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Abstract

The greater long-tailed hamster is primarily distributed in North Korea, Siberia (Russia), and central and northern China, while the 
Gansu hamster is restricted to southern Gansu Province, China. The genera Tscherskia and Cansumys have each been considered 
monotypic. The taxonomic status of these two genera has long been debated, and the specific status of T. ningshaanensis has also 
been contentious. Researchers have variously treated T. ningshaanensis as a subspecies of either T. triton or Can. canus. In this 
study, we estimated the phylogeny, divergence times, species delimitation, and biogeographical history of T. ningshaanensis by 
using one mitochondrial (CYT B) and three nuclear loci (GHR, IRBP, and RAG1) and compared the external and skull morphology 
variations between T. ningshaanensis and T. triton. The results showed that: 1) The genus Cansumys is a distinct genus in Cricetinae; 
2) The notion that the genus Tscherskia is a monotypic genus is unsupported, T. ningshaanensis and T. triton were identified within 
this genus; and 3) The formation of T. ningshaanensis may have been driven by uplift of the Qinling Mountains. We conclude that 
T. ningshaanensis is a valid species within the subfamily Cricetinae.
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Introduction

The greater long-tailed hamster (Tscherskia triton de Win-
ton, 1899), family Cricetidae, Order Rodentia, is mainly 
distributed in North Korea, Siberia (Russia), and central 
and northern China, including the Provinces of Hebei, 
Shanxi, Shaanxi, Henan, Anhui, Jiangsu, Shandong, Hei-
longjiang, Jilin, Liaoning, as well as Inner Mongolia and 
Beijing (Smith and Xie 2008; Wilson et al. 2017; Wei et 
al. 2021). Currently, a single species with five subspecies 
(T. t. triton, T. t. incanus, T. t. collinus, T. t. fuscipes, and 
T. t. nestor) has been identified in the genus Tscherskia 
(Smith and Xie 2008; Wilson et al. 2017).

The species-level classification within Tscherskia 
has been controversial to date. In 1899, Cricetus triton 
was first described by de Winton (1899) from Shantung 
(= Shandong) Province, China. Based on morphological 
differences, geographical distribution, behavioral, and 
ecological characteristics, Thomas (1907, 1908) pro-
posed that the classification of C. triton be revised from 
the genus Cricetus to Cricetulus, with subsequent studies 
recognizing one species and one subspecies within the ge-
nus Cricetulus. In 1907, Cricetulus nestor was described 
from Korea (Thomas 1907); and in 1908, Cricetulus tri-
ton incanus was described from Ko-lan-chow (= Kelan), 
Shan-si (= Shanxi), and Yen-an-fu (= Yan’an), Shen-si 
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(= Shaanxi) Provinces (Thomas 1908). Ognev (1914) de-
scribed Tscherskia albipes from eastern Siberia, noting its 
larger body size and longer tail.

In 1925, two new subspecies were recognized: Cricet-
ulus triton collinus from the base of Tai-pei-shan (= Tai-
baishan), Tsing-ling (= Qinling) Mountains, Shen-si (= 
Shaanxi) Province; and Cricetulus triton fuscipes from 
Peking, Chili (= Beijing, Hebei) Province (Allen 1925). 
Kishida (1929) described a new genus, Asiocricetus, from 
Korea, including Asiocricetus bampensis and Asiocricetus 
yamashinai. According to early taxonomic studies (e.g., 
Argyropulo 1933; Ellerman 1941), Tscherskia and Asioc-
ricetus were regarded as subgenera of the genus Cricetulus. 
Furthermore, T. albitpes, A. bampensis, and A. yamashinai 
were treated as synonyms of C. nestor (Argyropulo 1933). 
In 1934, Cricetulus triton meihsienensis was described by 
Ho (1934) from Mei-hsi (= Meixian), Shen-si (= Shaanxi) 
Province, and was subsequently treated as a synonym 
of C. t. collinus (Ho 1934; Wilson et al. 2017). In 1985, 
Cricetulus triton ningshaanensis was described by Song 
(1985) based on its smaller body size, tail length, and color 
of tail from Ningshaan, southern Shaanxi Province. Neu-
mann et al. (2006) moved C. triton into T. triton and treat-
ed Tscherskia as a monotypic genus based on molecular 
phylogenetic studies, a view accepted by many researchers 
(Smith and Xie 2008; Wilson et al. 2017; Wei et al. 2021).

The classification status of Gansu hamster (Cansumys 
canus Allen, 1928) and C. t. ningshaanensis has been 
debated for a long time in China due to the significant 
morphological (particularly tail length and color) and 
distributional differences (Wang and Zheng 1973; Chen 
and Min 1982; Wang and Xu 1992; Gu et al. 2005). Can. 
canus was first described from Choni (= Zhuoni), south-
ern Kansu (= Gansu) Province, China (Allen 1928). Lat-
er, Ellerman (1941) treated Can. canus as a subspecies 
of Cricetulus triton, a view that was accepted by some 
researchers (Ellerman and Morrison-Scott 1951; Wang 
and Zheng 1973). However, Can. canus was considered 
a species placed in Cricetulus based on its geographical 
distribution and tail haircoat (Chen and Min 1982). Ross 
(1988) supported the idea that Cansumys was a valid ge-
nus and Can. canus a separate species, which was sub-
sequently widely accepted (Corbet and Hill 1992; Muss-
er and Carleton 1993; Pavlinov et al. 1995a). In 1985, 
C. t. ningshaanensis was first described as a subspecies 
of C. triton (Song 1985), but some researchers placed 
C. t. ningshaanensis within Can. can. ningshaanensis, 
supporting Cansumys as a valid genus (Wang and Xu 
1992; Lu 1997). Yang et al. (2003) claimed Cansumys 
was a separate genus based on karyotype analyses of Can. 
can. ningshaanensis from Ningshaan, Shaanxi Province. 
Furthermore, Gu et al. (2005) analyzed the external 
morphology of Can. canus and C. triton from Zhuoni, 
southern Gansu Province, and the results supported that 
Can. canus and C. triton were two distinct species and 
that the status of Can. can. ningshaanensis warranted 
further investigation. However, Liao et al. (2007) treated 
Can. canus as a synonym of C. triton and C. t. canus as 
a subspecies of C. triton based on molecular analysis of 

specimens from Gansu Province and Ningxia. Since then, 
there have been no arguments regarding the classification 
status of C. triton and Can. canus (Smith and Xie 2008; 
Wilson et al. 2017; Wei et al. 2021). However, we know 
little about why T. t. ningshaanensis was treated as a syn-
onym of T. t. incanus (Wilson et al. 2017; Wei et al. 2021).

In this study, we evaluate specimens from Tscherskia 
and Cansumys collected from Gansu, Henan, Shandong, 
Shanxi, Shaanxi, Heilongjiang, Beijing, and Inner Mon-
golia Provinces. We compared the external and skull mor-
phologies of these specimens and conducted a combined 
analysis of the DNA sequences of one mitochondrial and 
three nuclear genes. Our aims were to infer: 1) the phy-
logenetic relationship and status of the genera Tscherskia 
and Cansumys; 2) the molecular phylogeny among the 
subspecies of Tscherskia; and 3) the taxonomic status of 
T. ningshaanensis.

Materials and methods
Specimen collection and DNA sequencing

We collected tissues from 27 specimens (Tscherskia 
and Cansumys) from Gansu, Henan, Shandong, Shanxi, 
Shaanxi, Heilongjiang Provinces, as well as Inner Mon-
golia Autonomous Region and Beijing, China (Fig. 1 and 
Suppl. material 1: table S1). Voucher specimens and liver 
or muscle tissue are deposited at the Institute of Biodiver-
sity and Ecology (IBE), Zhengzhou University, Sichuan 
Academy of Forestry Sciences (SAF), Marine College, 
Shandong University (SDU), and College of Life Sci-
ences, Sichuan Normal University (SNU), respectively. 
The genomic DNA of specimens was extracted from the 
liver and muscle tissues using a DNA extraction kit (Tian-
gen DNA Easy Blood and Tissue Kit, Beijing, China). 
One complete mitochondrial locus [Cytochrome b (CYT 
B)] and partial sequences of three nuclear genes [inter-
photoreceptor retinoid-binding protein (IRBP), growth 
hormone receptor (GHR), and recombination activating 
protein 1(RAG1)] were amplified. Primer pairs were ob-
tained from the literature (Teeling et al. 2000; Galewski et 
al. 2006; He et al. 2010; Cheng et al. 2017) and are shown 
in Suppl. material 1: table S2. PCR products were sent to 
Sangon Biotech Co., Ltd. for sequencing.

Phylogenetic analyses and molecular dating

Phylogenetic analyses

Recovered DNA sequences were assembled and aligned in-
dividually using MEGA X (Kumar et al. 2018). Additionally, 
49 sequences from 10 species were downloaded from Gen-
Bank (Suppl. material 1: table S3). Lagurus lagurus was used 
as the outgroup for all subsequent phylogenetic analyses.

We calculated Bayesian Inference (BI) and maxi-
mum likelihood (ML) using BEAST v1.7.4 (Drummond 
et al. 2012) and W-IQ-TREE (Trifinopoulos et al. 2016), 
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respectively, based on CYT B and nuDNA (GHR + IRBP 
+ RAG1). For the BI analyses, the best-fit evolutionary 
models for CYT B and the three nuclear loci were deter-
mined using the Akaike Information Criterion (AIC) im-
plemented in JMODELTEST v2.1.10 (Suppl. material 1: 
table S4) (Darriba et al. 2012). We employed a relaxed, 
uncorrelated lognormal clock model, Yule process tree 
priors, and the default prior distribution of the program 
for the model parameters. Each analysis was run for 100 
million generations, with samples taken every 5,000 gen-
erations (Drummond et al. 2012). TRACER v1.7.0 was 
used to assess the effective sample size (ESS) values (i.e., 
ESS > 200) (Rambaut et al. 2018). And the first 10% of 
the trees were treated as burn-in.

For the ML analyses, the prior value of the parameter 
used was the default value for W-IQ-TREE (Trifinopou-
los et al. 2016). We employed ultrafast bootstrap analysis 
with 1,000 bootstrap replicates, the SH-aLRT branch test 
with 1,000 iterations, the maximum iterations set to 1,000 
iterations, and a minimum correlation coefficient of 0.99.

Species delimitation

Firstly, we calculated the Kimura-2-parameter (K2P) dis-
tance between specimens of Cricetinae in this study based 
on the CYT B gene using MEGA X (Kumar et al. 2018). 
Species trees (CYT B + nuDNA combined) were calcu-
lated using the *BEAST model in BEAST v1.7.4 (Heled 
and Drummond 2010; Drummond et al. 2012). Eight lin-
eages were treated as species in the *BEAST based on 
the results of the K2P distance and phylogenetic analyses. 
We used the Yule speciation model and the strict clock 
model for tree construction. Other parameters followed 

BI settings. Each analysis was run for 100 million gen-
erations, with samples taken every 5,000 generations 
(Drummond et al. 2012).

Secondly, another species delimitation analysis was 
conducted using the program BPP v3.1 (Camargo et al. 
2012; Yang and Rannala 2014). The BPP analyses were 
performed using dataset1 (CYT B + nuDNA combined) 
and dataset2 (nuDNA combined), respectively. And the 
best tree topology recovered by BEAST v1.7.4 was used 
as the guide tree. The validity of our assignment of Cricet-
inae species was tested in BPP v3.1. The species delimi-
tation analysis only included individuals who possessed 
both mtDNA and nuDNA data. Two reversible jump Mar-
kov chain Monte Carlo (rjMCMC) algorithms for species 
delimitation (algorithms 0 and 1) were used, respective-
ly. Each rjMCMC was run for 100,000 generations, with 
sampling every 100 generations following a pre-burn-in 
of 10,000 generations as determined by TRACER v1.7 
(Rambaut et al. 2018).

Divergence-time analyses

Divergence times were estimated based on the three nu-
clear loci combined (IRBP + GHR + RAG1). The diver-
gence time was estimated using BEAST v1.7.4. The prior 
for the age of the tree root was based on the results by 
Steppan et al. (2004) (mean = 19 ma, standard deviation = 
1.5), as referenced in Lebedev et al. (2018). We used the 
Yule Process speciation model and the uncorrelated re-
laxed clock model for tree construction. The substitution 
rate model is set according to Bayesian trees. Each anal-
ysis was run for 100 million generations, with samples 
taken every 5,000 generations (Drummond et al. 2012).

Figure 1. Collection sites of specimens of Tscherskia and Cansumys in China.
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Analyses of external morphological and skull 
features

The external morphological characteristics of specimens 
(T. ningshaanensis and T. triton) were compared based 
on specimens and data from a previous study. Follow-
ing the original description by Song (1985), we examined 
T. ningshaanensis and compared it with all subspecies of 
T. triton.

A total of 15 specimens (T. triton: 7 and T. ningshaan-
ensis: 8) were collected. For these specimens, we exam-
ined and measured several parameters, including external 
morphology and 11 craniodental measurements (Yang 
et al. 2005). External morphological data (including W: 
weight; HBL: head and body length; TL: tail length; 
HL: hindfoot length; EL: ear length) were measured 
by a digital scale (0.1 g) and measured (1 mm) from the 
original specimens; craniodental measurements (includ-
ing PL: Profile length; BL: Basal length; SUCL: Short 
upper cranium length; ZB: Zygomatic breadth; IOB: In-
terorbital breadth; CH: Cranial height; TBL: tympanic 
bulla length; UMRL: Upper molar row length; LMRL: 
Lower molar row length; ML: Mandibular length; CL: 
Condyle length) were taken with digital calipers (0.01 
mm). We compared specimens of Tscherskia based on 
measurements of external and skull morphology. Over-
all similarities between external morphology and skulls 
were assessed first through principal component analyses 
(PCA). The PCA was conducted at OriginLab (OriginLab 
Corporation, version 2024, USA).

Results
Sequence characteristics

We obtained ~3573 bp of sequence for most specimens, 
partitioned into 1140 bp of mitochondrial sequence 
(CYT B [1140 bp]) and 2433 bp of nuclear sequence 
(IRBP [895 bp], GHR [810 bp], and RAG1 [728 bp]). 
All new sequences have been deposited in GenBank 
(accession numbers: CYT B PP975895–PP975921, GHR 
PP975932–PP975950, RAG1 PP975951–PP975969, 
IRBP PP975970–PP975985).

Phylogenetic analyses

The concatenated BI and ML recovered the identical to-
pology; therefore, only the BI tree is presented (Fig. 2). 
Most of the nodes were strongly supported [i.e., BEAST 
posterior probabilities (PP) ≥ 0.95, SH-aLRT values (SH) 
≥ 80, ultrafast bootstrap values (UBS) (Huelsenbeck and 
Rannala 2004; Guindon et al. 2010; Minh et al. 2013)], 
with few exceptions based on combined CYT B and nuclear 
loci (Fig. 2a, b). The BI and ML results strongly supported 

sister relationships between T. ningshaanensis and T. tri-
ton, and both should be treated as single species, respec-
tively [T. ningshaanensis (CYT B: PP = 1, SH = 99.9, UBS 
= 100; nuDNA: PP = 1, SH = 96.6, UBS = 97); T. triton 
(CYT B: PP = 1, SH = 100, UBS = 100; nuDNA: PP = 1, 
SH = 99.9, UBS = 100)] (Fig. 2a, b). The genus Cansumys 
was strongly supported as monophyletic based on CYT B 
(PP = 1, SH = 100, UBS = 100) (Fig. 2a). The BI and ML 
analyses based on CYT B indicate that T. t. triton is differ-
entiated from the other subspecies, whereas T. t. incanus 
and T. t. fuscipes do not show distinct separation (Fig. 2a). 
The BI and ML analyses based on nuDNA results do not 
support the classification as a subspecies of T. triton (Fig. 
2b). In addition, the species Phodopus roborovskii and 
Urocricetus kamensis were placed at the base of Cricetinae 
in both the analysis of CYT B and nuDNA results (CYT B: 
PP = 1, SH = 83, UBS = 85; nuDNA: PP = 0.99, SH = 
97.3, UBS = 99) (Fig. 2a, b).

Species delimitation

Calculated K2P distances based on CYT B were as fol-
lows: between T. ningshaanensis and Can. canus (25.5%), 
between T. ningshaanensis and T. triton (15.1%), and be-
tween Can. canus and T. triton (23.8%) (Table 1). Addi-
tionally, BPP analysis results based on dataset1 and data-
set2 supported T. ningshaanensis and T. triton as separate 
species (PP = 1.00), respectively. The BEAST tree analy-
ses recovered the same topology as the BI and ML trees, 
with sister relationships between T. ningshaanensis and 
T. triton also strongly supported (PP = 0.99) (Fig. 3a).

Molecular divergence time

Our phylogenetic analyses based on nuDNA revealed 
highly concordant divergence time estimates (Fig. 3b). 
The species Phodopus roborovskii and Urocricetus 
kamensis were placed at the base of Cricetinae, with the 
divergence time result estimated to be in the latest Mid-
dle Miocene (12.73 Ma). Apart from the split between 
T. triton and T. ningshaanensis (3.88 Ma), intra-generic di-
vergence events primarily occurred in the latest Pliocene.

Morphological and skull comparison

All external and skull measurements are provided in 
Table 2. The mean values of most measurements for 
T. ningshaanensis are smaller than those for T. triton, with 
significant differences in W, HBL, PL, BL, SUCL, ZB, 
CH, TBL, ML, and CL. However, the sizes of HFL (23.50–
27.00, 24.79±1.15 vs 20.00–26.00, 23.24±2.17) and LMRL 
(5.28–5.41, 5.34±0.05 vs 5.13–5.77, 5.45±0.20) of T. ning-
shaanensis are bigger than those for T. triton (Table 2).

http://www.ncbi.nlm.nih.gov/nuccore/PP975895
http://www.ncbi.nlm.nih.gov/nuccore/PP975921
http://www.ncbi.nlm.nih.gov/nuccore/PP975932
http://www.ncbi.nlm.nih.gov/nuccore/PP975950
http://www.ncbi.nlm.nih.gov/nuccore/PP975951
http://www.ncbi.nlm.nih.gov/nuccore/PP975969
http://www.ncbi.nlm.nih.gov/nuccore/PP975970
http://www.ncbi.nlm.nih.gov/nuccore/PP975985
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Table 1. K2P distances between species of Cricetinae based on the CYT B gene.

Tsc nin Cri gri Lag lag Tsc tri Cri cri Pho rob Cri long Uro kam
Tsc nin
Cri gri 0.231
Lag lag 0.269 0.224
Tsc tri 0.151 0.229 0.258
Cri cri 0.204 0.188 0.213 0.209
Pho rob 0.257 0.225 0.222 0.263 0.231
Cri long 0.236 0.143 0.236 0.223 0.208 0.240
Uro kam 0.225 0.237 0.220 0.238 0.201 0.198 0.244
Can can 0.255 0.222 0.221 0.238 0.208 0.212 0.212 0.217
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Figure 2. Maximum likelihood and Bayesian inference analysis results based on CYT B (A) and nuDNA (B). Left: BI posterior 
probabilities; middle: SH-aLRT values; right: ultrafast bootstrap values.

Table 2. Some external and skull measurements (mm) used in PCA analyses of T. ningshaanensis and T. triton.

Measurement (min, max, mean ± SD) T. triton T. ningshaanensis
W 66.00 – 92.00, 80.67 ± 10.16 37.64 – 93.10, 52.44 ± 19.81
HBL 146.00 – 175.00, 128.00 ± 16.38 112.00 – 155.00, 129.29 ± 16.15
TL 65.00 – 90.00, 77.43 ± 8.28 76.00 – 114.00, 89.71 ± 12.62
HFL 20.00 – 26.00, 23.24 ± 2.17 23.50 – 27.00, 24.79 ± 1.15
EL 18.00 – 22.00, 20.26 ± 1.49 20.00 – 23.00, 21.71 ± 1.04
PL 33.43 – 37.68, 35.79 ± 1.56 29.33 – 37.07, 31.49 ± 2.65
BL 30.42 – 35.30, 32.13 ± 1.79 26.99 – 34.47, 29.03 ± 2.68
SUCL 33.43 – 38.94, 35.97 ± 1.86 30.24 – 37.93, 32.43 ± 2.74
ZB 16.87 – 20.22, 17.99 ± 1.06 15.54 – 19.02, 16.30 ± 1.34
IOB 4.88 – 5.54, 5.18 ± 0.22 4.66 – 5.47, 5.03 ± 0.26
CH 12.83 – 13.38, 13.11 ± 0.20 11.90 – 12.98, 12.31 ± 0.40
TBL 8.62 – 10.94, 10.06 ± 0.79 7.98 – 10.29, 8.63 ± 0.89
UMRL 5.03 – 5.57, 5.27 ± 0.17 4.94 – 5.34, 5.13 ± 0.16
LMRL 5.13 – 5.77, 5.45 ± 0.20 5.28 – 5.41, 5.34 ± 0.05
ML 22.46 – 24.70, 23.69 ± 0.74 19.23 – 25.06, 20.84 ± 2.02
CL 19.08 – 20.70, 19.71 ± 0.64 16.19 – 19.83, 17.18 ± 1.28

Note: W: weight; HBL: head and body length; TL: tail length; HL: hindfoot length; EL: ear length; PL: profile length; BL: basal length; SUCL: short 
upper cranium length; ZB: zygomatic breadth; IOB: interorbital breadth; CH: cranial height; TBL: tympanic bulla length; UMRL: upper molar row 
length; LMRL: lower molar row length; ML: mandibular length; CL: condyle length.
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The PCA, based on 16 measurements [including ex-
ternal morphology (5) and skull (11) measurements], 
produced two axes (PC1: 10.20 and PC2: 2.69) with ei-
genvalues > 2.0, explaining 60.00% and 15.85% of the 
variance (75.85% total) (Table 3). PC1 was positively 
correlated with all variables (Table 3). PC2 was strongly 
correlated with TL and EL, loading > 0.5. The PCA re-
sults showed that most specimens of T. ningshaanensis 
and T. triton could be distinguished from each other based 
on 16 log10–transformed variables (Fig. 4).

Discussion

The classification status of Can. canus and T. ningshaan-
ensis had been extensively discussed in previous studies 
(Yang et al. 2003; Gu et al. 2005; Liao et al. 2007). The 
results from this study provide molecular evidence into 
the classification status of Can. canus and T. ningshaan-
ensis, encompassing almost all subspecies of T. triton 
found in China (except for T. t. collinus). Our phyloge-
netic and morphological results indicated that the ge-
nus Cansumys should be treated as a distinct genus, and 
T. ningshaanensis is a distinct species. The genetic dis-
tance values among three species based on CYT B indicat-
ed that T. ningshaanensis, T. triton, and Can. canus are all 
distinct species (> 11%) (Bradley and Baker 2001). The 

large genetic distance (20.8% – 25.5%) and phylogenetic 
analyses based on CYT B strongly supported the classi-
fication status of Cansumys as a distinct genus (PP = 1, 
SH = 100, UBS = 100, Table 1), which was consistent 

Table 3. Character loadings, eigenvalues, and percent variance 
explained on the first two components of a PCA of T. triton and 
T. ningshaanensis.

Variables PC1 PC2
W 0.31 0.02
HBL 0.26 0.00
TL 0.06 0.55
HFL 0.01 0.43
EL 0.02 0.52
PL 0.31 0.03
BL 0.30 0.11
SUCL 0.31 0.10
ZB 0.30 0.05
IOB 0.18 0.21
CH 0.29 –0.14
TBL 0.22 –0.11
UMRL 0.19 0.02
LMRL 0.14 –0.16
ML 0.31 0.03
CL 0.31 –0.05
Eigenvalues 10.20 2.69
Variance explained (%) 60.00 15.85
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Figure 3. Divergence times estimated (A) and species delimitation (B) results in this study. a: black stars represents BPP species 
definition results; numbers of each node represent posterior probabilities (under); b: numbers of each node represent posterior prob-
abilities (upper) and divergence times (under).
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with previous research (Smith and Xie 2008; Wilson et 
al. 2017; Wei et al. 2021). The calculated K2P distances 
based on CYT B of T. triton compared with other species 
of Cricetinae in this study ranged from 15.1% (T. triton) 
to 25.7% (P. roborovskii). The results from phylogenetic 
analyses based on CYT B and nuDNA loci strongly sup-
ported T. ningshaanensis as a separate species (CYT B: 
PP = 1, SH = 99.9, UBS = 100; nuDNA: PP = 1, SH = 
96.6, UBS = 97); T. triton (CYT B: PP = 1, SH = 100, 
UBS = 100; nuDNA: PP =1, SH = 99.9, UBS = 100)] 
(Fig. 2a, b). The genus Cansumys was strongly supported 
as monophyletic based on CYT B (PP = 1, SH = 100, 
UBS = 100. Fig. 2a, b). However, the fine-scale subdi-
vision of subspecies of T. triton indicates that additional 
studies are warranted to clarify the status of the described 
subspecies (Fig. 2a, b).

The growth of the Tibetan Plateau led to the uplift of 
the Qinling Mountains during the late Miocene to Plio-
cene (8–4 Ma) (Wang et al. 2011). This rapid uplift con-
tributed to the biodiversity within the Qinling Moun-
tains (Dong et al. 2022). The divergence time between 
T. ningshaanensis and T. triton was estimated to be 
approximately 3.88 million years ago. This divergence 
time suggested that the formation of T. ningshaanensis 
and T. triton was influenced by the uplift of the Qinling 
Mountains. In Europe, the earliest species of Tscherskia 
(T. europaeus and T. janossyi) was found at Csarnóta 
2 (MN 15, ca. 5–3.5 Ma) in Hungary (Hír 1994; Venc-
zel and Gardner 2005). The earliest known species 
of Tscherskia (T. sp.) was found in the Late Pliocene 
(2.58–3.60 Ma) from the Youhe Formation (ca. 3.40–
2.59 Ma) (Yue and Xue 1996; Xie et al. 2021) in Linwei 
District, Weinan, Shaanxi Province, China. These find-
ings suggested that the species of Tscherskia underwent 
rapid diversification during the late Pliocene (2.58–3.60 
Ma). Fossils of T. t. varians were found from the late 
Middle Pleistocene to the Early Pleistocene in China 
(0.129 Ma–2.58 Ma) (Zheng 1984a, 1984b, 1993; Jin et 
al. 2009; Xie et al. 2023). This suggested that T. triton 

underwent diversification during the early Pleistocene, 
which is consistent with the divergence time of T. triton 
estimated in this study.

In addition, we compared the distribution range, ex-
ternal morphology, and skull morphology of T. ning-
shaanensis, T. triton, and Can. canus. The fact that both 
T. triton and Can. canus were found at Muer of Zhuoni, 
Gansu Province, assisted the conclusion that T. triton 
and Can. canus are distinct species. The results of ex-
ternal morphology analyses showed T. ningshaanensis 
and T. triton could be distinguished from each other 
with many distinguishable features. T. t. triton (de Win-
ton 1899) has a dorsal coloration that is uniformly drab, 
with whitish underparts (Suppl. material 2). T. t. colli-
nus (Allen 1925) is similar to T. t. triton but is much 
darker with a slightly longer tail. Its dorsal coloration 
is between drab and mouse gray, with warm buff sides 
to the head and body. The chin, feet, wrists, and a small 
median spot on the throat have clear white hairs. The 
tail is blackish-brown and thinly covered with short, 
appressed hairs, with many whitish hairs on the low-
er side. T. t. fuscipes (Allen 1925) is similar in general 
appearance to T. t. triton but has ankles and a basal part 
of the metatarsals that are dusky. Its entire dorsal area 
is nearly uniformly buffy, with hairs that are entirely 
black or have a fine black tip. The tail is thinly covered 
with hairs, dusky above and whitish below. T. t. incanus 
(Thomas 1908) is similar in general appearance to 
T. t. triton, with a white dorsum pedis and dorsal and 
belly hairs that are pale. Can. canus (Allen 1928) has a 
dorsal surface of the body and tail that is generally gray. 
The middle of its back has slaty-gray hairs with short 
whitish tips, interspersed with numerous all-black hairs, 
and there is a faint wash of buffy color on the sides of 
the body, while its tail is thickly covered with fine hairs.

In the original description, Song (1985) presented 
several morphological characters to distinguish it from 
other subspecies of T. triton: 1) smaller body size com-
pared to other subspecies of T. triton; 2) entire dorsal 
surface dark grayish–brown, covered with long black 
hair, while the ventral grayish–white with the medial 
part of the body hair being gray and the distal part being 
whit; 3) center of the chest and feet white, ankles taupe 
covered with thick haired; 4) long tail, with the tail 
length nearly 66% of the body length; 5) the tail appears 
bicolored, with the basal part being grayish-brown and 
the distal part white, covered with dense hair; 6) white 
tail percentage, with the white length nearly 40%–60% 
of the tail; 7) intumescent tail base; and 8) less devel-
oped supraorbital ridge (Figs 5,  6). T. ningshaanensis 
and T. triton (including four subspecies) can be clearly 
distinguished from each other based on morphological 
characteristics (body grayish-brown, long tail with two 
color rears, 40–60% being white). We believed that the 
aforementioned evidence supports the conclusion that 
T. ningshaanensis should not be treated as a synonym 
of T. t. incanus.
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Figure 4. Results of principal component analysis (PCA) of 
T. ningshaanensis and T. triton.



zse.pensoft.net

Jiang, H. et al.: Phylogeny and taxonomy of Tscherskia and Cansumys1238

Figure 5. Dorsal and ventral views of T. ningshaanensis.

Figure 6. Dorsal, ventral, and lateral views of the skull and lateral views of the mandible, T. ningshaanensis and T. t. triton.
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Conclusions
In this study, we used morphology and molecular phy-
logeny to investigate the taxonomy, phylogenetic rela-
tionships, and evolutionary history of the genera Tscher-
skia and Cansumys. The results supported the following 
conclusions: 1) the genus Cansumys is valid and distinct, 
possibly monotypic as only Can. canus is currently de-
scribed; 2) the genus Tscherskia consists of T. ningshaan-
ensis and T. triton, and T. ningshaanensis is not a syn-
onym of T. t. incanus; and 3) the uplift of the Qinling 
Mountains likely facilitated the geographical isolation 
of ancestral species, further promoting the speciation of 
T. ningshaanensis.
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