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Abstract
Trouble-free operation of motor-driven valves (MDV) is one of the key factors behind the operating safety of NPPs. As 
critical components, MDVs are a part of a safety system and a safety-related system. This imposes the highest possible 
requirements on the MDV reliability.

MDVs are the most numerous category of the NPP components. Depending on design, one power unit contains 1500 to 
3000 motor-driven valves alone. It follows from an analysis of the NPP failures that many of these are caused by failed 
motor-driven valves of safety and safety-related systems.

The paper presents a description of an automated system for diagnostics of shutoff and control MDVs used in the 
NPP pipelines. The developed diagnostic algorithms make it possible to take into account the variability of the MDV 
technical parameters, while taking into account, at the same time, rated restrictions on diagnostic parameters, if any.
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Introduction

In the process of operation, MDVs are exposed to impacts 
from a large number of factors, infrequently of a random 
nature, e.g. variation of the fluid and environment para-
meters. The higher is the variation of the technical condi-
tion parameters, the less efficient are the maintenance and 
repair routine charts, since, in this case, there is always a 

factor of uncertainty regarding the technical condition of 
the respective item. Therefore, despite regular preventive 
maintenance activities, not all MDV defects can be detec-
ted on a timely basis.

The paper presents a diagnostic system which 
allows fully automated online diagnostics of MDVs at 
early stages of the failure development. The developed 
diagnostic algorithms make it possible to take into account 
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the variability of the MDV technical parameters and rated 
limits for diagnostic parameters if any. An overview of 
the typical MDV failures is provided in (Adamenkov 
2009, Slepov and Sysoyev 2014).

Terms and definitions

The paper uses the terms as specified in methodology (MT 
1.2.3.02.999.0085-2010) “Diagnostics of Motor-driven Pi-
peline Valves.” approved and put into effect by JSC Concern 
Rosenergoatom’s Order No. 9/270-17, dated 27.03.2012.

Methodology (MT 1.2.3.02.999.0085-2010) defines the 
requirements to the content and organization of activities 
to evaluate the technical condition of motor-driven shutoff, 
shutoff and control, and control valves installed in the process 
systems of NPP units using diagnostic tools and methods.

The methodology’s requirements apply to valves of 
safety class 2, 3 and 4, as qualified in NP-001-97 (PNAE 
G-01-011-97), and of groups B and C under PNAE G-7-
008-89 developed as required in NP-068-05, OTT-87, as 
well as developed prior to OTT-87 was put into effect.

According to (MT 1.2.3.02.999.0085-2010), the paper 
uses the following terms with respective definitions:

•	 active power – a quantity equal to the root-mean-
square value of the dipole instantaneous power for a 
particular period (GOST R 52003);

•	 diagnostic (monitored) parameter – a parameter of 
the item used for its diagnostics (GOST 20911);

•	 cyclogram – a time series (current, voltage, active 
power, etc.) which describes one MDV opening or 
closing cycle.

Description of the diagnostic 
algorithm
Initial data

The experience of the MDV operation and an analysis of 
the electrical machine failures show that the motor current 
and/or active power signal measured for one or three pha-
ses is informative enough for identifying the technical con-
dition type (serviceability evaluation) for the CHP plant or 
NPP unit process system valves (MT 1.2.3.02.999.0085-
20103). The recorded information for the calculation of 
diagnostic parameters is electrical parameters of the mo-
tor stator winding current and voltage.

The motor (three-phase) stator winding and limit 
switch current and voltage signals are recorded in real 
time by measuring modules in the cabinets of the unilat-
eral-maintenance three-phase distribution assembly for 
gate valves (RTZO) to the database of the data acquisition 
system. The architecture of the data acquisition system is 
described in (Matveyev et al. 2009).

The MDV diagnostics based on signals of the motor 
current consumed in the process of the opening and clos-

ing operations is considered (Matveyev and Skladnikov 
2009a, 2009b, Abidova et al. 2015).

Active power cyclogram

The active power cyclogram calculated based on the cur-
rent and voltage signals using the formula below plays the 
key role in diagnostics of failures

1( ) ( )· ( )
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P t u i d

T
�

� � τ τ τ,	 (1)

where Т is the carrier frequency period (50 Hz); and u(τ), 
i(τ) are the instantaneous voltage and current values at 
time τ respectively. An example of the active power cy-
clogram is provided in Fig. 1.

Further, diagnostic signs are identified in the active 
power cyclograms based on which a conclusion is made 
as to if there is a defect.

Diagnostic system operation algorithm

The diagnostic system operation algorithm is presented 
in Fig. 2.

Figure 1. Active power cyclogram.

Figure 2. Diagnostic system operation algorithm.
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Procedures to obtain diagnostic 
signs
Segmentation of the active power signal

The key idea behind the proposed approach is segmen-
tation of the active power cyclogram with the diagnostic 
signs identified further by segments (Fig. 3).

A distinctive feature of this approach is that segmen-
tation is fully automatic and uses a pretrained neural net-
work of the U-Time type (Perslev et al. 2019) (a convo-
lution network adapted for segmentation of time series 
and built based on the encoder/decoder principle using 
skip-connections, that is, components which connect the 
decoder and encoder parts in each scale). Such description 
of the network architecture and the evidences to prove its 
efficiency as applied to segmentation of the active power 
signal are presented in (Kotsoyev et al. 2021).

For each time point of the active power cyclogram, 
the neural network predicts the probability of any given 
segment. Therefore, one can state after a set of the active 
power cyclogram points is selected, the probability of a 
segment for which is close to unity (e.g., of over 0.95), 
that these points relate to the selected segment and define 
its boundaries (Fig. 4).

The neural network is trained on a large array of MDV 
signals (cyclograms), not necessarily for any particular 
type of valves, both based on opening and closing signals, 
and on shutoff and control MDVs. The so trained neural 

network is capable to segment any “relatively similar” 
MDV signal.

In the process of training, the entire array of training data 
is broken down into data properly, on which the training is 
based, (training sample) and data for checking the quality 
of the trained network operation (validation sample).

As shown in (Kotsoyev et al. 2021), the network trained 
based on a training sample of 500 cyclograms identifies 
segments based on a validation sample (150 cyclograms) 
correctly in the following percentage ratios:

•	 segment 1: 98.28%;
•	 segment 2: 92.60%;
•	 segment 3: 99.73%;
•	 segment 4: 71.65%.

Therefore, the neural network training shall not neces-
sarily be undertaken each time for each particular MDV. 
Training based on a large set of ‘similar’ data is enough, 
and it is also possible to use an earlier trained network. 
With an unsatisfactory quality of segmentation, the net-
work should be trained additionally on the signals of the 
given MDV.

Identifying the set of diagnostic signs

A set of diagnostic signs is identified for each segment. 
Information calculated based on current signals (by pha-
ses) and Fourier spectra from active power and current 
signals are used along with the active power signal.

The results in (MT 1.2.3.02.999.0085-2010, Abidova 
et al. 2016b) were taken into account when determining 
the set of diagnostic signs.

According to (MT 1.2.3.02.999.0085-2010), the fol-
lowing characteristics are extracted from the cyclogram 
in the process of the MDV diagnostics:

•	 opening (closing) operation runtime, s;
•	 difference in the opening and closing time, absolute 

(sec) and relative (%);
•	 opening (closing) gate moving current, A;
•	 opening (closing) gate moving power, kW;
•	 opening (closing) gate moving time, s;
•	 ratio of the startup current value to the working cur-

rent value (the startup power value to the working 
power value) in the opening (closing) moving;

•	 ratio of the gate shift current (power) to the working 
current (power) in the course of the opening operation;

•	 ratio of the gate sealing current (power) to the work-
ing current (power) in the course of the closing op-
eration;

•	 gate shift smoothness in terms of the current signal 
(active power signal) during opening (closing);

•	 coefficient of divergence in the current (active pow-
er) values in the limits of the opening and closing 
operation runtime boundaries;

•	 motor startup time interval, s;
•	 shutoff gate sealing time during closing, s;

Figure 3. Segmentation of an active power cyclogram: 1 – mo-
tor start (roll); 2 – gate shift (for opening); 3 – gate moving; 4 
– gate sealing (for closing).

Figure 4. Result of the active power cyclogram segmentation. 
The probability of each segment p(segm. N), N ∈ [1, 4] has been 
obtained by a neural network.
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•	 motor shutdown time at the opening and closing op-
eration end, s;

•	 shutoff valve gate shift time during opening oper-
ation, s;

•	 working current (voltage) asymmetry in phases A, 
B and C;

•	 amplitude of the harmonic matching the motor out-
put shaft speed.

The above diagnostic signs are identified by segments (its 
own set of diagnostic signs is prepared for each segment).

Stochastic characteristics of cyclograms (such as entro-
py) were investigated in (Abidova et al. 2016b) depending 
on the extent of the defect manifestation. The connection 
of Shannon entropy to the MDV state was shown theoret-
ically in (Abidova et al. 2016b) and a higher sensitivity of 
Shannon entropy with respect to individual defect types 
was shown.

In this connection, such characteristics as Shannon entro-
py and interchange entropy were selected as diagnostic signs 
(in addition to those listed above) (Abidova et al. 2016a).

Both entropies characterize the variability of the pro-
cess. Additional harmonics occur in the signal and the 
variability grows as the item condition deteriorates. The 
Shannon entropy increases and the interchange entropy 
decreases as the variability grows (Chumak 2011).

A connection is shown in (Khegay 2017) between the 
entropy indicators and the nature of the MDV failure 
(electrical or mechanical component failure).

The following diagnostic signs were calculated for 
each segment.

Segment 1 (motor start and roll):

•	 peak width at half height;
•	 segment maximum;
•	 sum of squared deviations from the rising edge lin-

ear regression.

Segment 2 (shutoff valve gate shift, for opening):

•	 peak width at half height;
•	 segment maximum.

Segment 3 (damper movement):

•	 average distance between the upper envelope and 
the lower envelope (for maximums and minimums) 
in terms of active power;

•	 spectral entropy;
•	 Shannon entropy;
•	 interchange entropy;
•	 working current value by phases;
•	 working current asymmetry;
•	 gate moving smoothness (for current) by phases (for 

envelope, Hilbert);
•	 current smoothness difference by phases;
•	 spectrum amplitude.

Segment 4 (gate sealing, for closing):

•	 segment maximum;
•	 slope angle (linear regression);
•	 sum of squared deviations from the segment linear 

regression;
•	 distance between the maximum and the minimum.
•	 Shared characteristics according to the cyclogram:
•	 ratio of startup power to gate moving power;
•	 ratio of crack power to gate moving power;
•	 ratio of gate sealing power to gate moving power;
•	 ratio of startup current to gate moving current;
•	 ratio of crack current to gate moving current;
•	 valve final action time;
•	 crack detector;
•	 gate sealing detector.

This set of diagnostic signs is not final and may be 
changed by the operator (the operator is in a position to 
decide that any of the signs are insignificant for diagnos-
tics of the given MDV or ‘switch’ them off).

Permissible boundaries of diagnostic signs

With a database available for the particular MDV, the 
trained neural network segments each cyclogram and di-
agnostic signs are identified further by segments. Assu-
ming that most opening and closing operations take place 
normally (there are no multiple critical failures and the 
valves are in operation on the whole), it becomes possible 
to determine the permissible intervals for each diagnostic 
sign based on the accumulated statistics (using 0.25-quan-
tile Q1 and 0.75-quantile Q3, Fig. 5). Single ‘defective’ 
actuations are screened off automatically.

The diagnostic system includes a manual mode of de-
fining tolerances for diagnostic signs which is important 
with no sufficient statistical data when these boundaries 

Figure 5. Quantiles of distribution obtained for each diagnostic 
sign.
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are fixed in the MDV datasheet. The operator is in a posi-
tion to define the permissible intervals manually and then 
choose the operating mode: statistics alone, statistics with 
manual limits, or manual limits alone (e.g., the valves are 
new and there is no statistics so far).

The cyclograms, the diagnostic signs for which are be-
yond the permissible intervals, are identified as a ‘defect’.

An example of determining the permissible intervals 
based on statistics is given in Fig. 6 for the diagnostic sign 
“gate moving smoothness for phase С”. The diagnostic sign 
“gate moving smoothness”, γ, is calculated for segment 3 as

max min1 ·100%
med

I Iγ
I

� ��
� �� �
� �

,	 (2)

where Imax, Imin, Imed are the greatest, the smallest and the 
median values of the signal current envelope.

According to (MT 1.2.3.02.999.0085-2010), value γ of 
below 75% is treated as a fault condition.

Cyclogram analysis and diagnosis generation

After the permissible intervals are determined for diag-
nostic signs, the diagnostic system is capable to generate 
the diagnosis for each particular cyclogram.

Diagnosis is made in accordance with Appendix P to 
Methodology (MT 1.2.3.02.999.0085-2010). The appen-
dix lists the potential defects for each MDV component 
and describes how the defect manifests itself through the 
cyclogram characteristics.

The neural system segments the cyclogram obtained 
and identifies the diagnostic signs by segments. If all of 
the identified signs are within the permissible intervals, 
such signal is defined as “normal”. If one or more signs 
are outside the permissible limits, the “failure” is detected 
and the identified failure and the potential MDV defect 
are compared in accordance with (MT 1.2.3.02.999.0085-
2010) (Table 1).

Taking into account that several signs can simultane-
ously indicate to the same failure (e.g., being simultane-
ously outside the permissible boundaries are the follow-
ing signs for segment 3: “working current asymmetry”, 
“gate moving smoothness (in terms of current) for phases 
(for envelope, Hilbert)”, “spectrum amplitude”, or for 
segment 4: “segment maximum”, “distance between 
maximum and minimum”, which indicate the same defect 
(“No sufficient lubricant or lubricant contamination in the 
motor drive gear box”), the notion of defect “repeatabili-
ty” was introduced. The defect repeatability is the higher, 
the larger is the number of signs which indicate the given 
defect (among the overall number of signs being outside 
the permissible limits).

An example of the diagnostic system display is given 
in Table 2.

Conclusions

A prototype of the automated MDV failure detection sys-
tem has been developed and deployed.

The developed system allows rapid online diagnostics 
of the MDV operation which increases greatly the prob-
ability of defects to be detected at early stages without 

Table 1. Example of comparing the cyclogram characteristics and diagnostic signs

Defect Manifestation in cyclogram Diagnostic signs

Motor output 
shaft beat

Opening/closing takes more time than rated Shared characteristics according to cyclogram: valve final action time
Gate moving smoothness less than normal (equal 
in all three phases)

Segment 3: gate moving smoothness (in terms of current) for phases 
(for envelope, Hilbert); current smoothness difference for phases

No sufficient 
lubricant or 
lubricant 
contamination in 
the motor drive 
gear box

Gate moving smoothness less than normal (equal 
in all three phases) Segment 3: working current asymmetry; gate moving smoothness (in 

terms of current) for phases (for envelope, Hilbert); spectrum amplitude
High torque during valve closing

Startup current much in excess of working current Shared characteristics according to cyclorgam: ratio of startup current 
to gate moving current; valve final action time

Opening/closing takes more time than rated Segment 4: segment maximum; distance between maximum and 
minimumMotor high-load operation

Motor winding 
damage (defects)

Working current and voltage asymmetry in phases 
(phase unbalance over 10%) Segment 3: working current asymmetry

Motor 
malfunctions

Startup current much in excess of working current Segment 1: peak width at half height; segment maximum; sum of 
squared deviations from rising edge linear regressionLong motor starting time

Working current greater than rated Segment 3: working current value for phases

Opening/closing takes more time than rated Shared characteristics according to cyclogram: ratio of startup current 
to gate moving current; valve final action time

Figure 6. Diagnostic sign “gate moving smoothness for phase С”: 
a) – histogram, x0 = 75.32 and x1 = 88.06 – left-hand and right-hand 
permissible boundaries for quantiles; b) – diagnostic sign value 
based on the closing cycle statistics for one and the same MDV.
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waiting for critical failures, to make it possible to update 
the equipment repair schedules and reduce the repair 
costs, and to avoid sudden breakdown of equipment.

The system allows flexibility of adjustment for the giv-
en MDV type, and makes it possible to take into account 

both rated limits for the valve parameters and the fluid 
effects in the NPP piping. The operator can define his/her 
own set of diagnostic signs which describe as fully and 
accurately as possible the operation of the given MDV.

Automation of the segmentation process excludes the 
human factor effects and makes it possible to analyze the 
statistics of the MDV actuations, find trends in the diag-
nostic sign changes and predict the deterioration in the 
valve condition.

The aforesaid allows increasing greatly the reliability 
of the MDV failure detection and making the diagnostics 
fuller and more target-focused.

As a result of testing the operation of the developed 
diagnostic system, the listed valve failures coincided with 
the listed malfunctions identified as part of the offline di-
agnostics for the Integrated Valve Diagnostic System in-
stalled at unit 6 of the Novovoronezh NPP.
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