10.7</td>
<td>3.6</td>
<td>2.5</td>
<td>2.5</td>
<td>0.85</td>
<td>6–7</td>
<td>Lateral nerves</td>
<td>Gymnorhamphichthys rondoni</td>
</tr>
<tr>
<td>Henneguya rhamdia</td>
<td>50 ± 1.8</td>
<td>13.1 ± 1.1</td>
<td>36.9 ± 1.6</td>
<td>5.2 ± 0.5</td>
<td>–</td>
<td>4.7 ± 0.4</td>
<td>1.1 ± 0.2</td>
<td>10–11</td>
<td>Gill filaments</td>
<td>Rhamdia quelen</td>
</tr>
<tr>
<td>Henneguya schizodon</td>
<td>28.9</td>
<td>13.1</td>
<td>16.3</td>
<td>3.3</td>
<td>–</td>
<td>5.4</td>
<td>1.3</td>
<td>8–10</td>
<td>Gill filaments</td>
<td>Schizodon fasciatus</td>
</tr>
<tr>
<td>Henneguya friderici</td>
<td>33.8</td>
<td>10.4</td>
<td>23.3</td>
<td>5.7</td>
<td>4.9</td>
<td>4.9</td>
<td>2.1</td>
<td>7–8</td>
<td>Gut, gill, kidney and liver</td>
<td>Leporinus friderici</td>
</tr>
<tr>
<td>Henneguya astyanax</td>
<td>47.8 ± 0.71</td>
<td>15.2 ± 0.77</td>
<td>32.6 ± 1.11</td>
<td>5.7 ± 0.71</td>
<td>4.2 ± 0.3</td>
<td>5.0 ± 0.13</td>
<td>1.5 ± 0.07</td>
<td>8–9</td>
<td>Gill filaments</td>
<td>Astyanax bimaculatus</td>
</tr>
<tr>
<td>Henneguya curimata</td>
<td>35.4</td>
<td>16.6</td>
<td>19.1</td>
<td>6.2</td>
<td>–</td>
<td>3.3 ± 0.02</td>
<td>1.5 ± 0.04</td>
<td>10–11</td>
<td>Gill filaments</td>
<td>Cunimata islandica</td>
</tr>
<tr>
<td>Henneguya testicularis</td>
<td>27.5</td>
<td>14</td>
<td>13.5</td>
<td>6.5</td>
<td>–</td>
<td>9</td>
<td>2</td>
<td>12–13</td>
<td>Gill filaments</td>
<td>Moenkhausia oligolepis</td>
</tr>
<tr>
<td>Henneguya malabarica</td>
<td>28.3</td>
<td>12.6</td>
<td>17.1</td>
<td>4.8</td>
<td>–</td>
<td>3.7</td>
<td>1.8</td>
<td>6–7</td>
<td>Gill filaments</td>
<td>Hoplias malabaricus</td>
</tr>
<tr>
<td>Henneguya adherens</td>
<td>32.3</td>
<td>12.4</td>
<td>20.5</td>
<td>5.8</td>
<td>–</td>
<td>3.1</td>
<td>1.2</td>
<td>3–4</td>
<td>Gill filaments</td>
<td>Achestronychus falciatus</td>
</tr>
<tr>
<td>Henneguya amazonica</td>
<td>59.3 ± 0.5</td>
<td>13.9 ± 0.1</td>
<td>45.4 ± 0.6</td>
<td>5.7 ± 0.06</td>
<td>–</td>
<td>3.3 ± 0.02</td>
<td>1.5 ± 0.04</td>
<td>6</td>
<td>Gill lamellae</td>
<td>Crenicichla leplidota</td>
</tr>
</tbody>
</table>

of the new species were located in the skin, whereas *H. peruviensis* and *H. loretoensis* plasmodia are found in the gill filaments and *H. multiradiatus* plasmodia in the abdominal cavity serosa. To our knowledge no *Henneguya* species have been reported from the skin of a fish from Amazon biome (Table 1). In the same vein, fish host represent an indispensable trait for accurately distinguishing new freshwater histozoic *Henneguya/Myxobolus* species since these parasites tend to cluster largely based on host phylogenies (Carriero et al. 2013; Mathews et al. 2021; Milanin et al. 2021). This is the first report of a *Henneguya* species parasitizing a synbranchid fish. Thus, considering the fine-scale of the host-specificity, we consider our finding to be important for this isolate as an unknown species.

Regarding molecular data, from South America of the around hundred recognized species, large number of species lack molecular data (Milanin et al. 2017). Indeed, for much of the myxosporean described myxospore morphology was used by ichthyopathologist researchers for species discrimination, because myxo-
spore is a unique structure possessing many characters important for classification (Lom and Dyková 1992). In our study, the partial 18S rDNA gene was successfully amplified by PCR using general eukaryotic and specific primers to myxosporean parasites (Fig. 5). However, after the amplification process, sequencing failed so it was not possible to carry out phylogenetic analysis. In addition, to the few samples with only five plasmodia to perform morphological, ultrastructural, histological and molecular analysis and limitations in accessing new samples of the same region. Although, we were not able to provide the phylogenetic data, the new isolate was strongly characterized based on spore morphomterically features as well as biological traits such as tissue preference and host specificity both important taxonomic keys for classification of freshwater histozoic myxobolids. Future molecular phylogenetic studies are highly recommended, since this would permit stronger taxonomic comparison.

Acknowledgements

The authors thank the São Paulo Research Foundation, FAPESP, for Post-Doc fellowship awarded to P.D. Mathews. The authors are grateful to A.H. Aguillera, P.A. Cortez and Prof. R. Sinigaglia-Coimbra from the Electron Microscopy Center (CEME) at UNIFESP for supporting the SEM and TEM analysis. The authors thank Dr. Christopher George Berger from Occidental College, Los Angeles for revision of the English language.

References

Hallett SL, Diamant A (2001) Ultrastructure and small-subunit ribosomal DNA sequence of Henneguya lesteri n. sp. (Myxosporea), a parasite of sand whiting Silлагo analis (Sillaginidae) from the coast of Queensland, Australia. Diseases of Aquatic Organisms 46: 197–212. https://doi.org/10.3354/dao046197

