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REVIEWS

Fungal and oomycete pathogens and heavy 
metals: an inglorious couple in the environment
Joanna Gajewska1, Jolanta Floryszak‑Wieczorek2, Ewa Sobieszczuk‑Nowicka3, Autar Mattoo4 and 
Magdalena Arasimowicz‑Jelonek1*  

Abstract 

Heavy metal (HM) contamination of the environment is a major problem worldwide. The rate of global deposition of 
HMs in soil has dramatically increased over the past two centuries and there of facilitated their rapid accumulation 
also in living systems. Although the effects of HMs on plants, animals and humans have been extensively studied, 
yet little is known about their effects on the (patho)biology of the microorganisms belonging to a unique group of 
filamentous eukaryotic pathogens, i.e., fungi and oomycetes. Much of the literature concerning mainly model species 
has revealed that HM stress affects their hyphal growth, morphology, and sporulation. Toxicity at cellular level leads to 
disturbance of redox homeostasis manifested by the formation of nitro‑oxidative intermediates and to the induction 
of antioxidant machinery. Despite such adverse effects, published data is indicative of the fact that fungal and oomy‑
cete pathogens have a relatively high tolerance to HMs in comparison to other groups of microbes such as bacteria. 
Likely, these pathogens may harbor a network of detoxification mechanisms that ensure their survival in a highly HM‑
polluted (micro)habitat. Such a network may include extracellular HMs immobilization, biosorption to cell wall, and/
or their intracellular sequestration to proteins or other ligands. HMs may also induce a hormesis‑like phenomenon 
allowing the pathogens to maintain or even increase fitness against chemical challenges. Different scenarios linking 
HMs stress and modification of the microorganisms pathogenicity are disscused in this review.
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INTRODUCTION
Fungi and oomycetes represent eukaryotic microbes 
that are characterized by filamentous vegetative hyphae 
networks, form spores for asexual and sexual reproduc-
tion and share similar processes of infection and nutri-
tion acquisition (Richards et  al. 2006). Nonetheless, 
some features distinguish oomycetes from fungi. Cell 
walls of oomycetes are composed mainly of β-glucans 
and hydroxyproline while chitin is the main component 
of true fungal cell walls. Fungi are haploid or dikaryotic 

during the major part of their lifecycle, and form sep-
tate hyphae. Oomycetes are diploid during their veg-
etative stage, form coenocytic (nonseptate) hyphae, and 
produce motile zoospores with two kinds of flagella 
(Latijnhouwers et  al. 2003; Rossman and Palm 2006). 
As opposed to fungi, which synthesize lysine de novo 
via α-aminoadipate pathway, oomycetes synthesize the 
amino acid by α,ε-diaminopimelic acid pathway. Moreo-
ver, many oomycetes are (partial) sterol auxotrophs (Lati-
jnhouwers et  al. 2003). Even though oomycetes appear 
fungus-like, they are classified as stramenopiles along 
with brown algae and diatoms (Beakes et  al. 2012). In 
spite of the distinct evolutionary origin, both fungal 
and fungal-like pathogens inhabit comparable ecologi-
cal niches, and many of them cause plant and animal 

Open Access

IMA Fungus

*Correspondence:  arasim@amu.edu.pl
1 Department of Plant Ecophysiology, Faculty of Biology, Adam 
Mickiewicz University, Uniwersytetu Poznańskiego 6, 61‑614 Poznań, 
Poland
Full list of author information is available at the end of the article

http://orcid.org/0000-0002-3109-5933
http://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1186/s43008-022-00092-4&domain=pdf


Page 2 of 20Gajewska et al. IMA Fungus            (2022) 13:6 

diseases. Importantly, the jeopardy posed by these fila-
mentous eukaryotic pathogens is enhanced by accel-
erated pathogen evolution, due mainly to the use of 
fungicides and other human-dependent activities that 
contribute to the influx of toxic compounds in the micro-
bial environment, often containing heavy metals (HMs) 
(Pandaranayaka et al. 2019).

Heavy metals in the microbial environment
Heavy metals are defined as metallic elements with high 
density and high toxicity to living (micro)organisms. 
They include two groups: (1) essential elements that in 
small amounts are crucial for the physiological functions 
of organisms but toxic when present in excess [e.g., chro-
mium (Cr), iron (Fe), zinc (Zn)] and (2) non-essential 
elements of an unknown biological role but adversely 
affect the organism [e.g., cadmium (Cd), lead (Pb), mer-
cury (Hg)]. HMs occur naturally in the environment, the 
natural sources include weathering of metal-containing 
rocks and volcanic eruptions. The increase in agricul-
tural and industrial activities has dramatically acceler-
ated the environmental pollution due to HMs while the 
anthropogenic origins have contributed to the dispersal 
of HMs in soil, water and air (Callender 2003). Moreover, 
HMs can spread over long distances in both gaseous and 
solid phase forms, facilitating their rapid accumulation 
not only in soil and water but also in some living systems. 
For example, soils with high HMs concentrations are 
absorbed by and accumulate in plants, which are even-
tually transferred to animals and humans via food chain 
(Zhuang et  al. 2013, 2014). Plants, animals and humans 
as potential hosts can lead to a HM-polluted microenvi-
ronments where pathogens dynamically adjust to survive. 
Thus, soil and/or water pollution by HMs is a critical and 
complex-dynamic environmental problem.

Even though HMs are among the most investigated 
environmental pollutants, little is known about their 
effects on (patho)biology of fungi and fungal-like organ-
isms. Knowledge about the latter is crucial and impor-
tant since the filamentous eukaryotic pathogens include 
causal agents of many destructive diseases and the risk 
of the HMs to target pathogenicity-related events. In 
this review, we discuss various aspects of HMs toxic-
ity and links between HMs stress and pathogenicity of 
microorganisms.

Toxic effects of HMs on filamentous pathogens
Heavy metals such as copper (Cu), manganese (Mn), 
molybdenum (Mo), Fe and Zn are recognized as being 
essential for growth and development of plants (Arif 
et  al. 2016; Singh et  al. 2016) as well as for the mainte-
nance of various biochemical and physiological functions 
in humans and animals (Hejna et al. 2019); however, all 

metals in excessive concentrations are harmful to liv-
ing organisms. For instance, HMs can complex with 
molecules such as proteins and lead to their inactiva-
tion (Gadd 1993; Singh et  al. 2015). In relation to the 
non-pathogenic microorganisms inhabiting the soil, the 
research has revealed that essential HMs may provoke 
significant growth inhibition as well as morphological 
and physiological changes (Roane 1999; Maanan et  al. 
2015; Wu et al. 2016). Moreover, metals at elevated con-
centrations have a negative effect on the soil microbial 
population and their activities associated with soil respi-
ration rate, which may also contribute to a reduction in 
soil fertility (Smith 1996). In contrast to essential HMs, 
effects of non-essential ones on both non-pathogenic and 
pathogenic microorganisms are poorly recognized and 
mostly unknown. However, it is becoming an increas-
ingly important research focus in light of the increasing 
environmental pollution.

In general, soil organisms exhibit high tolerance to 
HMs acquired likely through evolutionary adaptation 
to contaminated environment. Fungi are considered 
to be more tolerant to environmental HMs than other 
microorganisms, for instance bacteria, because of differ-
ences in the cellular metabolism (Rajapaksha et al. 2004; 
Mocek-Płóciniak 2011). Higher osmotic pressure in the 
cell structure of fungi allows them to survive adverse 
conditions (Mocek-Płóciniak 2011). Moreover, fungi 
can survive in the soil as sclerotia, chlamydospores, or 
other structures that allow the microorganisms to survive 
under unfavorable conditions (Golubović-Ćurguz 2010). 
High tolerance of fungi has been observed when the tol-
erance threshold to Cu and Zn of pure cultures of sys-
tematically distant soil microorganisms were compared. 
At high Zn and Cu concentrations (128 mmol kg −1) sep-
arately applied to growing media, fungal activity (acetate-
in-ergosterol incorporation rate) increased by 3 and 7 
times, respectively, as compared to the control. At higher 
levels of HM contamination, a gradual ~ 90% decrease in 
bacterial activity measured as thymidine incorporation 
rate was observed (Rajapaksha et al. 2004).

In vitro, human pathogenic yeasts such as Cryptococ-
cus neoformans and Candida albicans were found resist-
ant to Cu ions. C. neoformans H99 was found resistant 
to ~ 2 mM Cu in liquid medium while clinical isolates of 
C. albicans were able to tolerate ~ 20 mM Cu (Ding et al. 
2013). The interactions between fungi or fungal-like 
microorganisms and HMs are dependant upon several 
factors, the most significant being their degree of toler-
ance and absorbtion of HMs ions from soil (Golubović-
Ćurguz 2010). Some fungal species display a high 
tolerance threshold to environments contaminated or 
polluted by a particular HM or a specific group of HMs 
(Anahid et  al. 2011; Oladipo et  al. 2018). For example, 
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Aspergillus foetidus had lowest degree of tolerance to 
HMs such as nickel (Ni), cobalt (Co) or Zn while, similar 
to Aspergillus niger, it revealed a relatively high tolerance 
to Mo and vanadium (V) (Anahid et al. 2011). Moreover, 
Rhizopus microsporus was found tolerant to a wide range 
of Cu, Pb and Fe concentrations (400–1000  mg   kg−1); 
however, its high tolerance capacity was apparent only at 
25 mg  kg−1 of Cd and 125 mg  kg−1 of arsenic (As) (Olad-
ipo et al. 2018).

The toxicity of HMs toward fungi and fungal-like 
microorganisms manifests mainly at morphological level 
(Baldrian 2003; Vashistha and Chaunhary 2019). In turn, 
the HM-dependent response of filamentous pathogens 
at cellular level is similar to that in animals and plants 
since these toxic elements provoke oxidative damage and 
induce antioxidant machinery (Table 1).

Pathogen viability and morphological disorders
HM-mediated changes in mycelial growth and morpho-
logical disorders of mycelium are the most visible effects 
of their toxicity. HMs can also provoke changes in viabil-
ity and sporulation of phytopathogenic microorganisms 
such as Phanerochaete chrysosporium (Chen et al. 2014), 
Botrytis cinerea, Alternaria alternata (Ouda 2014), Phy-
tophthora capsici (Liu et  al. 2018) and Phytophthora 
infestans (Gajewska et al. 2020).

Undoubtedly, Cd is the most investigated non-essential 
HM that affects radial growth of the basidiomycete and 
ascomycete fungi including Schizophyllum commune 
(Lilly et  al. 1992) and Fusarium oxysporum Schlecht., 
respectively. The strongest inhibitory effect was found 
at 100  ppm Cd (Golubović-Ćurguz 2010). However, 
0.1 mM Cd diminished not only hyphae length but also 
the number of branches in Rhizopus arrhizus. Also, in 
Trichoderma viride, a fungus which is commonly used as 
a biofungicide, Cd and Cu were found to cause disrup-
tion in the distribution of the fungal biomass within the 
colony. Most biomass in the presence of Cd was located 
at the colony interior while in the presence of Cu it was at 
the periphery of the colony suggesting different modes of 
HM translocation (Gadd et al. 2001).

Significant changes in the growth rate in response to 
Cd exposure were also observed in aquatic hyphomycete 
Heliscus lugdunensis and the terrestrial fungus Verticil-
lium cf. alboatrum. Application of 0.1 mM Cd inhibited 
pathogen growth by 50% in H. lugdunensis while 0.7 mM 
Cd inhibited 30% growth of V. alboatrum (Jaeckel et al. 
2005). Cd treatment was found to markedly diminish the 
viability of the white rot fungus P. chrysosporium (Chen 
et al. 2014). The reduction of cell viability was observed 
even at the lowest (1  µM) studied HM concentration, 
however, the highest percentage of cell death (approx. 
74%) occurred at concentrations of 100 and 500  µM of 

Cd. Exposure of B. cinerea to Cd stress in the range of 
0.175–3.0 mM led to a strong growth inhibition that cor-
related with the overaccumulation of hydrolases and oxi-
dases (Cherrad et al. 2012).

Independent treatment with Zn and Cu HMs at 20 
and 40  ppm were found to inhibit mycelial growth and 
colony number of two most common human pathogenic 
fungi, viz., Aspergilus niger and C. albicans. In turn, Cu-
dependent toxic effect in another human pathogenic 
yeast C. neoformans was observed only at 20  ppm HM 
(Abu-Mejdad 2013). It has been premised that this effect 
may be related to the presence of Cu-sensitive metal-
lothionein gene which is induced at excessive Cu ions 
(Carri et al. 1991). Inhibitory effects by individual treat-
ment with Zn (2 mM) and Cu (0.5 mM) on the growth 
of A. niger and Penicillium citrinum have also been 
observed; however, HM-mediated growth inhibition was 
significantly alleviated in media supplied with nitrate 
sources (Sazanova et al. 2015). This effect could be asso-
ciated with nitrate–mediated oxalic acid production, a 
compound that detoxifies HMs in fungi (Sazanova et al. 
2015). Inhibitory effect of Cd, Hg and silver (Ag) sepa-
rately appilied to the growth medium of phytopatho-
gen Sclerotinia sclerotiorum provoked also opaque halo 
effect surrounding the culture (Mwangi et  al. 2014). In 
Alternaria solani cultures separately treated with variuos 
HMs [Hg, Cu, barium (Ba), Fe, Cd, lithium (Li)] at con-
centrations that ranged from  10–4 to  10–5  M observed 
the inhibition of germ tube growth and spore germina-
tion. The most severe inhibitory effects were found due 
to Hg, Cd, or Cu (Bhajbhuje 2013). Ag and Cu nanoparti-
cles (15 mg·L−1 Ag and Cu) independently tested against 
plant pathogenic fungi B. cinerea and A. alternata led to 
inhibition of their hyphal growth (Ouda 2014). Micro-
scopic observation revealed that growth reduction was 
accompanied by damage of hyphae and conidia in both 
the fungi. Biochemical analysis of the culture filtrate 
revealed that Ag caused reduction in the total content 
of protein, lipids, sugar, and n-acetyl glucosamine (Ouda 
2014).

In addition to the observed HM-mediated morpho-
logical changes, the toxic elements led to the formation 
of colorful or decolorized mycelia, particularly under 
in vitro conditions. Mycelia of F. oxysporum grown under 
Cd stress acquired orange tones (Lorenzo-Gutiérrez et al. 
2019) while Cd-mediated formation of orange-brown 
pigments was observed in fungal colonies of white rot 
fungus Abortiporus biennis (Jarosz-Wilkołazka et  al. 
2006). The induction of pigments may be related to Cd 
biosorption onto the cell walls (Lorenzo-Gutiérrez et al. 
2019). On the contrary, decolorization of fungal hyphae 
at higher Cd concentration in the growth medium was 
observed in Paecilomyces genera (Mohammadian Fazli 
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Table 1 The toxic effect of HMs on filamentous pathogens

Metal Pathogen group Concentration Species Disease(s) Effect(s) References

Ag Fungi 15 mg·L−1 Alternaria alternata Leaf spot, black spot ‑ Growth inhibition
‑ Damage and deforma‑
tion of hyphae and conidia
‑ Disorders in the total 
content of protein/lipids/
sugar/n‑acetyl glucosa‑
mine

Ouda (2014)

Botrytis cinerea Gray mold

5–250 ppm Sclerotinia sclerotiorum White mold ‑ Growth inhibition Mwangi et al. (2014)

Oomycetes 5–50 ppm Phytophthora spp. Soil‑ and water‑borne 
plant pathogens

‑ Zoospore death Slade and Pegg (1993)

Ba Fungi 10–4 to  10–5 M Alternaria solani Early blight ‑ Inhibition of spore 
germination
‑ Inhibition of germ tube 
growth

Bhajbhuje (2013)

Cd Fungi 10–4 to  10–5 M Alternaria solani Early blight ‑ Inhibition of spore 
germination
‑ Inhibition of germ tube 
growth

Bhajbhuje (2013)

200 mg·L−1 Aspergillus fumigatus Aspergillosis ‑ Hyphae decolorisation Mohammadian Fazli et al. 
(2015)

0.175–3.0 mM Botrytis cinerea Gray mold ‑ Growth inhibition
‑ Over‑accumulation of 
hydrolases and oxidases

Cherrad et al. (2012)

100 ppm Fusarium oxysporum Fusarium wilt ‑ Growth inhibition Golubović‑Ćurguz (2010)

0.150 mM Fusarium oxysporum Fusarium wilt ‑ Acquisition orange tones 
of mycelium

Lorenzo‑Gutiérrez et al. 
(2019)

0.1 mM Heliscus lugdunensis (Neo-
nectria lugdunensis)

Black foot ‑ Growth inhibition (50% 
decrease)

Jaeckel et al. (2005)

200 mg·L−1 Paecilomyces sp. Oculomycosis
Pistachio dieback
Entomopathogenic 
species

‑ Hyphae decolorisation Mohammadian Fazli et al. 
(2015)

50 μM Phanerochaete chrys-
osporium

White‑rot (woody plants) 
Granulomatous lung 
disease

‑ Oxidative stress induc‑
tion
‑Time‑dependent up‑
regulation of CAT, POX, LiP, 
and MnP activities

Zhang et al. (2015)

1–500 μM Phanerochaete chrys-
osporium

White‑rot (woody plants) 
Granulomatous lung 
disease

‑ Viability reduction
‑ CAT activity up‑regu‑
lation

Chen et al. (2014)

0.1 mM Rhizopus arrhizus Rhizopus soft rot mucor‑
mycosis

‑ Reduction in hyphae 
length
‑ Reduction in the number 
of branches

Gadd et al. (2001)

0.1–0.2 mM Schizophyllum commune Sap rot, Schizophyllum rot 
fungal sinusitis

‑ Inhibition of radial 
growth

Lilly et al. (1992)

5–250 ppm Sclerotinia sclerotiorum White mold ‑ Growth inhibition Mwangi et al. (2014)

1, 5 and 10 mmol/L Trichosporon cutaneum White piedra ‑ SOD activity up‑regu‑
lation

Lazarova et al. (2014)

0.7 mM Verticillium cf. alboatrum Verticillium wilt ‑ Growth inhibition (30% 
decrease)

Jaeckel et al. (2005)
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Table 1 (continued)

Metal Pathogen group Concentration Species Disease(s) Effect(s) References

Oomycetes 0.05–3.0 mM Achlya bisexualis Saprolegniasis in fishes ‑ Decrease in mycelial area 
and radial extension

Lundy et al. (2001)

5 and 12.5 mg/L Phytophthora infestans Late blight ‑ ROS and RNS formation
‑ Increase in protein 
carbonylation content
‑ Up‑regulation of CAT and 
SOD activities
‑ Nitro‑oxidative modifica‑
tions of proteins and 
nucleic acids

Gajewska et al. (2020)

10–50 µg/ml Saprolegnia delica Coker Saprolegniasis in fishes ‑ Inhibition of sporangia 
formation
‑ Morphological abnormal‑
ity (e.g. thicker and stunted 
vegetative hyphae, shorter 
and thicker zoosporangia, 
low numbers of oogonia 
and antheridia)

Ali (2007)

Cu Fungi 25–100 ppm Alternaria alternata Leaf spot, black spot ‑ Increase in total protein 
content
‑ CAT activity up‑regu‑
lation

Shoaib et al. (2015)

15 mg·L−1 Alternaria alternata Leaf spot, black spot ‑ Growth inhibition
‑ Damage and deforma‑
tion of hyphae and conidia
‑ Disorders in the total 
content of protein, lipids, 
sugar and n‑acetyl glu‑
cosamine

Ouda (2014)

10–4 to  10–5 M Alternaria solani Early blight ‑ Inhibition of spore 
germination
‑ Inhibition of germ tube 
growth

Bhajbhuje (2013)

0.5 mM Aspergillus niger Black mold ‑ Growth inhibition
‑ Nitrate‑dependent 
induction of oxalic acid 
production

Sazanova et al. (2015)

20 and 40 ppm Aspergilus niger Black mold
Pneumonia

‑ Growth inhibition
‑ Decrease in the colony 
numbers

Abu‑Mejdad (2013)

15 mg·L−1 Botrytis cinerea Gray mold ‑ Growth inhibition
‑ Damage and deforma‑
tion of hyphae and conidia
‑ Disorders in the total 
content of protein, lipids, 
sugar and n‑acetyl glu‑
cosamine

Ouda (2014)

0.5 mM Penicillium citrinum Yellow rice disease (citrinin 
production) a tissue‑inva‑
sive cause of pneumonia

‑ Growth inhibition
‑ Nitrate‑dependent 
induction of oxalic acid 
production

Sazanova et al. (2015)

0.1 mM Rhizopus arrhizus Rhizopus soft rot mucor‑
mycosis

‑ Reduction of hyphae 
length
‑ Reduction in the number 
of branches

Gadd et al. (2001)

1, 5, 3 mmol/L Trichosporon cutaneum White piedra ‑ Oxidative stress induc‑
tion
‑ SOD activity up‑regu‑
lation

Lazarova et al. (2014)
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Table 1 (continued)

Metal Pathogen group Concentration Species Disease(s) Effect(s) References

Oomycetes 0.05–3.0 mM Achlya bisexualis Saprolegniasis in fishes ‑ Decrease in mycelial area 
and radial extension

Lundy et al. (2001)

0.5–1 mM Phytophthora capsici Blight and fruit rot of 
peppers

‑ Growth inhibition
‑ Limited sporulation

Liu et al. (2018)

Co Oomycetes 0.05–3.0 mM Achlya bisexualis Saprolegniasis in fishes ‑ Decrease in mycelial area 
and radial extension

Lundy et al. (2001)

Cr Fungi 10–4 to  10–5 M Alternaria solani Early blight ‑ Inhibition of spore 
germination
‑ Inhibition of germ tube 
growth

Bhajbhuje (2013)

1, 5 and 10 mmol/L Trichosporon cutaneum White piedra ‑ Oxidative stress induc‑
tion
‑ SOD activity up‑regu‑
lation

Lazarova et al. (2014)

Oomycetes 0.5–1 mM Phytophthora capsici Blight and fruit rot of 
peppers

‑ Growth inhibition
‑ Limited sporulation

Liu et al. (2018)

Fe Fungi 10–4 to  10–5 M Alternaria solani Early blight ‑ Inhibition of spore 
germination
‑ Inhibition of germ tube 
growth

Bhajbhuje (2013)

Hg Fungi 10–4 to  10–5 M Alternaria solani Early blight ‑ Inhibition of spore 
germination
‑ Inhibition of germ tube 
growth

Bhajbhuje (2013)

5–250 ppm Sclerotinia sclerotiorum White mold ‑ Growth inhibition Mwangi et al. (2014)

Oomycetes 3 mM Achlya bisexualis Saprolegniasis in fishes ‑ Decrease in mycelial area 
and radial extension
‑ Spiral growth of hyphae

Lundy et al. (2001)

0.5–1 mM Phytophthora capsici Blight and fruit rot of 
peppers

‑ Growth inhibition
‑ Limited sporulation

Liu et al. (2018)

1 ppm Phytophthora nicotianae 
var. parasitica

Black shank ‑ Reduction in zoospore 
germination

Slade and Pegg (1993)

Li Oomycetes 1 ppm Phytophthora nicotianae 
var. parasitica

Black shank ‑ Reduction in zoospore 
germination

Slade and Pegg (1993)

Mn Oomycetes 0.1–200 mg/L Phytophthora nicotianae Black shank ‑ Growth inhibition
‑ Sporangiogenesis and 
zoosporogenesis inhibi‑
tion
‑ Spores germination 
inhibition
‑ Concentration‑depend‑
ent regulation of SOD and 
CAT activity
‑ Increased MDA content 
with increasing HM con‑
centration

Luo et al. (2020)

Pb Fungi 25 μM Phanerochaete chrys-
osporium

White‑rot (woody plants) 
Granulomatous lung 
disease

‑ ROS formation
‑ Time‑dependent up‑
regulation of CAT, POD, LiP 
and MnP activities

Zhang et al. (2015)

Oomycetes 1 ppm Phytophthora nicotianae 
var. parasitica

Black shank ‑ Reduction in zoospore 
germination

Slade and Pegg (1993)

10–50 µg/ml Saprolegnia delica Coker Saprolegniasis in fishes ‑ Inhibition of sporangia 
formation
‑ Morphological abnormal‑
ity (e.g. thicker and stunted 
vegetative hyphae, shorter 
and thicker zoosporangia, 
low numbers of oogonia 
and antheridia)

Ali (2007)

Sr Oomycetes 30 mM Phytophthora cinnamomi Root rot and cankering ‑ Encystment 90% of 
zoospores

Byrt et al. (1982)
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et  al. 2015). Penicillium isolates grown on agar media 
enriched with high Zn concentrations were found to 
secrete a yellow substance likely related to the HM stress 
(Ezzouhri et al. 2009).

In fungal-like pathogens such as Achlya bisexualis, 
HM stress caused by individual treatment with Cu, Co, 
Hg, Zn, or Cd in the range of 0.05–3.0 mM decreased 
the hyphal area and limited the radial extension of the 
oomycete. Hg (3  mM) caused abnormal spiral growth 
of the hyphae (Lundy et al. 2001). A decrease in hyphal 
growth together with reduced sporulation of P. capsici, 
a cause of blight and fruit rot of peppers, was evident in 
response to Cu, Cr, or Hg independently applied to the 
culture (Liu et al. 2018). Cadmium at 5 and 12.5 mg/L 
also limited the in  vitro growth of P. infestans, fungus 
responsible for the late blight disease. The reduced 
hyphal growth was accompanied by an inhibition of 
sporangia formation and spore germination (Gajewska 
et  al. 2020). A similar inhibitory effect together with 
variable morphological abnormalities were observed 

also in two zoosporic fungi Saprolegnia delica Coker 
and Dictyuchus carpophorus Zopf. separately treated 
with Cd or Pb in range of 10–50  µg/ml (Ali 2007). 
In another pathogenic oomycete, Phytophthora cin-
namomi, 30  mM strontium (Sr) caused encystment 
of 90% zoospores (Byrt et  al. 1982). Notably, low con-
centrations of Hg and Pb (1.0 ppm) applied separately 
reduced zoospore germination of Phytophthora nicotia-
nae var. parasitica by over 50% while Ag in the range of 
5–50 ppm caused death of most Phytophthora spp. zoo-
spores (Slade and Pegg 1993). It is important to note 
here that response to various metals during the lifecy-
cle of oomycetes Phytophthora and Pythium revealed 
that generally metals are toxic at lower concentrations 
for zoospores than at any other stage of their life cycle 
(Slade and Pegg 1993).

Disturbance of the cell redox homeostasis
One of the earliest cellular response to HMs is the gen-
eration of reactive oxygen and nitrogen species (ROS/

Table 1 (continued)

Metal Pathogen group Concentration Species Disease(s) Effect(s) References

Zn Fungi 20 and 40 ppm Aspergilus niger Black mold ‑ Growth inhibition
‑ Decrease in the colony 
numbers

Abu‑Mejdad (2013)

2 mM Aspergillus niger Black mold ‑ Growth inhibition
‑ Nitrate‑dependent 
induction of oxalic acid 
production

Sazanova et al. (2015)

1–10 mM Penicillium spp. Allergic pulmonary disease ‑ Secretion a yellow 
substance related to the 
HM stress

Ezzouhri et al. (2009)

2 mM Penicillium citrinum Yellow rice disease (citrinin 
production) a tissue‑inva‑
sive cause of Pneumonia

‑ Growth inhibition
‑ Nitrate‑dependent 
induction of oxalic acid 
production

Sazanova et al. (2015)

0.1 mM Rhizopus arrhizus Mucormycosis ‑ Reduction of hyphae 
length
‑ Reduction in the number 
of branches

Gadd et al. (2001)

5–250 ppm Sclerotinia sclerotiorum White mold ‑ Growth inhibition Mwangi et al. (2014)

Oomycetes 0.05–3.0 mM Achlya bisexualis Saprolegniasis in fishes ‑ Decrease in mycelial area 
and radial extension

Lundy et al. (2001)

0.1–20 mg/L Phytophthora nicotianae Black shank ‑ Growth inhibition
‑ Sporangiogenesis and 
zoosporogenesis inhibi‑
tion
‑ Spores germination 
inhibition
‑ Concentration‑depend‑
ent regulation of SOD and 
CAT activity
‑ Increased MDA content 
with Increasing HM con‑
centration

Luo et al. (2020)
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RNS) that result in oxidative and/or nitrosative stress 
and disturbance of the cell redox balance (Rodríguez-
Serrano et  al. 2009; Oves et  al. 2016; Georgiadou et  al. 
2018). Cells activate mechanisms that detoxify reactive 
species and protect cells from oxidative damage. Thus, 
antioxidant system involving peroxidases (POXs), super-
oxide dismutase (SOD), and catalase (CAT) get acti-
vated (Krishnamurthy and Wadhwani 2012; Ighodaro 
and Akinloye 2018). However, little is known about any 
such antioxidant response in pathogenic microorganisms 
(Pamplona and Constantini, 2011; Caverzan et  al. 2016; 
Kusvuran et al. 2016).

Oxidative stress as a consequence of HM exposure 
affects white-rot fungus P. chrysosporium (Chen et  al. 
2014; Zhang et al. 2015), A. alternata (Shoaib et al. 2015), 
filamentous yeast Trichosporon cutaneum (Lazarova 
et  al. 2014), and oomycete P. infestans (Gajewska et  al. 
2020). In P. chrysosporium Pb (25  µM) and Cd (50  µM) 
independently applied caused ROS formation and time-
dependent changes in the activity of CAT, POX, lignin 
peroxidase (LiP), and manganese peroxidase (MnP). The 
intracellular enzymes such as CAT and POX showed 
a similar trend in the activity, however, HM-mediated 
induction of CAT and POX was lower than that in LiP 
and MnP (Zhang et  al. 2015). Response of A. alternata 
to Cu sulphate salt provoked a visible growth inhibi-
tion that correlated with significant increase in the total 
protein pool and CAT activity (Shoaib et  al. 2015). The 
antioxidant response of pathogenic fungi under HMs 
stress involves also SOD, which has been shown to be 
required for full virulence in the models C. albicans, C. 
neoformans and Aspergillus fumigatus (Warris and Bal-
lou 2019). In general, SOD activity increased in response 
to individual treatment with Cd, Cr, or Cu in filamentous 
yeast T. cutaneum; however, only Cd treatment resulted 
in dose-dependent increase in the enzyme activity, the 
highest induction being noted at 10  mmol/L (Lazarova 
et al. 2014). The independent treatment of P. nicotianae 
with Mn (0.1–200 mg/L) and Zn (0.1–20 mg/L) provoked 
elevation of CAT and SOD activities at the selected HM 
dose (1  mg/L), while concentrations above this thresh-
old gradually diminished the enzyme activity (Luo et al. 
2020).

Exposure of P. infestans to Cd led to HM-dependent 
ROS/RNS overproduction and nitro-oxidative modifica-
tions of RNA, DNA, and protein pools (Gajewska et  al. 
2020). Cadmium based dose-dependent RNA’s nitrative 
modification observed in the oomycete suggested that 
HM toxicity can contribute to the RNA lesion. However, 
it is noted here that nitrative and/or oxidative modifi-
cations can also reprogram post-transcriptional gene 
expression via modulation of mRNA levels and changes 
in the activity of transcription factors (Chmielowska-Bąk 

et al. 2018). In addition, moderate Cd stress (5 mg/L) can 
induce antioxidant response manifestation by increasing 
CAT and SOD activities as well as result in a novel Cd-
dependent CAT isoform in P. infestans hyphae (Gajew-
ska et  al. 2020). Thus, an early activation of antioxidant 
enzymes might be the first line of defence against Cd tox-
icity in microorganisms before the induction of specific 
HM defence (Basha and Rani 2003).

The divergent effects of various HMs on the growth, 
development, and physiology of pathogenic microorgan-
isms emphasizes that the HM toxicity depends not only 
on the type of metal, their applied form and concentra-
tion but also on fungal/fungal-like life style, species or 
even isolates.

The hormetic effect of HMs on pathogens
A low dose of harmful factors can cause a hormesis 
effect. This phenomenon refers to adaptive responses 
of organisms to moderate environmental challenges, 
improving their functionality and/or tolerating stronger 
challenges in the future (e.g., Kendig et  al. 2010; Cala-
brese and Mattson 2017). Even though the improved per-
formance of some plant and animal species in response 
to HMs has been observed (Poschenrieder et  al. 2013; 
Jalal et al. 2021), very limited information in microorgan-
isms, particularly fungi and oomycetes, is available about 
the stimulating effect of HMs on their growth and devel-
opment (Table 2).

Heavy metals (Cu, Zn, and Fe independently supplied 
at concentrations of 5 ×  10–4 and 5 ×  10–3) stimulate 
mycelial growth of phytopathogenic fungus Endothia 
parasitica (Englander and Corden 1971). The same met-
als applied to A. flavus at relatively low concentration 
(5 mg  L−1) were found to stimulate not only the mycelial 
growth of the pathogen but also aflatoxin biosynthesis. 
Moreover, the accumulation of total RNA was enhanced 
by Cu, Zn and Fe; however, the combination of all three 
HMs or their duplexes (Zn + Cu and Zn + Fe) were much 
more effective in total RNA accumulation as compared 
to the control (Cuero et  al. 2003). Cu at 40  ppm led to 
increased growth of C. neoformans and exerted a simi-
lar effect as magnesium (Mg), although the latter is not 
an HM (Abu-Mejdad 2013). Among 12 metals indepen-
dently tested, only Cu and Co stimulated mycelial growth 
of S. sclerotiorum (Mwangi et al. 2014). Also, it has been 
shown that at low Cu concentration (3 ppm) the growth 
of phytopathogens such as Pythium debaryanum and F. 
oxysporum is stimulated (Golubović-Ćurguz et al. 2010). 
Also, P. debaryanum growth was stimulated in the pres-
ence of applied Pb or Cd at a concentration of 3  ppm. 
The hormetic-like effect of HMs was also shown in two 
zoosporic fungi, S. delica and D. carpophorus, in the 
presence of 10–50 µg/ml Zn (Ali 2007). It was noted that 
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a high number of sporangia were observed in D. carpo-
phorus at high Zn concentration (30 µg/ml). Sporangia in 
both S. delica and D. carpophorus formed in the presence 
of Zn were elongated compared to the control (Ali 2007).

Mechanisms of resistance to heavy metals
Many filamentous eukaryotic pathogens belonging to soil 
microorganisms exhibit relatively high tolerance thresh-
old to HMs. Most likely, these microorganisms have 
been subjected to evolution in response to contaminated 
environments and have developed novel detoxification 
strategies that allow them to acquire tolerance to pollut-
ants such as HMs (Lorenzo-Gutiérrez et  al. 2019). The 
potential mechanisms that may be involved in the HMs 
detoxification have been divided into two types (Sid-
diquee et al. 2015). The first one is based on secretion of 
chemical compounds outside the cell to bind the met-
als in the extracellular space or on the cell wall making 
them biologically inaccessible and therefore less harm-
ful for the cell. The second mechanism occurs when the 
harmful substances enter the cell; involves the chelation 
of toxic metal ions in the cytosol, resulting in inactiva-
tion and storage of HMs away from sensitive metabolic 
processes (Avery et  al. 1992). Thus, cellular defence of 
fungi and oomycetes against the excessive concentration 
of toxic metals in the environment includes intracellular 
metal sequestration, metal binding to cell walls, chemical 
transformations and intracellular metal immobilization 
(Fig. 1) (Gadd 1993; Siddiquee et al. 2015).

Extracellular metal sequestration
Exposure of microorganisms to HMs may induce syn-
thesis and secretion of chelating molecules that bind to 
the metal. Fungal metabolites such as organic acids and 
siderophores may also precipitate metals from the extra-
cellular environment and lead to their inactivation. The 
model yeast S. cerevisiae as an extracellular metal che-
lator may use hydrogen sulfide to form insoluble metal 
sulfides (Minney and Quirk 1985).

In general, organic acids may operate outside or within 
the cell and reduce HM availability by forming stable 
complexes and insoluble salts (Sazanova et  al. 2015). 
The pH, buffering capacity of the cellular environment, 
sources of the carbon, phosphorus and nitrogen, all 
impact the quality, quantity and ability of organic acids 
to reduce HM (Fomina et al. 2005). For example, A. niger 
and P. citrinum grown on a nitrate medium containing 
Zn enhanced the biosynthesis of oxalic acid, while the 
addition of Cu stimulated the production of malic acid in 
both the fungi and citric acid only in A. niger (Sazanova 
et  al. 2015). Although under in  vitro conditions HMs 
can stimulate the synthesis of organic acids (i.e., oxalic, 
citric, succinic, malic, acetic and gluconic), the oxalic 

acid is more predominant in fungi (Dutton et  al. 1993; 
Clausen et al. 2003; Fomina et al. 2005; Gadd 2010). Sup-
plementation of the growth medium of F. solani with Ag 
(I) at 400 mg/l increased oxalic acid content by 3.5-fold 
(El Sayed and El-Sayed 2020). The entomopathogenic 
fungus Beauveria caledonica over-excretes acetic, citric 
and oxalic acids during growth in the presence of sin-
gly applied Cd, Cu, Pb or Zn make available crystalline 
oxalates both extracellularly and within the fungal bio-
mass (Fomina et al. 2005). Oxalate crystals are formed in 
growth media due to high levels of Zn and Co in white rot 
fungi Bjerkandera fumosa, Phlebia radiata and Trametes 
versicolor as well as in the brown rot fungus Fomitopsis 
pinicola (Jarosz-Wilkolazka and Gadd 2003). Phytopath-
ogens can secrete oxalic acid at millimolar concentra-
tions (Lu 2013) that becomes a deterrent to pathogenicity 
since acidification of host environment facilitates seques-
tration of calcium ions and consequently the degradation 
of the host cell walls (Dutton and Evans 1996).

Other organic compounds that chelate HMs extra-
cellularly are siderophores, i.e., low molecular weight 
ligands that chelate iron and participate in its metabo-
lism in the cell. Siderophores are more efficient at 
binding metals than most common chelating agents, 
for example, oxalic or citric acids (Holmström et  al. 
2004). Although the canonical function of sidero-
phores involves iron scavenging, these compounds have 
also been found to complex with other metals includ-
ing HMs such as Cd, Cu, Pb, Zn, Ni or As, preventing 
their uptake by the cell (Ahmed and Holmström 2014). 
Siderophores produced by Fusarium solani were found 
to contribute to in vitro solubilization of Cu as well as 
Zn (Hong et  al. 2010). The ability to complex metals 
other than Fe mainly depends on the affinity or selectiv-
ity toward individual metals and the stability constants 
of the resulting metal–siderophore complex (Hernlem 
et al., 1999). Some phytopathogenic fungi, i.a., Stemphy-
lium botryosum, produce unique β-keto aldehydes that 
function as phytotoxins and also chelate iron (Barash 
2014). From chemical point of view fungal siderophores 
have a hydroxamate type structure with an N-hydrox-
yornithine moiety. The hydroxamate siderophores are 
divided into four families including rhodotorulic acid, 
coprogens, ferrichromes and fusarinines. These com-
pounds are produced by phytopathogens such as S. 
botryosum, Epicoccum purpurescens, Ustilago maydis 
(Renshaw et  al. 2002) as well as zoopathogens belong-
ing to Fusarium spp., Paecilomyces spp., and Aspergillus 
spp. (reviewed Al-Fakih 2014). In addition to hydroxa-
mate siderophores it is also known that pathogenic 
fungi may produce polycarboxylates called rhizoferrin 
from Rhizopus microsporus var. rhizopodiformis and 
phenolate-catecholates found in wood-rotting fungi 
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(Larcher et  al. 2013). In general, the siderophore pro-
duction is a result of iron deficiency in the cell (Chen-
nappa et al. 2019). Transport of iron-siderophores is an 
energy-dependent and stereoselective process depend-
ing on the metal ion coordination geometry and the 
N-acyl residues surrounding the metal centre (Ren-
shaw et  al. 2002). Apart from iron transportation and 
the ability to chelate other toxic metals, siderophores 
are also engaged in microorganismal pathogenicity 
including phytopathogens Cochliobolus miyabeanus, 
C. heterostrophus, Fusarium graminearum, Alternaria 
brassicicola and Colletotrichum graminicola (Oide et al. 
2006; Albarouki et al. 2014).

Metal binding to cell walls
The cell wall structure of microorganisms has adapted 
to bind substances such as HMs and can thereby protect 
the cells. The cell surface of microorganisms is negatively 
charged with the presence of various anionic structures, 
for example, glucan in oomycetes and chitin in fungi 
(Anahid et al. 2011). Binding of metal to the cell wall can 
occur through a variety of chemical reactions related 
to metal biosorption. This type of action prevents the 
uptake of metal ions into the interior of cells and mainly 
involves carboxyl and phosphoryl groups; however, bio-
molecules equipped with amine, hydroxyl, and sulfhydryl 
groups can also participate in metal binding (Ayangbenro 

Table 2 The hormetic effect of HMs on filamentous pathogens

Metal Pathogen group Concentration Species Disease(s) Effect(s) References

Cd Oomycetes 3 ppm Pythium debaryanum Damping‑off and seed‑
ling disease

‑ Stimulation of mycelia 
growth

Golubović‑Ćurguz et al. 
(2010)

Co Fungi 5 ppm Sclerotinia sclerotiorum White mold ‑ Stimulation of mycelia 
growth

Mwangi et al. (2014)

Cu Fungi 5 mg  L−1 Aspergillus flavus Aspergillus ear and 
Kernel rot human and 
animal Aspergillosis

‑ Stimulation of mycelia 
growth
‑ Increase in total RNA 
content
‑ Induction of aflatoxin 
biosynthesis

Cuero et al. (2003)

5 ×  10–4 and
5 ×  10–3 M

Endothia parasitica Chestnut blight ‑ Stimulation of mycelia 
growth

Englander and Corden 
(1971)

3 ppm Fusarium oxysporum Fusarium wilt ‑ Stimulation of mycelia 
growth

Golubović‑Ćurguz et al. 
(2010)

5 ppm Sclerotinia sclerotiorum White mold ‑ Stimulation of mycelia 
growth

Mwangi et al. (2014)

Oomycetes 3 ppm Pythium debaryanum Damping‑off and seed‑
ling disease

‑ Stimulation of mycelia 
growth

Golubović‑Ćurguz et al. 
(2010)

Fe Fungi 5 mg  L−1 Aspergillus flavus Aspergillus ear and 
Kernel rot human and 
animal Aspergillosis

‑ Stimulation of mycelia 
growth
‑ Increase in total RNA 
content
‑ Induction of aflatoxin 
biosynthesis

Cuero et al. (2003)

5 ×  10–4 and
5 ×  10–3 M

Endothia parasitica Chestnut blight ‑ Stimulation of mycelia 
growth

Englander and Corden 
(1971)

Mg Fungi 20 and 40 ppm Aspergillus niger Black mold ‑ Increase in the colony 
numbers

Abu‑Mejdad (2013)

Pb Oomycetes 3 ppm Pythium debaryanum Damping‑off and seed‑
ling disease

‑ Stimulation of mycelia 
growth

Golubović‑Ćurguz et al. 
(2010)

Zn Fungi 5 mg·L−1 Aspergillus flavus Aspergillus ear and 
Kernel rot human and 
animal Aspergillosis

‑ Stimulation of mycelia 
growth
‑ Increase in total RNA 
content
‑ Induction of aflatoxin 
biosynthesis

Cuero et al. (2003)

5 ×  10–4 and
5 ×  10–3 M

Endothia parasitica Chestnut blight ‑ Stimulation of mycelia 
growth

Englander and Corden 
(1971)

Oomycetes 10–30 µg/ml Saprolegnia delica Coker Saprolegniasis in fishes ‑ Stimulation of mycelia 
growth
‑ Sporangia elongation

Ali (2007)
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and Babalola 2017). For example, hydroxyl, amide, car-
boxyl and phosphate-rich cell walls of the lignin-degrad-
ing fungus F. velutipes exhibit efficient absorption for Cu, 
Zn and Hg amounting to 73.11%, 66.67% and 69.35%, 
respectively (Li et al. 2018). Binding of metals to the cell 
wall is a mechanism that operates at both low and high 
temperatures, is independent of cellular metabolism, but 
dependent upon the physicochemical metal parameters 
such as ionic potential, ionic radius, and ionic stability 
(Tsekova and Ilieva 2001). In R. arrhizus, the most com-
mon cause of mucormycosis, the biosorption was inde-
pendent of the ionic charge but was linearly dependent 
on ionic radius (Tobin et al. 1984).

Intracellular metal immobilization and chemical 
transformations
Metal transporters represent the first line of defense 
against disturbance in cellular and subcellular homeo-
stasis caused by HMs. In general, ATP-binding cassette 
(ABC) transporter family is involved in intracellular 

transfer of HMs in fungi (Kovalchuk and Driessen 2010). 
Based on the model yeasts, proteins Bpt1p, Hmt1p, 
Ycf1p, Vmr1p and Nft1p transport HMs and their GSH-
dependent conjugates from the cytosol to vacuole. Efflux 
pumps are considered to be responsible for HMs exclu-
sion. Copper-transporter ATPases, cation diffusion facili-
tators (CDF), and multidrug and toxin extrusion (MATE) 
carrier family are among those that exclude non-essential 
HMs such as Pb, Cd and Ni (Sharma et al. 2021). How-
ever, the process requires large amounts of energy caus-
ing ATP deficiency that can lead to cell death (Norris and 
Kelly 1977).

Intracellular immobilization of metals involves their 
complexation by cytoplasmic compounds that convert 
potentially toxic metals into less or non-toxic forms 
and which may then be compartmentalized in the vacu-
ole. Three major classes of intracellular peptide chelat-
ing metal ions include glutathione, phytochelatin’s (PCs) 
and metallothionein’s (MTs). Being thiol compounds 
they are the prime agents for cellular HMs tolerance and 

Fig. 1 The potential mechanisms of HMs detoxification operating in fungal and fungal‑like pathogens. HM heavy metal; MT metallothioneins; Red 
asterisk indicates the mechanism documented also in oomycetes
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involvement of MTs in fungal HM detoxification. Metal-
lothioneins are low molecular weight cysteine rich pro-
teins that coordinately bind divalent or monovalent metal 
ions and control the homeostasis of essential metals such 
as Zn and Cu, or lead to sequestration of the non-essen-
tial toxic metals such as Cd (Bellion et al. 2006). MTs are 
known to have a low degree of sequence similarity. Fun-
gal MTs are distributed into six different families (MTs 
family numbers F08-F13). However, some MT sequences 
are not affiliated with known MT family, such as Basidio-
mycota (Ziller and Fraissinet-Tachet 2018). The genera of 
microbial eukaryotes in which MTs have been predicted 
to be present include phytopathogenic oomycetes, i.e., 
Phytophthora and Peronospora (Balzano et al. 2020). Fun-
gal MT genes can be induced by a single or even multiple 
metals (Reddy et al. 2014). The detoxification property of 
MTs against different metals, e.g., Cd and Zn, is seen only 
in the presence of Cu which triggers MTs production, for 
example, in cellular environment of S. cerevisiae (Calvo 
et al. 2017).

A single metallothionein (mt1) was found in the 
genome of F. oxysporum that involves resistance to met-
als and also to fungal pathogenicity (Lorenzo-Gutiérrez 
et al. 2019). Functional studies have shown that mutants 
of mt1 gene were less resistant to the heavy metals such 
as Cu, Zn, or Cd as compared to the wild-type pathogen. 
Moreover, mt1 was found to be transcriptionally regu-
lated specifically by Zn but not by either Cd or Cu. Thus, 
Mt1 seems to play an important role in Zn homeostasis. 
In addition, knockout strain for the mt1 gene revealed 
that the inability to synthesize Mt1 protein did not affect 
the virulence of F. oxysporum toward tomato and mouse 
hosts but reduced fungal survival within the phagosome, 
a membrane-bound vesicle that encloses particulate mat-
ter taken into the cell by phagocytosis. The effect was 
ascribed to impaired resistance of the mutant to ROS 
and metal ions that could perform antimicrobial func-
tions inside the phagolysosome (Lorenzo-Gutiérrez et al. 
2019).

Other types of intracellular metal inactivation involve 
chemical reactions such as oxidation, reduction, meth-
ylation, or dealkylation. One such reaction for fungal 
microorganisms involves the reduction of Ag (Osorio-
Echavarría et  al. 2021) and Cu (Antsotegi-Uskola et  al. 
2020). Fungal endophytes such as Lindgomycetaceae P87 
and Curvularia geniculata P1 were found to reduce mer-
cury ion Hg (II) and the reaction led to the formation 
of volatile forms of Hg enabling its evaporation (Pietro-
Souza et al. 2020). Another example of converting toxic 
metals to relatively safe compounds is the reduction of Cr 
(VI) by A. niger (Gu et al. 2015). This involves two steps: 
(i) adsorption of Cr (VI) by carboxyl, hydroxide, amine, 
amide, cyano and phosphate groups of cell wall, and (ii) 

the Cr (VI) reduction to Cr (III), which is sparingly solu-
ble in water form, and therefore not toxic to the cell (Gu 
et al. 2015).

Effects of HM on pathogenicity
Heavy metal polluted environment is well documented 
risk to human health since contaminants can move rela-
tively freely from soils or water to plants and animals, but 
the additional risk also arises as a result of tripartite inter-
action involving HM-pathogen-host system (Fig.  2). It 
has previously been underlined that some abiotic factors 
such as high availability of nitrogen or high soil moisture 
content can increase disease susceptibility by promoting 
pathogen growth (Samaddar et al. 2021). It is still unclear 
whether HMs action is related to pathogenicity and/
or virulence of the microorganism. Based on the avail-
able literature HMs can limit as well as promote patho-
gen virulence (e.g., Cherrad et al. 2012; Bakti et al. 2018; 
Liu et al. 2018; Gajewska et al. 2020). These effects indi-
cate that environmental pollution and soil contamina-
tion due to HMs can significantly affect the pathobiology 
of microorganisms, and thus can have huge economic 
consequences especially in relation to plant pathogens. 
Thus far, limited reports on the effects of HMs on phy-
topathogens are available. Usually, altered pathogenic-
ity of fungal and fungal-like pathogens seem connected 
with enzymes such as proteases involved in infection 
and effector-related protein secretion (Dong et al. 2012; 
Williamson 2016). HMs stress related to singly applied 
Cu, Cr or Hg at low and neutral pH were found to limit 
the virulence of P. capsici (Liu et al. 2018). The observed 
decrease of P. capsici virulence during infection of pep-
per leaves was associated with reduced expression of two 
pathogenicity-related genes, i.e., laccase PcLAC2 and 
necrosis-inducing NLP protein PcNLP14. In B. cinerea 
secretome high levels of two Zn-metalloproteases was 
noted after the independent pathogen treatment with Cu 
and Zn. Importantly, these Zn-metalloproteases belong 
to the group of extracellular peptidases of the deuter-
olysin and penicillolysin M35 family and are known to 
be the main virulence factors in Aeromonas salmonicida 
(Cherrad et al. 2012). In the oomycete phytopathogen P. 
infestans, Cd at a concentration of 5  mg/L accentuated 
pathogenicity, which was manifested by an acceleration 
of disease symptoms on two out of three potato cul-
tivars, i.e., Bintje, Bzura and Sarpo Mira. Moreover, 
molecular assessment of disease progression measured 
as P. infestans Tef1 gene (PiTef1) expression revealed an 
elevated PiTef1 gene expression in planta in each tested 
potato cultivar; however, the level of PiTef1 expression 
depended on the degree of basal resistance of the potato 
cultivars used in this study (Gajewska et al. 2020).
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Effects of HMs on pathogenicity regarding human and 
animal pathogens are better documented. For example, 
at high concentrations of Cd, Pb, Ni, Cu, or Zn sepa-
rately added to the media, pathogenicity of Paecilomyces 
fumosoroseus decreased. In contrast, cultures enriched 
with Mg ions, a non-HM metal, led to increased patho-
genicity of this fungus (Jaworska et  al. 1998). Another 
species belonging to Paecilomyces (P. farinosus) showed 
limited pathogenicity in the presence of Cd or Pb ions, 
whereas independently applied Cu, Zn, or Ni ions each 
had a weak or no effect on the fungal pathogenicity 
(Ropek and Para, 2003). Cd also limited pathogenicity of 
the entomopathogen fungus Isaria javanica. Under nor-
mal conditions, I. javanica caused mortality of two aphid 
species while after Cd exposure the pathogen caused 
30–60% mortality of aphids (Hassn et al. 2014).

It is known that a relationship exists between patho-
genicity and oxidative stress tolerance (Bakti et al. 2018; 
Warris and Ballou 2019). For example, fungi such as C. 
albicans, C. neoformans and Aspergillus fumigatus that 
are deficient in SOD exhibit reduced pathogenicity. 
SODs are required for full virulence while defects in oxi-
dative stress response pathways attenuate fungal resist-
ance to phagocyte killing (Warris and Ballou 2019). In A. 
fumigatus, PIB-type cation ATPase (PcaA), a metal trans-
porter with potential to eliminate superoxide radicals, 
can be involved in metal metabolism and virulence. Also, 
deficiency of PcaA leads to decreased Cd tolerance and 
attenuates the virulence of A. fumigatus in the Galleria 
mellonella infection model, resulting in a decreased toler-
ance to oxidative stress (Bakti et al. 2018). The B. cinerea 
P-type ATPase BcCcc2, an ortholog of the S. cerevisiae 
Ccc2 copper transporting P-type ATPase, was found 
to be essential for virulence in the necrotroph (Saitoh 
et  al. 2010). Apart from morphogenetic defects caused 
by the Bcccc2 deletion, the mutant strain was unable to 
penetrate and infect tomato leaves and carnation petals. 
Since the P-type ATPase is engaged in Cu delivery to the 
secretory compartment for subsequent protein modifica-
tion, the BcCcc2 targeted proteins were deficient in cop-
per, which resulted in impaired cellular processes (Saitoh 
et al. 2010). The lack of BcCcc2 can also result in a defec-
tive BcSod1 function while preventing the maintenance 
of the  O2

−/H2O2 ratio during in planta development that 
promotes necrotic lesion formation and disease progres-
sion (Antsotegi-Uskola et al. 2020).

Another link between pathogenicity and HMs 
includes fungal metal detoxification machinery. It is 
known that the host can mobilize Cu ions as an innate 
anti-fungal defense to which the pathogen responds by 
activating specific mechanisms to counteract metal over-
accumulation. For instance, human fungal pathogen C. 
neoformans induces genes encoding the Cu-detoxifying 

metallothionein (Cmt) proteins during pulmonary infec-
tion (Ding et  al. 2013). C. neoformans mutant strains 
lacking metallothionein genes CMTs or expressing Cmt 
protein variants defective in Cu-coordination have been 
shown to exhibit severely attenuated virulence and 
reduced pulmonary colonization (Ding et  al. 2013). In 
relation to plant pathogens, deletion of Magnaporthe 
metallothionein 1 (Mmt1) encoding MT-like protein 
resulted in diminished pathogenicity of hemibiotroph 
Magnaporthe grisea in rice that had a defect in the pre-
penetration phase (Tucker et al. 2004). Mmt1 protein is 
localized in infection structures such as cell walls of the 
appressorium and germ tube tips before appressorium 
development, which suggests its role in cell wall remod-
eling and hyperosmotic stress adaptation. In addition, 
Mmt1 possesses the capacity to act as an antioxidant 
with a very low redox potential allowing the fungus to 
withstand host oxidative defense (Tucker et al. 2004).

Potential of pathogenic fungi in HM bioremediation
The question “whether pathogenic microorganisms can 
be utilized for bioremediation purpose” is quite contro-
versial. Nonetheless, there is good experimental evidence 
which implies that both non-pathogenic and pathogenic 
fungi have a good capacity for metal uptake and recov-
ery. In addition, fungi present some features including 
hyphal growth that confer higher competitiveness in a 
general bioremediation process such that fungi grow at 
a faster rate. Also, the production of resilient extracellu-
lar enzymes and acids can contribute to a more efficient 

Fig. 2 A model linking HMs stress and modification of the 
microorganisms pathogenicity. Both fungal and fungal‑like 
pathogens inhabit comparable aquatic and soil habitats. Thus, 
environment pollution, and especially soil or water contamination 
with HMs can significantly affect the pathogens capability to infect 
host organisms
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bioremediation and lead to a more general ability to 
withstand unfavorable environmental conditions (Blasi 
et  al. 2016). Environmental research has shown that 
many fungal species, for example, Trichoderma autro-
viride, T. harzianum, and T. virens as biocontrol agents 
can remediate sites contaminated with HMs. The fungal 
remediation principle is based on the endogenous ability 
of these microorganisms to detoxify metals via biosorp-
tion, bioconcentration, and biotransformation. None-
theless, bioremediation is a complex process influenced 
mainly by pH and temperature, which can determine the 
fungal ability to grow, uptake and store metals (Liu et al. 
2017). Changes in pH can affect the development of fun-
gal colonies. Moreover, suboptimal pH range may reduce 
activity of enzymes involved in HM resistance mecha-
nisms, and lead to either low or high bioavailability of the 
metal (Carrillo-Chávez et  al. 2014; Li et  al. 2019). Like 
with pH variations, temperature fluctuations can signifi-
cantly modify chemistry of toxic elements by reducing or 
increasing their bioavailability and thereby affect fungal 
activity and community structure. For example, a tem-
perature of 30 °C was found congenial for HMs removal 
from a multi metal mixture [containing 6 mg/L of Cu (II), 
Cr (VI), Cd (II), Zn (II) and Ni (II) each] via entomopath-
ogenic fungus Beauveria bassiana. This congenial effect 

was ascribed to increased biomass production which 
provided more metal-binding sites (Gola et al. 2016).

Potential of pathogenic fungal species in bioremedia-
tion of environment contamination with HMs such as Pb, 
Cr, Ni and Ag has been experimentally verified in Fusar-
ium sp., Penicillium sp. and Aspergillus sp. (Iram et  al. 
2013). Also, mycelia of Rhizopus and Absidia are excel-
lent biosorbents for Pb, Cd, Cu and Zn (Volesky 1994). 
However, the use of live microorganisms, especially path-
ogenic ones, in ecological niches may not only be prob-
lematic but also extremely controversial. However, it is 
important to note that mechanisms of HMs biosorption 
also operate in thermally deactivated microorganisms. 
Thus, research on A. flavus showed that thermal inacti-
vated biomass was also suitable for use as a biosorbent to 
remove As (III) from aqueous solution (Maheswari and 
Murugesan 2011). It has also been documented that dead 
fungal biomass of A. niger, R. oryzae, and P. chrysogenum 
can be used to convert toxic Cr (VI) to less toxic or non-
toxic Cr (III) (Park et  al. 2005). Also, the dead biomass 
of F. flocciferum was found to bio-absorb Cu, Cd and Ni 
(Blessy et al. 2015).

Fungi can remediate environmental contamination due 
to HMs or metalloids as well as by polycyclic aromatic 
hydrocarbons (PAHs). Utilization of a heterogeneous 

Fig. 3 A model summarizing the dual effects of pathogen exposure to HMs. Depending on the HM, its dose and exposure time, a toxic or 
hormesis‑like effects can be observed. Black asterisks indicate effects documented in fungi; red asterisks indicate effects documented in oomycetes
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group of microorganisms can be particularly helpful in 
remediating co-contaminated environments that are 
a serious global problem since HMs are also found in 
petroleum-contaminated soils. Thus, F. solani isolated 
from petrol station soil was able to degrade more than 
60% of the supplied pyrene and accumulate significant 
amounts of Cu and Zn (Hong et al. 2010). Fungal sidero-
phores in co-contaminated soil could play an important 
role not only by binding metals other than Fe (III), e.g., 
Cd, Cu, Ni, Pb, Zn, thorium (Th) (IV), uranium (U) (IV), 
and plutonium (Pu) (IV) but also by facilitating the bio-
degradation of petroleum hydrocarbons (Ahmed and 
Holmström 2014; Li et al. 2020). In general, various fun-
gal taxa including Amorphoteca, Neosartorya, Talaromy-
ces, Aspergillus, Fusarium, Paecilomyces, Sporobolomyces, 
Cephalosporium, Penicillium, and Graphium have the 
potential to degrade petroleum hydrocarbons (Li et  al. 
2020). Moreover, fungal strains of clinical origin assimi-
late alkylbenzenes. Exophiala mesophila isolated from a 
patient with chronic sinusitis exhibited positive growth 
on toluene as the sole carbon and energy source similar 
to Cladophialophora immunda which was isolated from 
a contaminated soil (Blasi et al. 2016). The white‐rot fun-
gus P. chrysosporium can degrade an extremely diverse 
range of persistent/or toxic environmental pollutants. 
In turn, polychlorinated biphenyls, which are one of the 
more persistent organopollutants, can be degraded by 
non-ligninolytic enzymes of pathogenic fungi such as F. 
solani, P. chrysogenum and Scedosporium apiospermum 
(Tigini et al. 2009). Finally, fungi produce biosurfactants 
that have high efficiency in removing toxic elements. 
Also, yeast species have been utilized as biosurfactants 
to successfully remove HMs such as Fe, Zn and Pb (Igiri 
et al. 2018). However, such a phenomenon has yet to be 
documented in the filamentous representatives.

HMs as biocontrol agents in fungal disease management
In order to limit the spread of crop diseases different 
types of fungicides are used, including fungicides con-
taining HMs. While the global use of HM-based fungi-
cides contributes to the dispersal of the HMs throughout 
different environmental compartments, their antifungal 
potential is well-documented (Vashistha and Chaund-
hary 2019). The most common HM-based pesticides are 
Cu-based. Plant pathogens controlled by Cu-containing 
fungicides include representatives of oomycetes, e.g. 
Plasmopara viticola, P. infestans, as well as fungi such as 
A. solani and Elsinoë ampelina (Pérez-Rodríguez et  al. 
2013; Keiblinger et  al. 2018; Battiston et  al. 2019). The 
toxicity results from the ability of Cu to precipitate pro-
teins and cause coagulation of the cytoplasm (Milinović 
and Đurović, 2007). Many Cu-containing fungicides are 
prepared using copper hydroxide as the active ingredient 

and may contain as much as 50% Cu metallic equiva-
lent (Poh et al. 2009). The group of HM-based pesticides 
may also contain Mn and Zn as the main components. 
They are widely used to control diseases caused by Phy-
tophthora (Luo et  al. 2020) and Peronospora (Herath 
Mudiyanselage et  al. 2019). The most common Mn/Zn 
fungicides may contain up to 16% Mn and 2% Zn metallic 
element equivalent. Some antifungal products available 
contain even all three elements, e.g. ManKocide® with 
30% Cu, 3% Mn and 0.4% Zn (Poh et al. 2009). It is worth 
emphasizing that Zn is also used to control human fungal 
diseases. Zn-based antifungal compounds such as zinc 
pyrithione are often administered to treat fungal dan-
druff caused by Malassezia spp., and their toxicity results 
from increasing the pathogen cellular zinc uptake (Rob-
inson et al. 2021).

There is abundant evidence that classic HM-based fun-
gicides have a long-term effect on soil fauna and flora. 
The negative effects of their accumulation in soil may 
occur even at low HM concentrations (Keiblinger et  al. 
2018). In view of the above, finding safer and eco-friendly 
alternatives for controlling both fungal and fungal-like 
diseases needs to be a priority. Nanotechnology as an 
emerging research domain can be particularly useful in 
this respect (Sun et al. 2018; Ali et al. 2022). Interestingly, 
different types of nanoparticles such as zinc oxide nano-
particles (ZnO-NPs) are reported to effectively inhibit 
pathogenic bacteria, yeasts and filamentous fungi. A wide 
range of antifungal effects of ZnO-NPs were observed 
against C. albicans, Trichophyton, Microsporum canis, 
mentagrophytes, A. flavus, Sclerotinia homoeocarpa and 
F. oxysporum (Sun et al. 2018).

CONCLUSIONS
Effects of HMs on filamentous eukaryotic pathogens 
are multifaceted. Although HMs adversely target hyphal 
growth, morphology, viability and physiology includ-
ing nitro-oxidative stress, relatively low HM doses may 
benefit the pathogen. It was experimentally verified that 
selected HMs concentrations positively affected growth 
and some developmental events such as sporulation, 
resembling hormetic stimulation (Fig.  3). In addition, 
HM-induced mycotoxin biosynthesis and transcript 
reprogramming might enhance infection capabilities of 
microorganisms. For pathogens hormesis may therefore 
play an important role in their adaptation to a variety 
of host microenvironments that exhibit different sets of 
chemical challenges.

The fact that HM-contaminated environment can 
affect pathogen capability to infect host organisms is 
of particular importance in regard to economically 
important pathogens and thus have an impact on agri-
culture, horticulture and global human health. HMs 
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stress is able to elevate an antioxidant response in fungi 
and oomycetes at both transcript and enzyme activity 
levels. Therefore, it can be speculated that pathogenic 
microorganisms growing in polluted environments are 
primed to oxidative conditions and thereby can cope 
effectively with the host’s oxidative defence once the 
pathogen is recognized. For instance, chronic inde-
pendent exposure of Bryophytes to HMs such as Cd 
and Cu adapts them to polluted environments (Boquete 
et al. 2021). Thus, previous stress history could lead to 
imprints on long-term effects on the organism’s cellu-
lar structure, redox adjustment, bioactive compound 
levels, composition of mineral and epigenetic modifica-
tions. This can then lead to quick and effective response 
to the second stress event (Floryszak-Wieczorek et  al. 
2012; Chmielowska-Bąk and Deckert 2021).

Based on the information presented and discussed 
in this review, the future research focus needs to 
address the following questions: (1) Do HMs promote 
or limit pathogenicity and/or virulence and (2) what is 
the nature of the observed phenomenon? (3) What is 
the transcriptional response to the hormetic action of 
HMs? (4) Considering the huge biotechnological poten-
tial of fungal microorganisms—should research focus 
on those pathogenic fungi that have the potential for 
large scale bioremediation processes? There is a need 
to characterize the chemistry and environmental fates 
of the metabolites produced during fungal bioremedia-
tion. Finally, HMs are transferred from contaminated 
soil or water to animal and human organisms via the 
food chain, thus affecting their natural microbiota. A 
similar effect may be caused by uncontrolled dietary 
supplementation with commercial products contain-
ing essential elements such as Zn, Fe or Mn. (5) Future 
research should therefore focus on the identification 
of the effect of HMs against human and animal micro-
biota. The growing interest in such issues should help 
in broadening our knowledge on HM contamination of 
the microbial environment.
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