An updated herpetofaunal species inventory of Iona National Park in southwestern Angola

Javier Lobón-Rovira1,2,3*, Pedro Vaz Pinto1,3,4,5, François S. Becker6, Krystal A. Tolley7,8, John Measey9, Bruce Bennet10, Bastiaan Boon10, Sango de Sá10,11, Werner Conradie12,13

1 Centro de Investigação em Biodiversidade e Recursos Genéticos (CIBIO), InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, Vairão, Portugal • JLR: j.lobon.rovira@cibio.up.pt • PVP: p.vazpinto@cibio.up.pt
2 Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
3 BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, Vairão, Portugal
4 Fundação Kissama, Lar do Patriota, Luanda, Angola
5 TwinLab CIBIO/ISCED, Instituto Superior de Ciências da Educação da Huila, Lubango, Angola
6 National Museum of Namibia, Windhoek, Namibia • phrogbecker@gmail.com • P: 0000-0003-3874-9183
7 South African National Biodiversity Institute, Kirstenbosch Research Centre, Cape Town, South Africa • k.tolley@sanbi.org.za • P: 0000-0002-7778-1963
8 Centre for Ecological Genomics and Wildlife Conservation, University of Johannesburg, Johannesburg, South Africa
9 Centre for Invasion Biology, Department of Botany and Zoology, Stellenbosch University, Stellenbosch, Western Cape, South Africa • jmeasey@sun.ac.za • P: 0000-0001-9939-7615
10 African Parks, Johannesburg, South Africa
11 Instituto Nacional da Biodiversidade e Conservação (INBC), Ministério da Cultura, Turismo e Ambiente da República de Angola, Luanda, Angola
12 Port Elizabeth Museum (Bayworld), Humewood, South Africa • werner@bayworld.co.za • P: 0000-0003-0805-9683
13 Department of Nature Conservation Management, Natural Resource Science and Management Cluster, Faculty of Science, George Campus, Nelson Mandela University, George, South Africa

* Corresponding author

Abstract
Angola has experienced an incredible increase of the knowledge of its herpetofauna over the past decade. However, accurate biodiversity inventories remain deficient for certain regions of particular conservation interest. We therefore provide an updated checklist of Iona National Park’s herpetofauna, with 75 recorded species, including five amphibians and 70 reptiles, 40 of these recorded for the first time in Iona National Park. These species comprise ~80% of the reptile diversity of Namibe Province. Therefore, this work recognises Iona National Park as the most reptile-diverse protected area in Angola and is potentially one of the richest in southern Africa. Consequently, this work enhances the importance of specific conservation plans in the area and the need for further investigation into the hidden biodiversity of this region.

Keywords
Amphibians, biodiversity, checklist, conservation, molecular, reptiles

© The authors. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

With a resurgence of Angolan herpetological research in the last decade, there has been a remarkable increase in knowledge of the herpetofauna, with the addition of numerous new country occurrence records (Branch and Conradie 2013; Conradie and Bourquin 2013; Ernst et al. 2014, 2015; Branch et al. 2019a; Conradie et al. 2020a), the rediscovery of species (Vaz Pinto et al. 2019; Baptista et al. 2020), and the description of 33 new species (Conradie et al. 2012a, 2012b, 2013, 2020b; Stanley et al. 2016; Ceríaco et al. 2018a, 2020a, 2020b, 2020c, 2021; Marques et al. 2019a, 2019b, 2020, 2022; Branch et al. 2019b, 2021; Hallerman et al. 2020; Nielsen et al. 2020; Lobon-Rovira et al. 2021; Parrinha et al. 2021; Baptista et al. 2021; Wagner et al. 2021). This renaissance of knowledge came about only after the improvement in political and social stability that followed more than two decades of civil war (Huntley and Ferrand 2019). Little scientific exploration prior to this period resulted in a significant lack of foundational information and has left many regions unexplored. In order to address these shortcomings, national inventories have been published to help summarise all the historical materials from Angola (Branch 2018; Marques et al. 2018; Baptista et al. 2019b; Branch et al. 2019c) and have set the foundation for future herpetological work. Several formal conservation areas, including national parks and reserves, have been the focus of herpetological surveys in the last decade (Ceríaco et al. 2014, 2016a, 2018b; Conradie et al. 2016, 2021; Butler et al. 2019; Baptista et al. 2019a; Ernst et al. 2020). The rapid improvement of our knowledge of Angolan herpetofauna, especially the number of new species descriptions, highlights the need to re-evaluate estimates of biodiversity richness across the country (Baptista et al. 2019a).

Iona National Park (hereafter Iona NP) is located in south-western Angola and is one of the largest protected areas in the country (Fig. 1A). Its biodiversity importance is well recognized internationally, and as a result it was incorporated into the Iona-Skeleton Coast Transfrontier Conservation Area—one of the largest transboundary conservation areas in Africa (Mason et al. 2020), comprising a diverse array of desert landscapes across a dramatic topographic gradient. Numerous herpetologists have visited the region in recent years, and this has led to the description of five new species from the park and immediate surroundings (Haacke 2008; Conradie et al. 2012b; Branch et al. 2021; Parrinha et al. 2021) and the documentation of several range restricted species, such as Pachydyactylus scutatus Hewitt 1927, P. rangei (Andersson, 1908), P. vanzyl i (Steyn & Haacke, 1966), and Lygodactylus lawrencei Hewitt 1927. To date, 37 herpetofaunal species (within four amphibian and 15 reptile genera) are documented to occur in extreme southwestern Angola including both Iona NP and surrounds, which includes the Namibe Partial Reserve to the north (Ceríaco et al. 2016a). More broadly, 14 species of amphibians and over 95 species of terrestrial reptiles have been recorded for the entirety of Namibe Province (Marques et al. 2018), which includes Iona NP. The entire province covers a fairly large area and is heterogeneous for vegetation, substrate, and topography, whereas Iona NP is characterised by a desert biome. While these broader geographic checklists of species are available, a concise herpetological checklist for Iona NP has never been published.

In this paper, we provide the results of numerous recent expeditions which have added greatly to the knowledge of species distributions, habitat, and taxonomy within the Iona NP and surrounding areas. A comprehensive species inventory for Iona NP is key to conserving its unique biodiversity, against the backdrop of massive global biodiversity loss (Faith and Walker 2002; Salerno et al. 2021). We summarize all previous herpetofaunal knowledge from Iona NP and report on records collected from four recent unpublished surveys. We also include historical materials from the Transvaal Museum (TM) collected by Wulf Haacke and Charles Koch between the early 1950s to late 1970s from Iona NP that have never been published. We update taxonomic changes to provide the most up to date species inventory and highlight some species groups for further systematic revision. This summary of knowledge can be used to inform national and international policy regarding the regional biodiversity.

Study Area

Iona NP was established as a Game Reserve in 1937 and elevated to National Park status in 1957 (Ministério do Ambiente 2018). The park covers approximately 15,150 km² and is located in southwestern Angola, in Namibe Province, south of 15.75°S. The park is bounded by the Southern Atlantic Ocean to the west and the Cunene River to the south, while the Curoca River drainage and a few mountain ridges form the northern and eastern boundaries (Fig. 1A). The local climate is greatly influenced by the cold Benguela upwelling, which has shaped the evolution of the Namib Desert (Huntley 2019). Ecological zoning defined four main zones in Iona NP, namely from west to east (from the coast moving inland): a narrow belt of coastal dunes and beaches under a permanent South Atlantic Ocean influence (here referred to as coastal desert); a sand sea formed by continuous dunes, ~45 km wide in the northwest narrowing to <10 km toward the Cunene River mouth in the south (here referred to as dunes sea); an extensive gravel and sand plain interspersed with rocky outcrops and dry valleys (here referred to as central plain); mountains and steep escarpment ridges in the easternmost region (here referred to as mountain region) (Fig. 2). The topography ranges from sea level in the west to elevations greater than 2000 m above sea level (a.s.l.) at the highest peaks in the east. The habitats are varied, ranging from very sparse vegetation and bushes in the drier western areas.
that are abundant in succulent plants and also features the iconic *Welwitschia mirabilis* Hooker 1863, to spiny savanna and mopane woodlands in the eastern regions. The heterogeneous geography and habitats of this arid region contribute to the remarkable herpetological diversity present in the park.

The main study area is bounded by the formal boundaries of Iona NP, but we also included a buffer zone of 10 km to the north and east. This allowed the inclusion of records from fairly densely sampled areas outside the park but close to the park boundary from habitats that are contiguous with the park. Records from more than 10 km from the park boundary or from neighbouring Namibia were not included in our summary.

Methods

Sampling. The new material included in this summary was collected during four major herpetological expeditions conducted from 2009–2021, supplemented with shorter opportunistic visits to the park during this same period. The first expedition was carried out in January 2009 as part of the Angolan Biodiversity Assessment and Capacity Building Project. During that expedition, the team visited the plateau of Humpata and nearby escarpment and the coastal regions from Moçâmedes south to Foz do Cunene, including Iona NP. Three additional expeditions were carried out between March and August of 2021. In March 2021, the team surveyed...
most regions of the park with the exception of the western highlands. During this survey, five different sites were surveyed between two and three days at each (Fig. 1A). The second expedition (May 2021) took place on or near the summits of two of the highest mountains in Iona NP, Serra Cafema and Tchamalindi. The elevational range surveyed was 1400–1750 m a.s.l. on Tchamalindi and 1850–2050 m. a.s.l. at Serra Cafema. A third expedition was conducted in August 2021, specifically focusing on remote sites not previously surveyed and targeting unreported species or taxonomically challenging taxa (Fig. 1A). Opportunistic data were also collected during and in between surveys, mostly since 2019. Photographs were taken of most species observed and tissue samples or vouchers were collected from some specimens that may represent new species or may constitute significant geographical range extensions.

Consequently, more than 50 sampling sites have been visited within Iona NP and 15 more in the surrounding 10 km buffer zone. Geographic coordinates were recorded for every record using the WGS84 system. Historical records often lack precise location data and except in cases where the collecting data is too vague, we here provide approximate coordinates, but refrain from adding elevation. Tissues samples were stored in 99% ethanol, and vouchers were fixed in 10% formalin or 96% ethanol and then transferred to 70% ethanol for long-term storage at Port Elizabeth Museum (PEM), South Africa or Coleção Herpetologica do Lubango (CHL) and Fundação Kissama (FKH), Angola. Where possible the breeding calls of amphibians were recorded with Ronald r-07 Handheld Recorder, and sonograms were obtained and processed with Raven v. 1.6.1 (The Cornell Lab of Ornithology, available at https://ravensoundsoftware.com). All amphibian calls recorded have been deposited in FonoZoo (http://www.fonozoo.com) at Museo Nacional de Ciencias Naturales, Spain.

Species identification. Individuals recorded from Iona NP were identified to species level based on external morphological characters detailed in published guides (Branch 1998; du Preez and Carruthers 2017; Channing and Rödel 2019; Chippaux and Jackson 2019). For identifications that were uncertain using only morphological features, a DNA barcoding approach was used to aid in the identification (described below). For records that were based only on sight observations (including undocumented “catch and release”), the best estimate of identification was made in the field, and in cases of uncertainty these records were flagged as either “cf.” (to be compared with), “aff.” (similar to) or “sp.” (not known), following (Sigovini et al. 2016).

In addition to these new survey data, distributional information from existing herpetological records were retrieved from the literature (Ceríaco et al. 2016a; Branch et al. 2017; Marques et al. 2018; Baptista et al. 2019; Marques et al. 2020; Branch et al. 2019). After consolidation of new and existing records, all new records were examined to assess whether they represented new additions to the known range.

DNA sequencing. We generated 16S rRNA sequences for those specimens where species level identification could not be confirmed using morphological traits. Total genomic DNA was extracted using EasySpin Genomic DNA Tissue Kit, following the manufacturer’s protocols. The two genes were amplified using PCR with the following primers (16Sα and 16Sβ; Palumbi et al. 1991). The PCR reactions were carried out in 10 µl volumes containing 1.5 µl of 25 ng/µl genomic DNA, 5 µl QIAGEN PCR MasterMix, and 0.4 µM of each primer. Thermal cycling was run with initial denaturation for 15 min at 95 °C followed by: 40 cycles with denaturation for 30 s at 95 °C, annealing for 35 s at 52 °C, extension for 45 s at 72 °C, and final extension for 10 min at 60 °C. PCR products were run on a 1% agarose gel and visualized under a UV light to verify amplification. Amplicons were sequenced using the forward primers on an ABI 3130xl Genetic Analyzer (Applied Biosystems, Foster City, California, USA) at Centre for Molecular Analysis (CTM, CIBIO–InBio). All sequences were checked and edited using GENEIOUS Prime v. 2021.1.1 (http://www.geneious.com) and aligned using the MUSCLE plugin for GENEIOUS. To aid in species level identification, sequences were compared to the nucleotide database available in GenBank using the BLAST algorithm (https://blast.ncbi.nlm.nih.gov/Blast.cgi; Altschul et al. 1997), with the nblast default parameters. This retrieved the most similar homologous sequences available in the online database. Once identifications had been made, intraspecific variation was assessed through estimates of uncorrected pairwise sequence distance (p-distance) for 16S in MEGA v. 10.1.7 (Table S2). All sequences have been deposited in GenBank, and the accession numbers are provided in the species accounts below.

Results

We recorded a total of 75 species, representing five amphibian and 70 reptile species (five testudines, one crocodile, 48 lizards, 16 snakes; Table 1). Records occurred across all four of the main ecological zones within the park (Fig. 1A), although most species were recorded from the central plains (40 spp.) and eastern mountains (37 spp.), compared to the dune sea (5 spp.) and coastal desert (2 spp.) (Table 1; Fig. 1B). However, some species, such as amphibians, marine turtles, crocodiles, or water monitors could not be associated with any of these ecocological zones because of their aquatic habits (Table 1). Although most of the species were collected during the four main surveys, seven species (Phrynobatrachus natalensis (Smith, 1849), Stygmocheilis pardalis (Bell, 1828), Pelomedusa subrufa (Bonnaterre, 1789), Rhoptropus afer Peter, 1869, Typhlacontias johnsonii Andersson, 1916, Psammophis leopoldinus Bocage, 1887, Psammophis trigrammus Günther, 1865) have only been confirmed for
Tables 1. Species which have been recorded from Iona National Park and the 10-km buffer zone around the park, including localities [tabulated according to the four main ecological zones coded as follows: CD (coastal desert), DS (dune sea), CP (central plains) and MR (mountain region)] and dates, including information from previous reports [codes listed below read as follow: OV (opportunistic visits) and HS (historical surveys and literature). “x” denotes reptile and amphibian species recorded from that ecological zone or survey, while “N/A” denotes species that were not included in any zone because their aquatic habitat.

<table>
<thead>
<tr>
<th>Order</th>
<th>Family</th>
<th>Scientific name</th>
<th>CD</th>
<th>DS</th>
<th>CP</th>
<th>MR</th>
<th>Jan-09</th>
<th>Mar-21</th>
<th>May-21</th>
<th>Aug-21</th>
<th>Other recent surveys</th>
<th>Other sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amphibia</td>
<td>Bufonidae</td>
<td>Sclerophrys pusilla</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td>Ceríaco et al. 2016</td>
<td>HS</td>
</tr>
<tr>
<td></td>
<td>Pyxicephalidae</td>
<td>Tomopterna tuberosa</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tomopterna ahli</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Microhylidae</td>
<td>Phrynomantis anniceps</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phrynobatracidae</td>
<td>Phrynobatrachus natalensis</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Testudines</td>
<td>Cheloniidae</td>
<td>Chelonia mydas</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Leptochelys olivacea</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trionychidae</td>
<td>Trionyx triangulatus</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Testudinidae</td>
<td>Stigmochelys paradoxus</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pelomedusidae</td>
<td>Pelomedusa subulata</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crocodylia</td>
<td>Crocodylidae</td>
<td>Crocodylus niloticus</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>N/A</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Squamata</td>
<td>Gekkonidae</td>
<td>Afroedura daweae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condrodactylus lewisi</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condrodactylus fitzimoni</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Condrodactylus pulizoeae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Hemicauda fulkennensis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Kiekanos plumasius</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lysodactylus lawrencei</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Lysodactylus nyanyeka</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus caraculius</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus cf. onopholus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus cf. punctatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus raneri</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus rugosus</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus susitit</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Pachydactylus vanzyl</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhoptropus bantaril</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhoptropus boletini</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhoptropus afer</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rhoptropus sp.</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lacertidae</td>
<td>Merosa anchietae</td>
<td>Merosa anchietae</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merosa reticulatus</td>
<td>Merosa reticulatus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedioplanis serodioi</td>
<td>Pedioplanis serodioi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedioplanis haackei</td>
<td>Pedioplanis haackei</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pedioplanis huntleyi</td>
<td>Pedioplanis huntleyi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cordyliidae</td>
<td>Corpaxus namakuyais</td>
<td>Corpaxus namakuyais</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Genhosauridae</td>
<td>Corpaxus subborellus</td>
<td>Corpaxus subborellus</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Genhosaurus skoigi</td>
<td>Genhosaurus skoigi</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Matobosaurus meltzahni</td>
<td>Matobosaurus meltzahni</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Scincidae</td>
<td>Panaspis mocamedensis</td>
<td>Panaspis mocamedensis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis acutibarbis</td>
<td>Trachylepis acutibarbis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis sp.</td>
<td>Trachylepis sp.</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis binitata</td>
<td>Trachylepis binitata</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis boucheri</td>
<td>Trachylepis boucheri</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis occidentis</td>
<td>Trachylepis occidentis</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis cf. chimbara</td>
<td>Trachylepis cf. chimbara</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis laevis</td>
<td>Trachylepis laevis</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis punctulata</td>
<td>Trachylepis punctulata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Trachylepis sulcata</td>
<td>Trachylepis sulcata</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typhacontias punctatusimus</td>
<td>Typhacontias punctatusimus</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Typhacontias johnston</td>
<td>Typhacontias johnston</td>
<td>x</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Iona NP based on historical materials and previous bibliography records (Table 1). Below we provide a brief summary of each species' distribution, identification, biology, and material available. Other new surveys not listed above (since 2010) are cited where relevant, but those materials are not listed here as they are listed in their respective published works. Ditsong Museum of Natural History (formerly TM) material is listed here because it was not included in previous works. Museum accession numbers for material collected are given for each species as follow: PEM = Port Elizabeth Museum, TM = Ditsong Museum of Natural History, FKH = Fundação Kissama. For other codes (tissue samples) listed below, see Table S1.

Amphibia

Bufonidae

Sclerophrys pusilla (Mertens, 1937)

*Material examined.** ANGOLA – Namibe Province • Quedas do Montenegro; −16.9968, 013.2480; 596 m a.s.l.; FKH 0673, FKH 0674; GenBank: ON006587, ON006588.

Identification. *Sclerophrys pusilla* is a large toad (SVL 80 mm) with flattened parotid glands, sharp snout profile, and the absence of any red markings on the posterior surface of the legs (du Preez and Carruthers 2017). The morphological identification was confirmed genetically. DNA sequences of these specimens are very similar (~0.2% 16S p-distance) to a previously sequenced specimen of *S. pusilla* from Cacuchi River, Angola (GenBank accession: KT862862).

Biology and distribution. This species is often associated with shallow, static, or slow-moving rivers with variety of vegetation types in lowveld grassland and savannas of Sub-Saharan Africa (du Preez and Carruthers 2017). In Angola, the species is widely distributed (Marques et al. 2018); however, it had not been recorded previously from Iona NP.

Pyxicephalidae

Tomopterna ahli (Deckert, 1938)

*Material examined.** ANGOLA – Namibe Province • Humbe Valley; −16.9996, 012.5443; 876 m a.s.l.; 2♂ and 1♀, FKH 0821–0823; GenBank: ON006589, ON006590 • Caiyonona Spring; −16.9079, 012.5787; 899 m a.s.l.; 6 Metamorphs, PEM A09157, PEM A09159–63.

Identification. Moderate size frog (SVL ~35.6 mm), with robust body and short head. Dorsal pattern consists of green or brown blotches with black and golden warts on pale beige background. Many *Tomopterna* species are very difficult to identify morphologically and thus we rely on genetics and calls for proper identification. Specimens from Humbe were identified genetically and are very similar (<1% 16S p-distance) to a previously published record from Namibia (GenBank accession: MN104601) (Table S2). *Tomopterna damarana* was until recently considered to be part of the *T. cryptotis* (Boulenger, 1907) complex; however, a recent taxonomic revision showed that *T. ahli* is in fact, a senior synonym of *T. damarana* (Channing and Becker 2019).

Biology and distribution. *Tomopterna ahli* is a medium-sized (SVL 35 mm) sand frog that is associated with arid woodlands and savanna (du Preez and Carruthers 2017 as *T. damarana*). This species had been reported along the borders of Iona NP at Pediva springs (Ceríaco et al. 2016).
Check List 18 (2)

Figure 3. Amphibians from Iona National Park, with sonograms of breeding calls where available. A. Sclerophrys pusilla. B. Tomopterna ahl (graphic sonogram). C. Tomopterna tuberculosa. D. Phrynomantis annectens (graphic sonogram). Photographs by PVP (A, C) and JLR (B, D).

al. 2016a) and at Epupa Falls, Namibia (Heinicke et al. 2017). Some individuals were found actively calling or in amplexus in the evening after a rainstorm created temporary pools in semi-open areas among acacias and succulent plants (Cyphostemma uter, Aloe spp.) in the lower part of the westernmost mountains of the park between granitic and conglomerate formations (Fig. 2N). The call presents a dominant frequency of 2128 Hz and basal frequency ~1073 Hz (upper harmonics are multiples of this). Single notes are emitted continuously at a note repetition rate of ~6.4 notes/s, note duration 8–9 ms (SOUND-CODE: FZI2969, Fig. 3A). However, when compared with topotypic recordings, our vocalization recording differs slightly, with shorter, more distinct notes, a lower dominant frequency, and a slower note rate (Channing and Becker 2019).

Tomopterna tuberculosa (Deckert, 1938)

Material examined. ANGOLA – Namibe Province • Quedas do Montenegro; −16.9968, 013.2480; 596 m a.s.l.; 1♂, FKH 0675; GenBank: ON006591.

Identification. Large frog (SVL ~45 mm). Dorsum rough with skin ridges and near symmetric dark markings with narrow white borders. The specimen reported here is genetically identical to specimens previously collected by Hayes et al. (unpubl. data) in Malanje Province, Angola (GenBank accession: MK036492).

Biology and distribution. Tomopterna tuberculosa is a fossorial species widely distributed across highland savannas in southern Africa (du Preez and Carruthers 2017). In Angola, the species occurs mainly in highland savannas associated with rocky substrate, reaching the lowlands in the semi-arid savannas of Kwanza Sul and Benguela provinces (Marques et al. 2018). However, in Namibe Province this amphibian had been reported from only Bíbala (Bocage 1895) and the bottom of Leba Pass (Poynton and Haacke 1993). Here, we document a specimen collected at Quedas do Montenegro (= Epupa Falls, Angola). This record is the first of this species from within Iona NP and represents the southernmost record for Angola.

Microhylidae

Phrynomantis annectens (Werner, 1910)

Material examined. ANGOLA – Namibe Province • Caionona Spring; −16.9079, 012.5787; 899 m a.s.l.; Tadpoles, PEM A13330 • Mupaka River; −16.8584, 012.6759; 819 m a.s.l.; FKH 0824–8; GenBank: ON006592–ON006595.

Identification. Adults (SVL 40 mm) were identified morphologically, based on the typical, yellow-spotted coloration of P. annectens, with marked red flanks on the head in males, while tadpoles were identified by its characteristic dark dorsal coloration with scattered golden flecks and a golden stripe extending from body along upper edge of tail muscles (du Preez and Carruthers 2017). DNA barcoding of specimens collected at Mukapa River exhibit a low divergence to one another (0.32%) and also low compared to unpublished sequences originated from Benguela Province (<1%; Baptista et al. unpubl. data 2021; Table S2).

Biology and distribution. Phrynomantis annectens occurs in arid regions from western Angola, through Namibia to north-western regions of South Africa (du Preez and Carruthers 2017). This species was previously
recorded from Omauha Lodge in the vicinity of Iona NP (Ceríaco et al. 2016a). During the March 2021 survey, more than 40 individuals were observed calling during an explosive breeding event after rain. The calling males were located on the edge of temporary streams in valleys crossing the mountainous region between Iona and Lutuima villages. The call is reminiscent of a jackhammer, with a series of rapid pulses issued at a rate of ~114.6 pulses per second, call duration ~6 seconds (600–700 pulses per call), with an inter-call interval ~5–10 s. Dominant frequency was 2292 Hz (SOUND-CODE: FZ12970, Fig. 3B).

Phrynobatrachidae

Phrynobatrachus natalensis (Smith, 1849)

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40693; historical material.

Identification. This species is characterized by a stout body (SVL 40 mm) with small head and pointed snout with close-set eyes (du Preez and Carruthers 2017). Recent studies have demonstrated that *P. natalensis* encompasses several cryptic species (Zimkus et al. 2010; Bittencourt-Silva 2019). Until fresh material can be collected and applied to the re-evaluation of the species complex, we consider the existing material as part of the *P. natalensis* complex.

Biology and distribution. *Phrynobatrachus natalensis* is widely distributed across western, eastern, and southern Africa, commonly associated with permanent or temporary water bodies (Channing and Rödel 2019). To date, the species has only been collected once in Iona NP at Foz do Cunene (Poynton and Haacke 1993).

Reptilia

Testudines

Chelonia

Chelonia mydas (Linnaeus, 1758)

Figure 4A

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2638, 011.7949; 0 m a.s.l.; photographic records.

Identification. The species is a medium-sized sea turtle (carapace straight-length 900–1100 mm), characterised by four non-overlapping costal scutes on each side of the shell, and only a single pair of large scales on top of its head, between the eyes and nostril (Spotila 2004).

Biology and distribution. This worldwide distributed species is commonly observed at the mouth of the Cunene River (Foz do Cunene) where great numbers of individuals are known to aggregate to feed. Recent surveys have reported over 300 sightings in one single transect (Morais 2021). This species is commonly observed along the Angolan coast with occasional breeding, but nesting has never been documented along the coast of Iona NP (M. Morais pers. comm. 2021).

Lepidochelys olivacea (Eschscholtz, 1829)

Figure 4B

Material examined. ANGOLA – Namibe Province • Ponta Albina; −15.8922, 011.7320; 0 m a.s.l.; photographic record.

Identification. This species is the smallest sea turtle (carapace straight-length 600–700 mm), and nearly circular carapace with 6–9 costal scutes (Spotila 2004).

Biology and distribution. *Lepidochelys olivacea* is the most abundant species of sea turtle along the Angolan coastline, and its nesting population possibly consists of one of the largest “non-arribadas” (i.e., solitary nesting turtles) worldwide (M. Morais pers. comm. 2021). Although more abundant in central and northern Angola, it is known to regularly breed successfully in Iona NP just south of Ponta Albina, in what constitutes the southernmost nesting locality for the species in the eastern Atlantic (Morais 2021).

Trionychidae

Trionyx triunguis (Forsskål, 1775)

Figure 4C

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 41312–3; historical material • Foz do Cunene; −17.2446, 011.7512; 0 m a.s.l.; photographic record.

Identification. This species is the largest soft-shell terrapin in Africa (carapace straight-length 500–800 mm), characterized by absence of flexible flaps over the hind limbs (Branch 1998).

Biology and distribution. This species is found in most of the major African rivers from the Nile to South Africa (Branch 1998, 2008; Rhodin et al. 2017). *Trionyx triunguis* has been reported as common all along the Cunene River (Griffin and Channing 1991; Simmons et al. 1993; Cunningham et al. 2018).

Testudinidae

Stigmochelys pardalis (Bell, 1828)

Material examined. ANGOLA – Namibe Province • Iona 20 km W from Oncócua; −16.7400, 013.2500; TM 40767; historical material.

Identification. This species is a medium-sized to large tortoise (shell straight-length 300–500 mm), characterised by its domed but not hinged carapace (Branch 1998, 2008).

Biology and distribution. *Stigmochelys pardalis* is widely distributed across southern and eastern Africa, reaching its northern limit in Ethiopia or Sudan (Branch 1998, 2008; Rhodin et al. 2017). However, in Angola a few scattered records have been reported in literature from Benguela, Namibe, Cunene and Cuando-Cubango provinces (Conradie et al. 2016; Marques et al. 2018), but none from Iona NP. We note that one historical specimen here mentioned was collected during Charles Koch’s expedition to Iona NP in 1963 and deposited in the Transvaal Museum, which seems to have been previously overlooked.

Pelomedusidae

Pelomedusa subrufa (Bonnaterre, 1789)

Material examined. ANGOLA – Namibe Province • Iona 15 km W from Oncócua; −16.7100, 013.2900; TM 40788; historical material • Iona 38 km W from Oncócua; −16.7200, 013.1200; TM 40769; historical material.

Identification. A medium-sized, side-necked terrapin (shell straight-length 150–200 mm) with a flat, hard, thin shell with no plastral hinge (Branch 1998, 2008).

Biology and distribution. *Pelomedusa subrufa* is widely distributed across southern Africa, reaching its northern limit in Ethiopia or Sudan (Branch 1998, 2008). It is often associated with large waterbodies and probably occurs along the Cunene River.

Crocodilia

Crocodilians

Crocodylus niloticus Laurenti, 1768

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2638, 011.7949; 0 m a.s.l.; photographic record.

Identification. The Nile Crocodile is the only representative of the family in southern Africa. They are large animals that may exceed 1000 kg in weight (Branch 1998). The jaws are long and have prominent teeth. The eyes and valved nostrils are situated on top of the head. The skin is covered with geometrically arranged, horn-like plates, many of which are keeled and bony. The hind feet are webbed.

Biology and distribution. *Crocodylus niloticus* is widely distributed across Africa, historically occurring in most major rivers across its distribution. It is commonly recorded along the Cunene River (Griffin and Channing 1991; Simmons et al. 1993; Cunningham et al. 2018).

Squamata

Chamaeleonidae

Chamaeleo namaquensis Smith, 1831

Material examined. ANGOLA – Namibe Province • 13 km SW from Espinheira; −16.8422, 012.2507; 520 m a.s.l.; FKH 0796; GenBank: ON006596 • 30 km SW from Espinheira; −16.9799, 012.1849; 595 m a.s.l.; PEM R17935; GenBank: HQ130516.

Identification. A large (SVL 120–140 mm), ungainly chameleon with a robust head and large mouth. DNA sequencing for FKH 0796 indicated that it was identical for 16S to a previously published sequence from Angola (PEM R17935, GenBank accession: HQ130516; Table S2) and identical to material collected from Namibia (GenBank accession: AY217950).

Biology and distribution. This species occurs in arid regions from South Africa, throughout Namibia and into southwestern Angola (Tilbury 2018). There is only one historical published record from Angola (Marques et al. 2018), although park rangers at Iona NP claim that this species is commonly observed during the rainy season. The two new records provided here are the only recently collected material from Angola. One specimen (PEM R17935) was collected moving within a “fairy circle” (Fig. 2A), while the second specimen (FKH 0796) was found digging in sand under a *Welwitschia mirabilis* on a gravel plain near Espinheira (Fig. 2E).

Chamaeleo dilepis Leach, 1819

Material examined. ANGOLA – Namibe Province • Iona Mountain; −16.9164, 012.5996; 1633 m a.s.l.; PEM R17982; GenBank: OK584789.
Identification. The specimen reported here was identified genetically. However, phylogenetic analyses have shown that *C. dilepis* probably contains several cryptic species. The Iona Mountain specimen belongs to a clade that includes material from southern and south-central Africa, whereas *C. dilepis* from northern and central Angola nests in a clade that includes material from central Africa (Main et al. in review). Given that the type locality of *C. dilepis* is coastal Gabon, it is likely to fall within the central African clade. Therefore, in the event of taxonomic changes, the southern African clade that includes the Iona locality would not retain the name *C. dilepis*.

Biology and distribution. This species occurs across most of Sub-Saharan Africa. *Chamaeleo dilepis* is the most widespread chameleon across Angola, being present on the plateau, escarpment, and coastal lowlands (Marques et al. 2018). However, this specimen is the only reported record for Iona NP, collected during the 2009 survey.

Afroedura donveae Branch, Schmitz, Lobón-Rovira, Baptista, Antonio & Conradie, 2021

Figure 5A

Identification. *Afroedura donveae* is a dorsoventrally flattened gecko (SVL 49.1–55.7 mm) with dark eyes and bright yellow dorsal bands (Branch et al. 2021). DNA sequence divergence was low amongst the individuals we collected (Table S2).

Biology and distribution. This is a rock-dwelling species commonly associated with large granitic boulders (Fig. 2J) with overhanging trees or medium-sized bushes that they frequently climb onto at night to hunt. During the day, individuals can be found hiding in rock crevices.

This Angolan endemic was recently described from just north of Iona NP (Branch et al. 2021) and has not yet been confirmed within the park boundaries. However, given the proximity (~8 km) to the park border of these records and the presence of continuous suitable habitat in northern Iona NP, we consider the species as likely to be present and expect it to be recorded in the future.

Chondrodactylus fitzsimonsi (Loveridge, 1947)

Figure 5B

Material examined. ANGOLA – Namibe Province • Mongo; −17.0398, 012.6010; 917 m a.s.l.; FKH 0808; GenBank: ON006597, ON006598 • Manaculama; −16.8193, 012.7188; 793 m a.s.l.; FKH 0816; GenBank: ON006599 • Tchamalindi; −16.9756, 012.8856; 1436 m a.s.l.; PI1.106, PI1.108; GenBank: ON006600 • Serra Cafema; −17.1269, 012.5126; 2033 m a.s.l.; PI1.119; GenBank: ON006601 • Mupaka camp; −16.8433, 012.6888; 847 m a.s.l.; PI1.269; GenBank: ON006602.

Identification. *Chondrodactylus fitzsimonsi* is a large gecko (SVL ≥ 89.3 mm) that can be distinguished from closely related species by the presence of smooth and partially rounded dorsal tubercles, versus dorsal keeled tubercles. The lowland specimens differ from the highland specimens by ~3% (16S; Table S2) and <3.5% from material collected from Epupa Falls, Namibia (GenBank accession: AF449109).

Biology and distribution. This species is a ground-dwelling gekkonid widely distributed across Namibe Province, including southwestern Angola and adjacent Namibia (Bauer and Lamb 2005; Ceriaco et al. 2016b; Marques et al. 2018). In Iona NP it is typically found in broken terrain near granitic (Fig. 2N) or schist formations (Fig. 2O). Interestingly, the species was more common in the highlands than the lowlands of Iona NP, with several specimens observed at Mount Tchamalindi and Cafema.

Chondrodactylus laevigatus (Fischer, 1888)

Figure 5C

Material examined. ANGOLA – Namibe Province • Uaua; −16.8453, 012.6135; 819 m a.s.l.; JLRZC0138; GenBank: ON006603.

Identification. *Chondrodactylus laevigatus* is a large gecko (SVL ≥ 100 mm) that could be confused with its sister species *C. pulitzerae*; however, it is characterised by the lack of two vertebral rows of reduced scales from neck to sacrum. Head and body somewhat depressed, and dorsum with distinctly raised, but keelless or very weakly keeled tubercles (Heinz et al. 2021). Furthermore, DNA barcoding shows that this species differs from other Angolan *Chondrodactylus* species between 9.4 and 14.6% (*C. fitzsimonsi* and *C. pulitzerae*, respectively; Table S3).

Biology and distribution. The species was described from Karas Region in southern Namibia, where it is frequently recorded but has been subsequently documented from several regions in Angola (Schmidt 1933; Monrad 1937; Hellmich 1957; Conradie et al. 2016; Marques et al. 2018). Recent published material has also recovered this species from Moçamedes (Heinz et al. 2021), and our new record adds to the known records in Angola and the first within Iona NP. One individual was found at night on a granitic boulder north of Iona village.

Chondrodactylus pulitzerae (Schmidt, 1933)

Figure 5D

Material examined. ANGOLA – Namibe Province • Guengue; −16.9591, 012.0359; 469 m a.s.l.; JLRZC0125; GenBank: ON006604 • Humbi; −16.9853, 012.5419; 871 m a.s.l.; FKH 0817 • Espinheira; −16.7885, 012.3583; 456 m a.s.l.; PEM R17957.

Identification. This is a large, thick-toed gecko (SVL ≥102 mm) characterized by rows of large keeled dorsal tubercles separated by two middorsal rows of reduced scales. Sequence divergence has shown that *C. pulitzerae* differs <1% from other specimens collected from northern Namibe Province (J. Lobón-Rovira et al. unpubl. data 2020).

Biology and distribution. *Chondrodactylus pulitzerae* is the most widespread and abundant *Chondrodactylus* species in Angola, occurring in western Angola from Luanda to Namibe provinces and is also present in the central and northern plateau (Marques et al. 2018). The species is often found at night moving across open areas (Fig. 2A, E, G), among boulders of varying sizes (Fig. 2D, 2J). The species was previously reported to be widely distributed across Iona NP (Ceriaco et al. 2016a). It has been observed in syntopy with either *C. fitzsimonsi* (at Iona Highlands) or *C. laevigatus* (at Uaua).

Hemidactylus benguellensis (Bocage 1893)

Figure 5E

Material examined. ANGOLA – Namibe Province • Tchinhungua; −17.2257, 012.4369; 249 m a.s.l.; FKH 0609–10; GenBank: ON006605, ON006606 • Lutumia–Muiinde road; −16.8363, 012.6983; 845 m a.s.l.; FKH 0615–6; GenBank: ON006607 • Muende River; −16.5212, 012.3140; 317 m a.s.l.; FKH 0564, FKH 05654; GenBank: ON006608, ON006609 • Lagoa do Arco; −15.7644, 012.0644; 51 m a.s.l; FKH0354; GenBank: ON006607 • Humbi; −16.9853, 012.5419; 871 m a.s.l.; FKH 0817 • Espinheira; −16.7885, 012.3583; 456 m a.s.l.; PEM R17957.

Identification. This is the most variable *Hemidactylus* in size (SVL 37–60 mm) in Angola and the only species of this group present in southern Angola. It can be distinguished from other species of the *H. benguellensis* group (Lobón-Rovira et al. 2021) based on the presence of rows of keeled dorsal tubercles, a large number of precloacal-femoral rows, and a large number of supralabials (Lobón-Rovira et al. 2021). DNA barcoding shows that divergence within this species for samples collected from Angola is 0.42% (Table S2).

Biology and distribution. *Hemidactylus benguellensis* is an arboreal species and one of the most widely
distributed Angolan *Hemidactylus*. Lobón-Rovira et al. (2021) reported one specimen from Lagoa do Arco, within the buffer zone of this study, and four specimens at Muinde, ~30 km north of Espinheira in the central plains of Iona NP. The later were the first records of *Hemidactylus* within Iona NP, and the south-westernmost records for the genus in Angola. Subsequently, we recorded the species in two additional localities in the park, including the banks of the Cunene River. These new records fill the gap between Angolan and northern Namibia records reported by Ceriaco et al. (2020a).

Kolekanos plumicauus (Haacke, 2008)

Figure 5F

Material examined. ANGOLA – Namibe Province
• Omuaha Lodge; −16.1987, 012.4012; 339 m a.s.l.; FKH 0782; GenBank: ON006611 • 7 km north of Iona; −16.8583, 012.6127; 808 m a.s.l.; PEM R18010–R18014 • Tchamalindi; −16.9756, 012.8831; 1459 m a.s.l.; FKH 0574; GenBank: ON006612 • Serra Cafema; −17.1269, 012.5126; 2033 m a.s.l.; GenBank: ON006613, ON006614 • Chiunge; −15.6857, 012.6131; 428 m a.s.l.; P1.75; GenBank: ON006615.

Identification. *Kolekanos plumicauus* (SVL 37–45 mm) is the only leaf-toed gecko with feathered-tail ornamentation. Uncorrected net p-distances for 16S for samples collected across its known distribution are lower than 3.5% (Table S2). There seems to be some genetic structure between the lower and higher elevation populations.

Biology and distribution. Prior to our surveys, this species had only been recorded from a few localities in the granitic lowlands of the park and surroundings (Haacke 2008; Agarwal et al. 2017; Marques et al. 2018). Our surveys have extended the known range, which now covers several ecological zones and an elevation range of 70–2040 m a.s.l. (Vaz Pinto et al. 2021). This species can be observed at night moving among small, thin branches close to rock boulders. During the day it retreats into narrow cracks under rock flakes or into cracks in boulders.

Lygodactylus lawrencei Hewitt, 1926

Figure 5G

Material examined. ANGOLA – Namibe Province
• Humbi; −16.9853, 012.5419; 890 m a.s.l.; FKH 0813–0815; GenBank: ON006617–ON006619 • Lutuima–Muinde road; −16.9968, 013.2480; 627 m a.s.l.; FKH 0678; GenBank: ON006620 • Quedas do Montenegro; −16.9968, 013.2480; 627 m a.s.l.; FKH 0678; GenBank: ON006621 • Mupaka camp; −16.8433, 012.6888; 847 m a.s.l.; FKH 0682; GenBank: ON006622 • Espinheira; −16.7855, 012.3589; 454 m a.s.l.; FKH 0332.

Identification. A small gecko (SVL 26–34 mm) that can be distinguished from its Angolan congeners by fewer cloacal pores than *L. angolensis* and more than *L. tchokwe*, and the lack of gular coloration present in *L. chobiensis* and *L. baptistai* (Marques et al. 2020). There is low intraspecific divergence for 16S (Table S2) but much larger genetic distance (~12.5%) to the most closely related species (*L. lawrencei*) occurring in sympathy in Iona NP.

Biology and distribution. *Lygodactylus lawrencei* is the most widespread species of Angolan *Lygodactylus*, occurring from 500–2000 m a.s.l. (Marques et al. 2020). This species is apparently common in Huila and northern Namibe provinces. However, only one record had been documented from southern Namibe Province, from between Ouipaca and Otchifengo on the eastern edge of Iona NP (Marques et al. 2020). Here, we report on additional specimens collected at Espinheira and ~30 km southeast of Espinheira, and at Humbi (Fig. 2N), where it was found in sympoty with *L. lawrencei*. Additional specimens were collected at Tchitchaki River (Fig. 2F) on the edge of the sand desert; between Lutuima and Muinde; near Mupaka, in arid savanna; at Montenegro, corresponding to the southernmost record in the park. These records suggest this species to be the most common species in the genus *Lygodactylus* within Iona NP, while extending its known distribution in the country. Individuals were found at night while sleeping on thin lower vertical branches or during day moving among the trunks of trees.

Pachydactylus caraculicus FitzSimons, 1959

Figure 5I

Material examined. ANGOLA – Namibe Province
• Mongo; −17.0398, 012.6010; 917 m a.s.l.; JLRZC0137,
FKH 0803–7; GenBank: ON006623–ON006627 • Manaculama; −16.8193, 012.7188; 793 m a.s.l.; FKH 0808; GenBank: ON006628.

Identification. This species is a small-bodied *Pachydactylus* (SVL 30–40 mm), characterized by its lateral yellow and black bands across the entire dorsum, more marked in juveniles. The 16S sequences demonstrate that the new material does not differ substantially from material collected at Epupa Falls in Namibia (−0.5%; GenBank accession: AY123377; Table S2).

Biology and distribution. It was described from Caraculo, Namibe Province, Angola and is widely distributed from northwestern Namibia to southern Benguela Province (Marques et al. 2018). This gecko is commonly found in crevices of small granitic boulders (usually <1 m in size; Fig. 2N). Our new records represent the first from within Iona NP and the southernmost for Angola, closing a major geographic gap between Angolan and Namibian records. Specimens were found at night in a transition zone of large granitic rocks and conglomerates at the edge of a mountain range. Interestingly, all the specimens were found in March and April, suggesting it is a spring-breeding species. Individuals were commonly found the ground when disturbed and disappear underneath the bush among leaf litter. Most often, they were observed cautiously walking on the ground among the thick layer of dry *Salvadora* leaves, at the edge but never venturing outside the protection of the main bush. These records extend the known species distribution some ~230 km north, being the northernmost for the species and the first records in Angola.

Pachydactylus cf. oreophilus McLachlan & Spence, 1967 complex

Figure 5J

Material examined. ANGOLA – Namibe Province • Omauha; −16.1983, 012.4111; 356 m a.s.l.; FKH 0340, FKH 0349, 0350, P9.281– P9.283; GenBank: ON006629–ON006634 • Tchamalindi; −16.9721, 012.8862; 1364 m a.s.l.; P1.105; GenBank: ON006635 • Cunene River to Tchinhungua 2; −17.2627, 012.4461; 250 m a.s.l.; P1.85, P1.87 & P1.89–90; GenBank: ON006644–ON006647.

Identification. *Pachydactylus oreophilus* is a rock-dwelling species (SVL 40–50 mm), that was originally described from Sesfontein, Namibia (McLachlan and Spence 1967). An unpublished phylogenetic analysis suggests that the Angolan material represents more than one undescribed species from a monophyletic group within the *P. oreophilus* complex (A. Bauer unpubl. data 2021). Individuals from Iona NP lowlands differed from highland populations by 11.2%, suggesting there is species level differentiation between them, warranting further investigation (Table S2).

Biology and distribution. Individuals were commonly found actively hunting insects at night while moving on large boulders and cliffs and sometimes jumping to the ground running between rocks. These geckos were also found during the day hiding in rock crevices, both in lowlands and highlands. They were often found in sympatry with *Rhoptropus boultoni* and *R. biporosus*, even using the same rocks.

Pachydactylus parascutatus Bauer, Lamb & Branch, 2002

Figure 5K

Material examined. ANGOLA – Namibe Province • Tchinhungua; −17.2257, 012.4369; 249 m a.s.l.; FKH 0605, FKH 0606; GenBank: ON006638, ON006639 • Garota Nova; −17.1526, 012.7476; 370 m a.s.l.; FKH 0684–06846, P1.276; GenBank: ON006640–ON006642 • Cunene River to Tchinhungua 2; −17.2628, 012.4461; 250 m a.s.l.; FKH 0566–7, P1.85, P1.87 & P1.89–90; GenBank: ON006644–ON006647.

Identification. A medium-sized *Pachydactylus* (SVL 35–38.5 mm), that can be differentiated from *P. scutatus*, the most morphologically similar species in Iona NP, by the lack of a bright nuchal band around the neck and more slender body. DNA barcoding shows that these specimens are divergent by ~3% (16S) from those recorded at topotypic locality in Sesfontein, Namibia (GenBank accession: AY123383).

Biology and distribution. This species was previously only known from Opuwo District, Namibia, recorded from arid areas of the Namibian Kaokoveld where it utilised shrubs and grasses as substrate (Bauer et al. 2002). Here we report on new specimens recorded from the southern parts of Iona NP, along the margins of the Cunene River, at Garota Nova and around Tchinhungua. The individuals were always found at night and in close association with thick bushes of toothbrush trees, *Salvadora persica*, proving to be very difficult to catch. Sometimes, specimens were observed foraging among thin branches of *Salvadora* bushes but would readily drop to the ground when disturbed and disappear underneath the bush among leaf litter. Most often, they were observed cautiously walking on the ground among the thick layer of dry *Salvadora* leaves, at the edge but never venturing outside the protection of the main bush. These records extend the known species distribution some ~230 km north, being the northernmost for the species and the first records in Angola.

Pachydactylus cf. punctatus Peters, 1854 complex

Figure 5L

Material examined. ANGOLA – Namibe Province • Omauha; −16.1983, 012.4111; 356 m a.s.l.; FKH 0793, FKH 0801; GenBank: ON006648, ON006649 • Uaua; −16.8454, 012.6135; 773 m a.s.l.; JLRZC0140; GenBank: ON006650 • Mondelalola; −16.8690, 012.5870; 773 m a.s.l.; JLRZC0141, JLRZC0142; GenBank: ON006651, ON006652 • Mupaka camp; −16.843, 012.6889; 847 m a.s.l.; FKH 0802; GenBank: ON006653 • Espinheira; −16.7856, 012.3589; 454 m a.s.l.; PEM R17942–R17946, JLRZC0133, P1.277; GenBank: ON006654–ON006658 • Tchamalindi; −16.9721, 012.8862; 1364 m a.s.l.; JLRZC0131–JLRZC0133, P1.270, P1.277, FKH 0333, FKH 0801; GenBank: ON006654–ON006658 • Tchamalindi; −16.9751, 012.8857; 1434 m a.s.l.; FKH 0572, 0573, P1.109; GenBank: ON006659–ON006661 • Serra Cafema; −17.1270, 012.5126; 2033 m a.s.l.; P1.125; GenBank: ON006662 • Vitambi; −17.0822, 012.2637; 549 m a.s.l.; FKH 0566–12.

Identification. This species is a small-bodied *Pachydactylus* (SVL 30–40 mm), characterized by its lateral yellow and black bands across the entire dorsum, more marked in juveniles. The 16S sequences demonstrate that the new material does not differ substantially from material collected at Epupa Falls in Namibia (−0.5%; GenBank accession: AY123377; Table S2).

Biology and distribution. It was described from Caraculo, Namibe Province, Angola and is widely distributed from northwestern Namibia to southern Benguela Province (Marques et al. 2018). This gecko is commonly found in crevices of small granitic boulders (usually <1 m in size; Fig. 2N). Our new records represent the first from within Iona NP and the southernmost for Angola, closing a major geographic gap between Angolan and Namibian records. Specimens were found at night in a transition zone of large granitic rocks and conglomerates at the edge of a mountain range. Interestingly, all the specimens were found in March and April, suggesting it is a spring-breeding species. Individuals were commonly found the ground when disturbed and disappear underneath the bush among leaf litter. Most often, they were observed cautiously walking on the ground among the thick layer of dry *Salvadora* leaves, at the edge but never venturing outside the protection of the main bush. These records extend the known species distribution some ~230 km north, being the northernmost for the species and the first records in Angola.
Namibe Province • Hewitt, 1926

Namibe Province is a Lutuima–Muinde road; −16.8363, 012.6983; 845 m a.s.l.; Material examined.

Identification. Pachydactylus punctatus is a small Pachydactylus (SVL 25–35 mm), described from central Mozambique (Peters 1854). However, the taxonomic status of this species has remained controversial due to large geographic overlap with closely related species, and there is high genetic divergence within Pachydactylus punctatus sensu lato, with at least four different putative species occurring in Angola (H. M. Heinz unpubl. data 2018). The material collected during our surveys show the presence of two sister clades that differ from each other by ~8% (16S).

Biology and distribution. This species is a small, ground-dwelling Pachydactylus. However, due to the large number of cryptic species of Pachydactylus, the biology and distribution remains unresolved. The two sister clades reported here appear to be ecologically segregated, with one occurring on sandy substrate of the central plains and the other associated with mountain ranges foraging on rocky ground near rocky outcrops.

Pachydactylus rangei Andersson, 1908

Figure 5M

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40663, TM 40707; historical material • Lacrau, 12 km NW of Foz do Cunene; −17.2000, 011.8300; TM 40700–3; historical material • Cunene River Baptistia camp; −17.1605, 012.0172; 104 m a.s.l.; FKH 0327, 0330, 0331; GenBank: ON006671–ON006673.

Identification. Pachydactylus rangei (SVL 60–65 mm) can be distinguished from other Pachydactylus by presence of webbed membranes between digits of the manus and pes. DNA barcoding revealed low divergence among Angolan specimens (Table S2) but differing by ~2.5% from material collected ~800 km south from Rooibank, Namibia (GenBank accession: AY123375).

Biology and distribution. This species is the only gecko adapted to live in the soft sand dunes of the Namibe Desert (Bauer and Lamb 2005) and occurs in the dune sand seas of Iona NP. It was often observed at night foraging on the sand and sometimes moving marginally out of dunes onto the sandy areas of Tchitchaki and Curoca riverbeds which delimit the dunes in the east and north, respectively.

Pachydactylus cf. rugosus Smith 1849

Figure 5N

Material examined. ANGOLA – Namibe Province • Lutuima–Muinde road; −16.8363, 012.6983; 845 m a.s.l.; FKH 0611; GenBank: ON006674.

Identification. A medium-sized gecko (SVL 45–60 mm), morphologically well differentiated from other members of the genus Pachydactylus by the presence of strongly mucronate head and body and a dorsal colour pattern consisting of a series of five light brown blotches between the nape and the sacrum (Lamb and Bauer 2000). However, a phylogenetic analysis shows two different clades within P. rugosus, which differ by >15% uncorrected net p-distances for ND2 (W. Conradie unpubl. data 2021). The specimens for which we produced 16S sequences are most similar to the northern Namibian material and might represent an undescribed taxon.

Biology and distribution. Pachydactylus rugosus is a small-bodied generalist species of the genus Pachydactylus (Heinicke et al. 2011), widely distributed from the Northern Cape Province, South Africa, to the northwestern region of Namibia (Lamb and Bauer 2000). The species had not been recorded in Angola until very recently (Branch et al. 2019c; Bates et al. 2020). Nevertheless, two new photographic records from coastal areas in Namibe Province have been added to the known distribution of the species (W. Conradie unpubl. data 2021). We collected one specimen on 8 August 2021 between Lutuima and Muinde in Iona NP. This represents the second specimen collected for Angola and the first in Iona NP.

Pachydactylus scutatus Hewitt, 1926

Figure 5O

Material examined. ANGOLA – Namibe Province • Curoca River at Omauha Water Cistern; −16.2648, 012.3224; 185 m a.s.l.; FKH 0675–7 GenBank: ON006674–ON006676 • Otchifengo River; −16.6391, 012.9271; 605 m a.s.l.; FKH 0681; GenBank: ON006666–ON006668 • Mupaka camp; −16.8434, 012.6889; 847 m a.s.l.; FKH 0612; GenBank: ON006669 • Muende River; −16.5213, 012.3140; 316 m a.s.l.; P1.82; GenBank: ON006670.

Identification. Pachydactylus punctatus is a small Pachydactylus (SVL 25–35 mm), described from central Mozambique (Peters 1854). However, the taxonomic status of this species has remained controversial due to large geographic overlap with closely related species, and there is high genetic divergence within Pachydactylus punctatus sensu lato, with at least four different putative species occurring in Angola (H. M. Heinz unpubl. data 2018). The material collected during our surveys show the presence of two sister clades that differ from each other by ~8% (16S).

Biology and distribution. However, due to the large number of cryptic species of Pachydactylus, the biology and distribution remains unresolved. The two sister clades reported here appear to be ecologically segregated, with one occurring on sandy substrate of the central plains and the other associated with mountain ranges foraging on rocky ground near rocky outcrops.

Pachydactylus scutatus Hewitt, 1926

Figure 5O

Material examined. ANGOLA – Namibe Province • Curoca River at Omauha Water Cistern; −16.2648, 012.3224; 185 m a.s.l.; FKH 0675–7 GenBank: ON006674–ON006676 • Otchifengo River; −16.6391, 012.9271; 605 m a.s.l.; FKH 0681; GenBank: ON006666–ON006668 • Mupaka camp; −16.8434, 012.6889; 847 m a.s.l.; FKH 0612; GenBank: ON006669 • Muende River; −16.5213, 012.3140; 316 m a.s.l.; P1.82; GenBank: ON006670.

Identification. Pachydactylus punctatus is a small Pachydactylus (SVL 25–35 mm), described from central Mozambique (Peters 1854). However, the taxonomic status of this species has remained controversial due to large geographic overlap with closely related species, and there is high genetic divergence within Pachydactylus punctatus sensu lato, with at least four different putative species occurring in Angola (H. M. Heinz unpubl. data 2018). The material collected during our surveys show the presence of two sister clades that differ from each other by ~8% (16S).

Biology and distribution. This species is a small, ground-dwelling Pachydactylus. However, due to the large number of cryptic species of Pachydactylus, the biology and distribution remains unresolved. The two sister clades reported here appear to be ecologically segregated, with one occurring on sandy substrate of the central plains and the other associated with mountain ranges foraging on rocky ground near rocky outcrops.

Pachydactylus scutatus Hewitt, 1926

Figure 5O

Material examined. ANGOLA – Namibe Province • Curoca River at Omauha Water Cistern; −16.2648, 012.3224; 185 m a.s.l.; FKH 0675–7 GenBank: ON006674–ON006676 • Otchifengo River; −16.6391, 012.9271; 605 m a.s.l.; FKH 0681; GenBank: ON006666–ON006668 • Mupaka camp; −16.8434, 012.6889; 847 m a.s.l.; FKH 0612; GenBank: ON006669 • Muende River; −16.5213, 012.3140; 316 m a.s.l.; FKH 0611; GenBank: ON006674.

Identification. A medium-sized gecko (SVL 45–60 mm), morphologically well differentiated from other members of the genus Pachydactylus by the presence of strongly mucronate head and body and a dorsal colour pattern consisting of a series of five light brown blotches between the nape and the sacrum (Lamb and Bauer 2000). However, a phylogenetic analysis shows two different clades within P. rugosus, which differ by >15% uncorrected net p-distances for ND2 (W. Conradie unpubl. data 2021). The specimens for which we produced 16S sequences are most similar to the northern Namibian material and might represent an undescribed taxon.

Biology and distribution. Pachydactylus rugosus is a small-bodied generalist species of the genus Pachydactylus (Heinicke et al. 2011), widely distributed from the Northern Cape Province, South Africa, to the northwestern region of Namibia (Lamb and Bauer 2000). The species had not been recorded in Angola until very recently (Branch et al. 2019c; Bates et al. 2020). Nevertheless, two new photographic records from coastal areas in Namibe Province have been added to the known distribution of the species (W. Conradie unpubl. data 2021). We collected one specimen on 8 August 2021 between Lutuima and Muinde in Iona NP. This represents the second specimen collected for Angola and the first in Iona NP.
We cannot confirm whether this observation is typical behaviour of the species.

Pachydactylus vanzyli (Steyn & Haacke, 1966)

Figure 5P

Material examined. ANGOLA – Namibe Province • Cacolo Windmill, 20 km W of Iona; −16.8568, 012.4334; 572 m a.s.l.; TM 40711–40717; historical material • Espinheira; −16.7856, 012.3589; 454 m a.s.l.; FKH 0598–0600, FKH 0334–0337; GenBank: ON006680–ON006685 • Vitambi; −17.0822, 012.2637; 549 m a.s.l.; FKH 0602–4; GenBank: ON006686–ON006688 • Muende River; −16.5212, 012.3140; 314 m a.s.l.; P1.78; GenBank: ON006689.

Identification. _Pachydactylus vanzyli_ is a medium-sized to large (SVL 50–55 mm) nocturnal gecko from the Namib Desert that differs from _P. rangei_, its closest related species, by reduced webbing in the foretoes. The individuals sequenced show low divergence between them (1.66%; Table S2) but high sequence divergence (~9%) with material collected from Orupenbe and Ondonduengo, Namibia (GenBank accession: DQ278600). This latter comparison suggests unrecognised species level divergence, and a detailed morphological and phylogenetic analysis of this group is needed.

Biology and distribution. It was described from northwestern Namibia and only a few records are known from Angola (Marques et al. 2018). During our expeditions, we recorded several specimens from different locations, observed at night on flat gravel and sandy plains across Iona NP. Individuals were observed emerging at dusk from holes in the sand, with others finding refuge under welwitschias, or actively hunting termites and other insects. One specimen was regurgitated by a *Bitis caudalis*, which is commonly found in the same habitat as _P. vanzyli_. We observed clear habitat segregation with its sister species _P. rangei_, which were only recorded in softer sandy dunes of the desert. Here we report for the first time a neon green fluorescence in the species (Fig. 6), which has only been observed previously in _P. rangei_ (Prötz et al. 2021), suggesting some iridophore adaptation within this group.

Rhoptropus afer Peters, 1869

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40655–7, TM 40672–4; historical material • Lacrau 12km NW from Foz do Cunene; −17.2000, 11.8300; TM 40699; historical material.

Identification. _Rhoptropus afer_ is the most distinctive species in the genus. A small species (SVL 35–53 mm) with relatively short, stout toes, with 5 or 6 small subdigital pads, and considerably elongate hind limbs in comparison to the front limbs (Kuhn 2016). There are no preanal pores. The back is light olive to grey-brown, with scattered red-brown and light cream spots.

Biology and distribution. _Rhoptropus afer_ occurs in northern Namibia and southern Angola (Marques et al. 2018) and is associated with large flat boulders (Kuhn 2016). Only a few scattered records have been published

Figure 6. _Pachydactylus vanzyli_ in lateral view under (A) natural light, and (B) 467 nm UV light, showing the green fluorescence around the eyes, and on flanks. Photos by JLR.
for Angola and their identification is questionable due to lack of a full assessment of morphological traits and no corresponding genetic data to corroborate their identification. Most of the records in the literature date from the 19th century, where the species was reported from Curuca River, Moçamedes, Maconjo, Capangome and even as far north as Hanha, in Benguela Province (Bocage 1895; Marques et al. 2018). Here, we report on previously unpublished material from Foz do Cunene, where several specimens were collected in 1971 but whose identification has not been confirmed by genetic data. Reportedly, the specimens were found during the day on small boulders (<1 m in size) that break the sand surface of the dunes near Foz do Cunene. Recent attempts to collect additional material of this species from Foz do Cunene were unsuccessful. All recent material collected from that area have been identified as *Rhoptropus biporosus* by DNA (e.g., GenBank accession: AY026928).

Rhoptropus barnardi Hewitt, 1926

Figure 5Q

Material examined. ANGOLA – Namibe Province • Tononbe; −17.0964, 012.3035; 615 m a.s.l.; JLRZC0122, JLRZC0126, JLRZC0127; GenBank: ON006690–ON006692 • 40 km S of Omauha Lodge; −16.5117, 012.4476; 369 m a.s.l.; PEM R19981 • Iona Mountain; −16.9103, 012.5126; 2033 m a.s.l.; PEM R19984 • Tchamalindi; −16.9756, 012.8856; 436 m a.s.l.; FKH 0575, P1.101; GenBank: ON006693, ON006694 • Serra Cafema; −17.1269, 012.5126; 2033 m a.s.l.; P1.120, P1.122, P1.124; GenBank: ON006695, ON006696 • Quedas do Montenegro; −16.9969, 013.2480; 627 m a.s.l.; FKH 0679; GenBank: ON006697 • Cunene River to Tchinhungua 2; −17.2626, 12.4461; 250 m a.s.l.; FKH 0568, P1.88; GenBank: ON006698 • 26 km E of Iona; −16.7006, 012.8242; 625 m a.s.l.; PEM R19985, R19986.

Identification. This is a medium-sized (SVL 40–46 mm), rock-dwelling diurnal gecko. Males have 4–7 preanal pores arranged in a single row. The middle row of scales under the tail is not enlarged. The scales on the back are slightly keeled and tubercular (Kuhn 2016). DNA sequences of specimens from Iona NP showed little within-species divergence (Table S2) but differ by a ~6% divergence from specimens collected from Ugab River mouth, Namibia (GenBank accession: AY026929).

Biology and distribution. This species is commonly found on smaller boulders or rock piles (Kuhn 2016). Originally described from Cunene Province, Angola, *Rhoptropus barnardi* is often observed in northwestern Namibia. Only a few records of this species had been reported from the northern edge of Iona NP and surroundings (Ceríaco et al. 2016a). However, morphological similarities to an undescribed species of the genus *Rhoptropus* could have led to misidentification (Kuhn 2016). Our DNA sequences allow us to confirm the presence of *Rhoptropus barnardi* within Iona NP, and it is widely distributed across the park, from sea level near the Cunene River to the highlands in Tchamalindi and Cafema Mountains.

Rhoptropus biporosus FitzSimons, 1957

Figure 5R

Material examined. ANGOLA – Namibe Province • 10 km south of Red Canyon camp; −15.8306, 012.1412; 110 m a.s.l.; PEM R19951 • 28 km NE from Foz do Cunene; −17.1083, 012.0036; 422 m a.s.l.; PEM R19952, R19953 • Road to Tambor; −15.8761, 012.2058; 190 m a.s.l.; PEM R19945–R19949 • Carinhambi; −17.0989, 011.9187; 354 m a.s.l.; FKH 0683 • Espinheira; −16.7859, 012.3589; 454 m a.s.l.; JLRZC0128, PEM R19957, TM 40611–40614, TM 40630–40639; GenBank: ON006699 • Foz do Cunene; −17.2638, 011.7950; 10 m a.s.l.; TM 40675–84, TM 40694, TM 40645–40654, PI-167; FKH 0596, 0597; GenBank: ON006700–ON006702 • Guelengue; −16.8591, 012.0359; 469 m a.s.l.; JLRZC0118; GenBank: ON006703 • 40 km S of Omauha Lodge; −16.3116, 012.4476; 369 m a.s.l.; PEM R19955; R19956 • Road to Omauha Lodge; −15.8843, 012.2818; 229 m a.s.l.; PEM R19950.

Identification. This is a small (SVL 40–45 mm) diurnal species in which males are characterized by having two precloacal pores (Kuhn 2016). Our 16S sequences revealed low intraspecific divergence (Table S2).

Biology and distribution. In Angola, it is only known to occur in southern Namibe Province (Marques et al. 2018), being commonly observed in the central and southern regions of Iona NP (Ceríaco et al. 2016a). Specimens reported here were observed during the day actively moving around granitic boulders or between small rocks and vegetation on the central plains.

Rhoptropus boultoni Schmidt, 1933

Figure 5S

Material examined. ANGOLA – Namibe Province • 10 km S of Red Canyon camp; −15.8305, 012.1412; 110 m a.s.l.; PEM R19961, R19962, R19987 • Road to Omauha Lodge; −15.8842, 012.2818; 229 m a.s.l.; PEM R19963, R19964 • Omauha Lodge; −16.5117, 012.4476; 369 m a.s.l.; PEM R19966, P9.277, FKH 0347, 0348; GenBank: ON006708–ON006710 • Iona Mountain; −16.9103, 012.5126; 8 km NE from Iona; −16.8475, 012.6155; 796 m a.s.l.; PEM R19967, R19968 • Serra Cafema; −17.2626, 12.4461; 250 m a.s.l.; FKH 0568, P1.88; GenBank: ON006698 • 26 km E of Iona; −16.7006, 012.8242; 625 m a.s.l.; PEM R19985, R19986.

Identification. This species is the largest Angolan *Rhoptropus* (SVL 55–74 mm), characterized by its orangespotted dorsum. DNA barcoding shows high genetic
dissimilarity (>4.5% divergence) within Iona NP (Table S2), and also compared with material collected near the Skeleton Coast National Park, Namibia (GenBank accession: AY026930).

Biology and distribution. This large rupicolous species is likely the most commonly observed species in the genus *Rhoptropus* in Angola, widely distributed in the southwestern regions. In Iona NP, this gecko has been recorded from most habitats except the dunes (Ceríaco et al. 2016a). The species has been reported from sea level to 2000 m a.s.l., associated with large boulders where they actively hunt both during day and night. It is frequently found in syntopy with other *Rhoptropus* congeners.

Rhoptropus sp.

Figure 5T

Material examined. ANGOLA – Namibe Province • Salondjamba; −16.3070, 012.4195; 204 m a.s.l.; FKH 0819, 0820, FKH 0829; GenBank: ON006711, ON006712.

Identification. This is a potentially undescribed endemic Angolan species which is morphologically similar to *R. barnardi* but genetically closer to *R. biporosus* (Kuhn 2016; A. Bauer and A. Kuhn unpubl. data 2021). This species has been previously reported from Iona NP by Ceríaco et al. (2016a).

Biology and distribution. Even though the biology and real distribution remains unclear, this species has been found on granitic boulders during the day and rarely at night. It has been found in syntopy with related species, such as *R. boulotoni*. The specimens were collected at Salondjamba, near the Curoca River at the main entrance to Iona NP, and we attribute them to this undescribed species because they cannot be morphologically or genetically ascribed to any other known species.

Cordylidae

Cordylus namakuiyus Stanley, Ceríaco, Bandeira, Valério, Bates & Branch, 2016

Figure 7A

Material examined. ANGOLA – Namibe Province • Serra Cafema: −17.1269, 012.5126; 2033 m a.s.l.; FKH 0576, FKH 0578, FKH 0581, PI.129, PI.130; GenBank: ON006713–ON006718.

Identification. This is the only girdled lizard (SVL 81.83–101.09 mm) known from the coastal plain of Angola. DNA barcoding revealed little differentiation between the newly collected material (Table S2) and the paratype material from approximately 50 km north of Iona NP (Stanley et al. 2016).

Biology and distribution. *Cordylus namakuiyus* is a rupicolous species endemic to coastal southwestern Angola (Stanley et al. 2016). The southernmost record for the species was previously reported from 20 km north of the Iona NP entrance of Salondjamba. Herein we report the species from the mountain peak of Serra Cafema within Iona NP, extending the known distribution 150 km southwards and increasing its elevation range to over 2000 m a.s.l. These new records breach the distribution gap between Angolan and Namibian material and may suggest that historical material from Baynes and Otjihipa mountains in northern Namibia belongs to this species, instead of *C. machadoi* as previously suggested by Stanley et al. (2016). Recently DeBoer et al. (2019) presented morphological results that further support this notion but caution that molecular data is needed to truly resolve the taxonomic status of Namibian material. Newly collected genetic material from Otjihipa Mountains may help resolve this issue (F. Becker et al. unpubl. data, 2021).

Gerrhosauridae

Cordylosaurus subtextellatus (Smith, 1844)

Figure 7B

Material examined. ANGOLA – Namibe Province • Espinheira; −16.7454, 012.3687; 437 m a.s.l.; photographic record.

Identification. *Cordylosaurus* is a monotypic genus of plated lizard, characterized by its small size (SVL 35–45 mm), black middorsal stripe from head to tail, and its bright blue tail (Branch 1998).

Biology and distribution. This species is diurnal, moving rapidly between small stones in the gravel plains and will quickly shed its tail when disturbed (Branch 1998). Despite no voucher specimens being collected during our surveys, a specimen was photographed on the gravel plains northeast of Espinheira. It has been reported from various localities in Namibe Province including Iona NP (Ceríaco et al. 2016a; Marques et al. 2018), with a few additional ad hoc sightings in the park from sea level to 500 m a.s.l., and also above 1400 m a.s.l. on Mount Tchamalindi.

Gerrhosaurus skoogi Andersson, 1916

Figure 7C

Material examined. ANGOLA – Namibe Province • Curoca River at Omauha Water Cistern; −16.2647, 012.3223; 185 m a.s.l.; JLRZC0112; GenBank: ON006719 • Tchitchaki Valley; −16.2850, 012.2815; 185 m a.s.l.; JLRZC0112; GenBank: ON006719.

Identification. *Gerrhosaurus* is a large rupicolous species (SVL 110–150 mm) adapted to live on sand dunes, identified by its large size and its modified rostral scales (Branch 1998). Specimens collected from Curoca River at the northern edge of the dune desert and Tchitchaki differed genetically by 2.2% for 16S (Table S2) and approximately 6% when compared with material from Ondonduiengo River, Namibia (GenBank accession: AY167364).

Biology and distribution. This species occurs from northwestern Namibia to southwestern Angola (Branch 1998). Individuals are usually found in groups close to the summit of large dunes where there is sufficient vegetation for them to shelter or where the loose sand allows for easy sand-diving. The tracks of this species are easily recognized as previously suggested by Stanley et al. (2016). The tracks of this species are easily recognized.
recognizable in the loose dune sands, given their large size and characteristic pattern. Specimens and tracks of *G. skoogi* were observed in most dune areas surveyed, absent only in the central mobile dunes. Lizards were spotted during the day and at dusk.

Matobosaurus maltzahni (de Gryss, 1938)

Material examined. ANGOLA – Namibe Province • Omauha Lodge; −16.2006, 012.4018; 341 m a.s.l.; PEM R17984–5 • Pediva camp; −16.2173, 012.5167; 329 m a.s.l.; photographic record.

Identification. This is a large (SVL 285 mm), rock-dwelling plated lizard, indentified by its large size and plated-like scales.

Biology and distribution. *Matobosaurus maltzahni* is commonly observed basking on the tops of big boulders or hiding on the ground between closely spaced large boulders (Bates et al. 2013). The species is widely distributed in the rocky and mountainous areas of Iona NP and across southwestern Angola (Marques et al. 2018).

Agamidae

Agama anchietae Bocage, 1896

Material examined. ANGOLA – Namibe Province • 26 km W from Oncócuca; −16.7500, 013.2300; TM 40768, TM 40772; historical material • 45 km S of Omauha Lodge; −16.5369, 012.4410; 375 m a.s.l.; PEM R19920 • 5 km N of Espinheira; −16.7450, 012.3817; 440 m a.s.l.; PEM R19924 • 8 km NE of Iona; −16.8291, 012.6211; 740 m a.s.l.; PEM R19925–R19928 • Tchamalindi; −16.9754, 012.8858; 1434 m a.s.l.; GenBank: ON006721.

Identification. *Agama anchietae* is a small terrestrial lizard (SVL 60–80 mm), with a broad head and a short, rounded snout. Body short with strongly keeled dorsal scales and pale brown coloration, except for reproductive males who display varied color on the dorsum (Branch...
1998). DNA sequences showed little divergence (<1%) among newly collected specimens and material from adjacent Namibia (GenBank accession: GU128446).

Biology and distribution. This species is widely distributed in the semi-desert and arid savanna of South Africa, Namibia, and southern Angola (Branch 1998). It is commonly found in Iona NP (Ceríaco et al. 2016a), except in the western dune fields. Individuals are often observed basking on top of small rocks or low branches and quickly seek cover under rocks or in holes when disturbed. We found that the species occurs in both the lowlands and highlands up to 2000 m a.s.l.

Agama planiceps Peters, 1862

Figure 4G

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40665–40668, TM 40695; historical material • Omuwa Lodge; −16.2006, 012.4018; 341 m a.s.l.; photographic record • Serra Cafema; −17.1269, 012.5126; 2033 m a.s.l.; photographic record.

Identification. This species can be differentiated from *A. anchietae* based on the large body (SVL 80–100 mm) and distinctive coloration (red-blue in males, characteristic yellow head in females). The Angolan *Agama planiceps* complex comprises multiple, distinct genetic lineages (Butler 2019). The material from the arid Iona NP matches that of the “typical” *A. planiceps*.

Biology and distribution. This is a rock-dwelling agamid that appears to be abundant in arid regions of Namibia and southwestern Angola (Branch 1998). The species is often observed within Iona NP (Ceríaco et al. 2016a) and throughout Namibe and Benguela provinces (Marques et al. 2018). Individuals were only recorded during the day, mainly associated with large granitic boulders, where they bask on top of the rocks. They seek shelter in deep rock crevices. They were also observed at times climbing trees or running on the ground between boulders.

Scincidae

Panaspis mocamedensis Ceríaco, Heinicke, Parker, Marques & Bauer, 2020

Figure 7E

Material examined. ANGOLA – Namibe Province • Tchamalindi; −16.9757, 012.8856; 1434 m a.s.l.; P1.114; GenBank: ON006722.

Identification. *Panaspis mocamedensis* is a small lizard (SVL 26.5–32.5 mm). This species may be distinguished from congeners by the absence of supranasal, fused frontoparietal, and ablepharine eye (Ceríaco et al. 2020c). Our collected specimen is genetically similar to the type material of *Panaspis mocamedensis* (~0.2%) from Virei, Namibe, Angola (GenBank accessions: MN846701, MN846702).

Biology and distribution. This species was described from Virei and Maungo, Namibe Province and was only known previously from the type series (Ceríaco et al. 2020c). Our collected specimen from Tchamalindi Mountain provides a range extension of ~150 km southwards and represents the first record for Iona NP. This record also increases the known elevational range from 523 m a.s.l to more than 1400 m a.s.l. Several individuals were observed during the day, moving quickly among leaf litter in mopane savanna on the rocky slopes of Tchamalindi.

Typhlacontias johnsonii Andersson, 1916

Material examined. ANGOLA – Namibe Province • Lacrau; −17.2000, 011.8300; TM 40704–40706; historical material.

Identification. This species is a small (SVL 80–100 mm) and slender skink. Specimens of *T. johnsonii* have not been collected in recent years and the species is only known from the type specimens from Tômbwa (Andersson 1916) and material collected in the 1970s (Haacke 1997). On the loose sand at the base of very shallow dunes, we observed sinuous subterranean tracks that we tentatively ascribed to this species. However, no individuals were observed. Because earlier records of this species were all from sandy habitat, and no other small subterranean serpentiform species is known to occur in that habitat, we believe that they may be *T. johnsonii*.

Typhlacontias punctatissimus bogerti (Laurent, 1964)

Material examined. ANGOLA – Namibe Province • Espinheira; −16.7886, 012.3584; 456 m a.s.l.; PEM R18045, R18046 • Tchitchaki Valley; −16.2891, 012.3180; 248 m a.s.l.; FKH 0787; GenBank: ON006723 • 43 km 250° from Espinheira; −16.9186, 011.9756; 371 m a.s.l.; FKH 0797; GenBank: ON006724 • Road to Foz do Cunene 40 km SW of Espinheira; −16.9577, 012.1238; 537 m a.s.l.; FKH 0798; GenBank: ON006725.

Identification. *Typhlacontias* was last reviewed by Haacke (1997) who validated the status of *Typhlacontias punctatissimus bogerti* based on morphological evidence. The material here reported exhibit the diagnostic character of the *T. p. bogerti* (second and third upper labial reaching eye, and small body size (SVL 60–80 mm)). However, DNA barcoding shows high sequence divergence (>7%) between specimens collected at Skeleton Coast Park, Namibia (GenBank accession: DQ316889) and those collected at Iona NP, although variation within the latter was low (Table S2).

Biology and distribution. This species was previously recorded from Espinheira (Ceríaco et al. 2016a) and is commonly found in the central plains of Iona NP, under dead welwitschias, fallen logs, dead wood, and accumulations of leaves in riverine areas.

Trachylepis acutilabris (Peters, 1862)

Material examined. ANGOLA – Namibe Province •
Espinheira; −16.7100, 013.3200; TM 40624, TM 40625, TM 40626, PEM R18019, PEM R18022, PEM R18035, PEM R18036 • Otchifingo River; −16.6900, 013.0100; TM 40774; historical material • Iona 6 km S of Rio Curoca; −16.3400, 012.4400; TM 40581–9; historical material.

Identification. A small terrestrial skink (SVL 40–55 mm) that was identified based on its characteristic colour pattern, by having three keels on each dorsal scale, 28–32 rows of scales around midbody, and the characteristic upper lip (Branch 1998).

Biology and distribution. This species is frequently found in sandy areas of Namibia and Angola (Branch 1998; Marques et al. 2018). This is one of the most frequently observed species in the genus *Trachylepis* in southern Namibe Province, including Iona NP (Ceríaco et al. 2016a). Individuals were observed in all regions of the park, showing a remarkable color variation that matched the substrate where they occurred, ranging from white to bright orange/red. The species is most commonly encountered in open areas, moving between small rocks, succulent plants, and small bushes.

Trachylepis binotata (Bocage, 1867)

Figure 7H

Material examined. ANGOLA – Namibe Province • Iona Nature Reserve (without precise locality); TM40765; historical material • 12 km from Oncóca; −16.7100, 013.3200; TM 40738, TM 40770; historical material • Otchifingo River; −16.6391, 012.9272; 605 m a.s.l.; photographic record.

Identification. This species is identifiable by its large size (SVL 80–120 mm), dorsal scales with three keels, and characteristic black spots with light flecks on each side of the head (Branch 1998).

Biology and distribution. *Trachylepis binotata* is a large arboreal skink commonly found in mopane trees along dry riverine areas (Branch 1998). Several individuals were observed on riverine trees along drainage lines in the southern and eastern regions of Iona NP, usually moving or basking on Mopane or *Senegalia* trees. During the March 2021 survey, several specimens were observed and photographed.

Trachylepis cf. chimbana (Boulenger, 1887)

Figure 7I

Material examined. ANGOLA – Namibe Province • Serra Cafema; −17.1269, 012.5126; 2033 m a.s.l.; Pl-118; GenBank: ON006726 • Tchamalindi; −16.9767, 012.8783; 1523 m a.s.l.; FKH 0570.

Identification. A slender, ground-dwelling species in the *T. lacertiformis* group, distributed from southwestern Angolan and northwestern Namibia (Broadley 1975). The original description by Boulenger (1887) is not detailed or comprehensive, and the lack of recent topotypic material has led to the taxonomic status of this species becoming unclear and in need of revision (Marques et al. 2018). The DNA sequences from the specimens collected during our surveys show very low divergence (0.6%) from those previously collected 16 km west of the bottom of Leba Pass (GenBank accession: MK792061) which were assigned to this species based on morphology (Weinell et al. 2019).

Trachylepis hoeschi (Mertens, 1954)

Figure 7J

Material examined. ANGOLA – Namibe Province • Iona NP (without precise locality); TM 40733–7; historical material • Road to Tambor; −15.8811, 012.2226; 186 m a.s.l.; PEM R17951.

Identification. A large (SVL 50–80 mm), rock-dwelling species that is associated with the arid Kaokoveld, characterised by presence of 2 or 3 weak keels on dorsal scales and 32 scale rows at midbody (Branch 1998).

Biology and distribution. It has previously been reported from Iona NP, from the Curoca River at the Pediva Hot Springs (Ceríaco et al. 2016a). The historical Ditsong Museum records collected from Iona NP lack accurate locality information but were presumably collected within the boundaries of the park. During this study we observed individuals in the mountains southwest of Espinheira and at Tchamalindi.

Trachylepis laevis (Boulenger, 1907)

Figure 7K

Material examined. ANGOLA – Namibe Province • Rio Curoca; −16.3000, 012.4200; TM 40593; historical material • Serra Cafema; −17.1269, 012.5126; 2030 m a.s.l.; Pl.131; GenBank: ON006727. Salondjamba; −16.3070, 012.4195; photographic record.

Identification. *Trachylepis laevis* (SVL 45–60 mm) is mainly distinguished by its blue colouration and dorsolaterally flattened body. The specimen from the highlands of Serra Cafema is genetically similar (0.7%) to an individual from northern Namibia near the Cunene River (GenBank accession: MK792015).

Biology and distribution. Commonly found in Namibe Province, although records of the species in the literature are relatively few and scattered (Marques et al. 2018). Ceríaco et al. (2016) reported a record from north of Tambor, some 20 km outside the limits of Iona NP. Individuals were usually observed basking on granitic boulders or moving rapidly between small cracks and crevices. We report on the first confirmed records from Iona NP and its immediate vicinity, including historical specimens collected from near the Curoca River and to Serra Cafema over 2000 m a.s.l.

Trachylepis occidentalis (Peters, 1867)

Figure 7L

Material examined. ANGOLA – Namibe Province • Rio Curoca Mouth; −15.7300, 011.9200; TM 40401, TM 40402; historical material • Espinheira; −16.7856, 012.3589; 455 m a.s.l.; PEM R17951.

Trachylepis punctulata (Bocage, 1872)

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40671; historical material • Otchifeno River; −16.6900, 013.0100; TM 40773; historical material • Rio Curoca Mouth; −15.7300, 011.9200; TM 40395–40397; Historical material • Road to Omava; −16.1843, 012.4189; 365 m a.s.l.; FKH 0781; GenBank: ON006729 • Tononde; −17.0694, 012.3035; 615 m a.s.l.; FKH 0791; GenBank: ON006730 • 9 km S of camp at the Red Canyon; −15.8007, 012.1238; 63 m a.s.l.; PEM R1998 • Omava Lodge; −15.8760, 012.2058; 190 m a.s.l.; TM 40399 • Espinheira; −16.7908, 012.3569; 457 m a.s.l.; PEM R18002 • PEM R18003.

Identification. This is a medium-sized skink (SVL 41–51.5 mm) with five keels on dorsal scales. The specimens reported here were identified genetically and all have identical 16S haplotypes (Table S2), while differing less than 3% from material from Namibia (GenBank accession: MK792055). This result agrees with that of Butler (2020) and shows a need for further investigation on this group.

Trachylepis sulcata (Peters, 1867)

Material examined. ANGOLA – Namibe Province • Otchifeno River; −16.6900, 013.0100; TM 40775, TM 40776; historical material • Espinheira; −16.7885, 012.6127; 455 m a.s.l.; PEM R17975 • Tchamalindi; −16.9757, 012.8856; 1436 m a.s.l.; P1.97–8; GenBank: ON006731, ON006732.

Identification. This is a medium-sized (SVL 65–75 mm), rupicolous skink that can be easily distinguished from its Angolan congeners based on its characteristic coloration with sexual dichromatism, wherein females present a markedly striped dorsal pattern and males are mostly dark brown and lack stripes. Recently, Butler (2020) recognised both *T. sulcata* (Namibian and South African populations) and *T. ansorgii* (from central Angola) as full species, provisionally allocating southwestern Angolan populations to *T. sulcata*, although the nuclear sequences show some similarity to *T. ansorgii*. Genetically the specimens from within Iona NP show little differentiation (1.61%, Table S2) and differ by 3.1% from specimens of *T. sulcata* collected in Namibia (GenBank accession: MK792054) and 3.4% to specimens assigned to *T. ansorgii* from Angola (GenBank accession: MK792055). This result agrees with that of Butler (2020) and shows a need for further investigation on this group.

Meroles anchicatae (Bocage, 1867)

Material examined. ANGOLA – Namibe Province • Tchamalindi; −16.9757, 012.8856; 1436 m a.s.l.; FKH 0751, P1.102; GenBank: ON006733.

Identification. One specimen collected at the Cunene River, some 25 km west of Ruacana border post (PEM R17978; W. Conradie unpubl. data 2021) morphologically conforms to *T. variegata* based on the presence of three keels on the dorsal scales (Branch 1998). More recently, two specimens were collected at Tchamalindi Mountain, which morphologically also resemble with *T. variegata*. However, sequence divergence shows that the Iona NP specimens differ more than 6% from a specimen collected from Savanna Guest Farm, Namibia (GenBank accession: MK792057) and cluster as a separate clade within the *variegata*-group. More comprehensive phylogenetic and morphological analysis are needed to resolve the status of these individuals.
Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40643, TM 40644, TM 40710; historical material • Tömbswa; −15.8200, 011.8800; TM 22574–22577, TM 24035–24039; historical material • Titchaka Valley; −16.3111, 012.2731; 236 m a.s.l.; FKH 0352 • 25 km NE from Foz do Cunene; −17.0967, 011.9167; 338 m a.s.l.; PEM R01793.

Identification. *Meroles anchietae* is a small lacertid (SVL 45–50 mm), easily identified based on its modified rostral scales and its bright yellow coloration (Branch 1998).

Biological and distribution. This sand-diving lacertid is adapted for living in the dunes of the Namib Desert (Edwards et al. 2016). While it was originally described from Angola (Bocage 1867), only a few records are known from the country to date while it is more commonly recorded from Namibia. We report it to be abundant at Iona NP from across the sand sea ecological zone, but fewer in smaller dunes of the coastal desert, where its sister species, *M. reticulatus*, is frequently recorded. Our record of the species was observed in syntopy with *Gerrhosaurus skoogi*.

Meroles reticulatus (Bocage, 1867)

Material examined. ANGOLA – Namibe Province • Curoca River Mouth; −15.7300, 011.9200; TM 40403–40414; Historical material • Tömbswa; −15.8200, 11.8800; TM 24030–24034; historical material • Foz do Cunene; −17.2638, 011.7950; 10 m a.s.l.; TM 40640–40642, TM 40669, TM 40709, FKH 0830, FKH 0516 • 25 km NE from Foz de Cunene; −17.0959, 011.9222; 345 m a.s.l.; PEM R17938.

Identification. *Meroles reticulatus* (SVL 45–50 mm) is the sister species of *M. anchietae* (Lamb and Bauer 2003; Edwards et al. 2016) and although described from Angola in the 19th century, very few country records have been published since. In the field, this species can be differentiated from *M. anchietae* by the presence of grey to blue-grey mottling with paler and darker grey tones dorsally and a less modified rostral scale (Branch 1998).

Biological and distribution. This species has been documented to occur on the gravel plains of the Namib Desert in southwestern Angola and northern Namibia (Marques et al. 2018), and in both sparsely vegetated loose sands and on harder packed soils of Namibia (Edwards et al. 2016). However, we only recorded the species in small, vegetated dunes in coastal areas where individuals move between small patches of vegetation. These lizards run fast and readily dive into loose sand when there is insufficient low vegetation to hide beneath. All specimens collected or photographed were observed during the day either near Tömbswa or Foz do Cunene localities where they seem to be quite common.

Pedioplanis haackei Conradie, Measey, Branch & Tolley, 2012

Figure 7R

Material examined. ANGOLA – Namibe Province • Morro da Ilusão; −16.9353, 012.2489; 599 m a.s.l.; JL-RZC0119 • Along road to Tambor; −15.8761, 012.2058; 190 m a.s.l.; PEM R18465–R18467 • Dry riverbed in the road to Tambor; −15.8812, 012.2227; 185 m a.s.l.; PEM R18469; GenBank: HE793995 • Omauha Lodge; −15.9969, 012.4069; 301 m a.s.l.; PEM R18473 • Road to Espinheira; −15.9136, 012.3953; 317 m a.s.l.; PEM R18539.

Identification. This species (SVL 31.7–59.3 mm) may be morphologically distinguished from its Iona congeners based on its typical colouration of three pale dorsolateral stripes becoming faint posteriorly versus five dark grey ventral lines with clear white borders posteriorly in *Pedioplanis huntleyi* and dorsolateral stripes, often broken, and vertebral stripe indistinct in *P. serodioi*. Our collected specimen is genetically similar to existing material (0.94%, Table S2).

Biological and distribution. This is an Angolan endemic, restricted to the southwest of the country. It usually occurs in semi-arid shrubland on sandy substrates with low vegetation. Previously reported from the northern and central regions of Iona NP (Conradie et al. 2012; Parrinha et al. 2021), but we also recorded a specimen (JL-RZC0119) (Fig. 2) from ~40 km south of Espinheira. This record represents the southernmost record for the species, revealing a wide distribution in the park including the consolidated dunes towards the Cunene River.

Pedioplanis huntleyi Conradie, Measey, Branch & Tolley, 2012

Figure 7S

Material examined. ANGOLA – Namibe Province • Tonombie; −17.0964, 012.3035; 615 m a.s.l.; FKH 0790; GenBank: ON006734 • Humbi; −16.9853, 012.5420; 871 m a.s.l.; FKH 0799; GenBank: ON006735 • 40 km S of Omauha lodge; −16.5116, 012.4476; 369 m a.s.l.; PEM R18476 • Road to Oncócuca; −16.5853, 012.6127; 808 m a.s.l.; PEM R18477–R18479; GenBank: HE794005 • Tchamalindi; −16.9754, 012.8858; 1434 m a.s.l.; FKH 0569 GenBank: ON006736 • 8 km NE of Iona; −16.8292, 012.6211; 741 m a.s.l.; PEM R18484; GenBank: HE794006 • 16 km E of Iona; −16.7981, 012.6806; 785 m a.s.l.; PEM R18485, PEM R18480; GenBank: HE794003 • 26 km E of Iona; −16.7006, 012.8242; 625 m a.s.l.; PEM R18486 • 14 km W of Moimba; −16.6794, 012.9739; 688 m a.s.l.; PEM R18481 • Helola; −16.6744, 012.8850; 603 m a.s.l.; PEM R18482.

Identification. *Pedioplanis huntleyi* is medium-sized lacertid (SVL 47.5–58.9 mm). See the description of *P. haackei* for its morphological characterisation. The 16S sequence divergence values suggest there is structure among specimens collected within Iona NP (Table S2), possibly pointing to isolation between populations.
Biology and distribution. Endemic to Angola, is widely distributed in well-vegetated and compacted substrates in Namibe and Cunene provinces (Conradie et al. 2012; Parrinha et al. 2021).

Pedioplanis serodioi Parrinha, Marques, Heinicke, Khalid, Parker, Tolley, Childers, Conradie, Bauer & Ceriaco, 2021

Figure 7T

Material examined. ANGOLA – Namibe Province • Mulola Humbi; −16.9411, 012.9203; 1299 m a.s.l.; FKH 0794, FKH 0795; GenBank: ON006737.

Identification. In a recent revision of the Angolan species of Pedioplanis a neotype was designated for P. benguelensis to stabilize the taxonomy (Parrinha et al. 2021). Rather than following Boulenger’s (1919) diagnosis of a single transparent lower eyelid, Parrinha et al. (2021) stated that the colour description better matches the coastal population near the original type locality, with two transparent windows in the lower eyelid. All historical material having a single transparent window in the lower eyelid were transferred to a newly described species, P. serodioi (SVL 25–50.2 mm). Genetically this specimen fully agrees genetically with material previously assigned to P. benguelensis (Conradie et al. 2012), now been transferred to P. serodioi.

Biology and distribution. The species is widely distributed from central Benguela to the northern borders of Iona NP, with only two isolated records previously reported in the northern edge of the park (Conradie et al. 2012; Parrinha et al. 2021). We add two specimens found in the heart of Iona NP near Humbi, representing the southernmost records for the species.

Varanidae

Varanus albigularis angolensis Schmitd, 1933

Figure 4H

Material examined. ANGOLA – Namibe Province • Omauha Lodge; −16.2006, 012.4018; 341 m a.s.l.; photographic record.

Identification. This species is the only terrestrial monitor found in the area. This species is very large (SVL 400–500 mm), stout lizard has strong, stocky limbs and sharp claws.

Biology and distribution. Varanus albigularis (SVL 400–500 mm) is widely distributed in Southern Africa. However, the subspecies V. a. angolensis has been considered to be only present in Angola. Records of this subspecies are rare and clearly opportunistic (Phillips 2004; Ceriaco et al. 2016a; Marques et al. 2018). We report on a specimen captured in Omauha Lodge, a private property on the northern border of the park. The species is regularly observed by the staff of Iona NP. Due to its broad distribution and the ease of identification, we consider these ad hoc records as valid and include it in the Iona NP species list.

Varanus niloticus (Linnaeus, 1758)

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 40664; historical material.

Identification. This species is the largest (SVL 600–800 mm) monitor lizard in Africa. It has a stout body with powerful limbs, strong claws, and an elongate snout. The tongue is dark, almost black. Tail long, laterally compressed, with a low dorsal crest. Limbs are spotted; the belly and throat are paler than dorsum, with black bars. Juvenile coloration is black and bright yellow.

Biology and distribution. This species is well adapted to live in deep river valleys in all Sub-Saharan countries from the Nile River in Egypt throughout the network of rivers across most of Africa, reaching southwest to Angola and Namibia (Wilms et al. 2021). The species was previously documented along the Cunene River (Cunningham et al. 2018) and one specimen was collected at Foz do Cunene in 1971, the only material known from Iona NP.

Viperidae

Bitis arietans (Merren, 1820)

Figure 8A

Material examined. ANGOLA – Namibe Province • Tchamalindi; −16.9757, 012.8856; P1.113; GenBank: ON006738 • Vitambi; −17.0822, 012.2638; 548 m a.s.l.; photographic record.

Identification. This is a heavily built snake (SVL 1090–1100 mm) with large, flattened, triangular head and large nostrils oriented vertically upwards. In March 2021, a shed skin was collected at Tchamalindi and the DNA sequence of this skin was a positive match to B. arietans. This specimen matches B. arietans DNA sequence (<3%) from South Africa (GenBank accession: GQ359736). A second adult specimen was found active at night on a dry riverbed.

Biology and distribution. Assumed to be present across most of Angola, although there were no previous records from Iona NP, and only one doubtful record from Namibe Province (Branch 2018; Marques et al. 2018; Conradie et al. 2021). Nevertheless, park rangers claimed frequent observations of this snake, and it has been observed in coastal Namib Desert further south, for example at the Kuiseb Mouth, Walvis Bay (Stuart 1980). These records represent the only confirmed records of the species in Iona NP, spanning an elevational range from sea level to above 2000 m a.s.l.

Bitis caudalis (Smith, 1839)

Figure 8B

Material examined. ANGOLA – Namibe Province • 50 km from Tômbwa; −15.8800, 012.2100; TM 40427–8; historical material • Tchitchaki Valley; −16.2850, 012.2815; 223 m a.s.l.; photographic record • Espinheira; −16.7886, 012.3584; 489 m a.s.l.; photographic record.
Identification. This species is the only recorded species of dwarf adder in Angola (SVL 372–548 mm), characterized by the presence of the characteristic horn ornamentation or elongated supraorbital scales.

Biology and distribution. This species is widely distributed in southwestern Angola (Marques et al. 2018) in arid biomes (Branch 1998), and it was frequently encountered within Iona NP during our surveys. Individuals were recorded from Tchitchaki River, Curoca River, the central plains (near Espinhreira), the sand sea zone, and southwestern Iona NP (Fig. 1A). These snakes where always recorded during the day, sheltering under dead welwitschias, basking close to rocks, or hidden under rocks. The observations were either opportunistic or by following their tracks in the sand.

Elapidae

Naja nigrinicta Bogert, 1940

Material examined. ANGOLA – Namibe Province • Foz do Cunene; −17.2600, 011.7900; TM 39931; historical material • 2 km W of Iona Village; −16.8940, 012.5540; 726 m a.s.l.; photographic record.

Identification. *Naja nigrinicta* is a large elapid (SVL 1470–2000 mm) originally described from southwestern Angola but synonymised with *N. nigricollis* Reinhardt, 1843 by Broadley (1974). It has subsequently been recognized as a separate species from *N. nigricollis* (Wüster & Broadley 2007).

Biology and distribution. Although not specifically recorded during our surveys (but see below), this snake is usually encountered during the day, moving in open areas or between rocks. However, most records derive from opportunistic visual observations without genetic or even photographic support. In Iona NP, the only available material was a single specimen collected in 1971 at Foz do Cunene (Broadley 1974). Despite not being recorded during our surveys, one team member (Bruce Bennet) was bitten at night by an individual at Espinhreira in 2009. While that particular snake escaped in the
ensuing excitement and commotion, we suggest that this species is widespread in the park. Additionally, a photographic record of a roadkill was made in Iona NP (N. Baptista and T. Antonio; Fig. 8C).

Dendroaspis polylepis Günther, 1864

Material examined. ANGOLA – Namibe Province • Serra Cafema; −17.1269, 012.5126; 1434 m a.s.l.; PI-121; GenBank: ON006739.

Identification. *Dendroaspis polylepis* is a large (SVL 2330 – 2530 mm), streamlined snake with a narrow, coffin-shaped head and smooth scales in 23–25 oblique rows. The DNA sequence retrieved from one shed skin matched other sequenced material of *Dendroaspis polylepis* (KA Tolley unpubl. data) with approximately 3% sequence divergence. The skin sample showed a comparatively higher divergence to other species of mamba in GenBank (approximately 6% divergence). Therefore, the shed skin is tentatively assigned to *D. polylepis*.

Biology and distribution. This species is widely distributed in the savanna of Sub-Saharan Africa (Branch et al. 2021). In Angola, the species has been reported from the plateau region, with no confirmed records from Namibe Province (Branch 2018; Marques et al. 2018; Conradie et al. 2021), even though a few records have been documented in semi-arid savanna, in coastal Hanha, Benguela Province (Bogert 1940). In March 2021, a shed snakeskin found near a granite outcrop was collected at Cafema Mountain. This record is the first of the species for Iona NP and represents the southernmost record in the country.

Pythonidae

Python anchietae Bocage, 1887

Figure 8D

Material examined. ANGOLA – Namibe Province • Omauha Logde; −16.2006, 012.4018; 341 m a.s.l.; photographic record • Iona village; −16.8831, 012.5707; 754 m a.s.l.; photographic record.

Identification. This is a medium-sized to small, rock-dwelling python (SVL 1290–1520 mm), with five heat-sensitive labial pits. The body is pale red-brown with black-edged white spots and bands.

Biology and distribution. This species is mostly restricted to the coastal plain in southern Angola and more extensively distributed in northern Namibia (Branch 2018). It is usually found moving about at night. While this species has been assumed to be present in Iona NP (Marques et al. 2018), all known records were based on captive (wild caught from the area) specimens kept in Omauha Lodge, a private reserve adjacent to Iona NP. Here, we report on an additional individual photographed by Tchafeni Augusto near Iona village, which to our knowledge constitutes the first confirmed record in the park (N. Baptista and T. Antonio unpubl. data 2020).

Python natalensis (Gmelin, 1788)

Figure 8E

Material examined. ANGOLA – Namibe Province • Omauha Logde; −16.2006, 012.4018; 341 m a.s.l.; photographic record.

Identification. *Python natalensis* (SVL 4.25–5 m) was previously recognized as a subspecies of *P. sebae*, and only recognized as a valid species in 1999, based on head scale variation and geographical distribution (Broadley 1999).

Biology and distribution. This species is a large and stout python usually found in open savanna and particularly rocky areas and riverine scrubs, and only absent from true desert and dense rain forest (Branch 1998). In Angola, the species is widely distributed in the southern half of the country (Marques et al. 2018; Conradie et al. 2021).

Lamprophiidae

Lycophidion namibianum Broadley, 1991

Figure 8F

Material examined. ANGOLA – Namibe Province • Espinheira; −16.7886, 012.3584; 456 m a.s.l.; PEM R17995.

Identification. This is the only wolf snake recorded in the area (SVL 315–530 mm). The species was described by Broadley (1991) from west of Usakos, Karibib District, northern Namibia and included many Namibian specimens previously confused with Lauren’s *L. hellmichi* (Broadley 1991).

Biology and distribution. This is a species well adapted to arid rocky regions. The specimen from Espinheira was first reported by Branch (2018) and it was morphologically ascribed to *L. namibianum* based on the diagnostic lack of contact between the first supralabial and postnasal (versus contact in *L. hellmichi*) (Broadley 1991). This is also the only known record from Angola, extending its known distribution range northwards by ~180 km (Branch 2018; Branch et al. 2019).

Psammophiidae

Psammophis leightoni (Boulenger, 1902)

Figure 8G

Material examined. ANGOLA – Namibe Province • 15 km NE of Foz do Cunene; −17.1700, 011.8600; TM 39933; historical material • Tchitchaki Valley; −16.2800, 012.2800; 262 m a.s.l.; FKH 0788, FKH 0789; GenBank: ON006740.

Identification. *Psammophis leightoni* (SVL 798–960 mm) is a slender snake with 17 scale rows, eight upper labials, and one precocular. The posterior nasal is divided, as is the anal. It was recently considered as a senior synonym of *P. namibensis* (Taft et al. 2021). A preliminary phylogenetic analysis with unpublished material from
Namibia (C. Keates unpubl. data 2021) cluster together with the Angolan material.

Biology and distribution. As a consequence of the re-evaluation of the species (Taft et al. 2021), this species now has a large known distribution in the western arid region from Angola to South Africa, being commonly found in dunes of the Namib Desert, moving actively during the day between small patches of vegetation (Branch 2018). The specimens reported here from Iona NP were always found during the day by following characteristic tracks visible in the soft sand of the desert dunes region (Fig. 2F). Two morphotypes have been identified in Angola, with three of our specimens displaying the typical three dorsal stripes and one specimen having one single dorsal stripe.

Psammophis leopardinus Bocage, 1887

Material examined. ANGOLA – Namibe Province • Iona Natural Reserve (without precise locality): TM 40752; historical material.

Identification. This whip snake (maximum SVL 985 mm) can be distinguished from other Angolan whip-snakes by the head markings and spotted dorsal pattern with a yellow dotted vertebral line.

Biology and distribution. This species has been recorded from arid savanna and semi-desert regions in southern Angola and central Namibia (Marques et al. 2018), characterized by its characteristic dorsal pattern and arboreal behavior (Vaz Pinto et al. 2019). The specimen recorded from Iona NP was collected in 1971 and included in the revision of the genus by Broadley (2002). It constitutes the southernmost record for the species in Angola.

Psammophis notostictus Peters, 1867

Figure 8I

Material examined. ANGOLA – Namibe Province • 60 km S of Moçamedes on road to Tômbwa; −15.6979, 012.0837; 138 m a.s.l.; FKH 0783; GenBank: ON006741.

Identification. This species (SVL 680–733 mm) can be distinguished from other lamprophiids by its flattened and slender body and dark brown or black triangular markings on the dorsum (Branch 1998). DNA barcoding shows that this individual is similar to samples collected from other regions of Namibe Province (Lobon-Rovira unpubl. data 2021).

Biology and distribution. This lamprophiid snake has been often recorded from southwestern Angola and northern Namibia, living between cracks and crevices in granitic boulders (Branch 1998). However, the species had not been reported previously from Iona NP or its surroundings (Marques et al. 2018). During our surveys, we recorded it from the highlands of Iona NP at Cafema and Tchamalindi mountains where it was frequently found during the day sheltering inside narrow cracks and under rock flake. These records are the first for the species from Iona NP.

Prosymnidae

Prosymna cf. frontalis Peters, 1867

Figure 8J

Material examined. ANGOLA – Namibe Province • Espinheira; −16.7886, 012.3584; 456 m a.s.l.; PEM R17997; GenBank: MT460615.

Identification. This is a small shovel-snout snake (SVL 290–380 mm). Bocage (1873) ascribed Angolan material from both the coast and inland to this species, but those specimens were subsequently re-evaluated by Boulenger (1915) and assigned to a new species, *P. angolensis*, based on lower number of subcaudal scales. However, recent phylogenetic analysis of the genus revealed two well-differentiated clades within *P. frontalis*, one from northern Namibia and Angola (including material listed here) and the other from central Namibia southwards to South Africa (Heinicke et al. 2020). More work is needed to resolve the taxonomic status of Angolan material.

Biology and distribution. This fossorial snake is restricted to the arid landscapes from southern Angola to the Northern Cape Province in South Africa (Broadley 1980). The species was described from Otjimbingue, Namibia (Peters, 1867).
Prosymna visseri FitzSimons, 1959

Figure 8K

Material examined. ANGOLA – Namibe Province • Espinheira; −16.7886, 012.3584; 456 m a.s.l.; PEM R17994, PEM R17996; GenBank: MT460630.

Identification. This is a morphologically distinctive fossorial snake (SVL 263–310 mm) with marked cranial differences relative to closely related species (Heinicke et al. 2020). However, the specimens listed here, and first reported by Branch (1998), confirm the species occurrence in Iona NP were included in a phylogenetic study where they clustered with additional material from Kunene region, Namibia (Heinicke et al. 2020).

Biology and distribution. The species was described from near Caraculo, Namibe Province (FitzSimons 1959) and is known to occur in Namibia extending further west inland (Bauer et al. 2000).

Pseudaspидidae

Pythonodipsas carinata Günther, 1868

Figure 8L

Material examined. ANGOLA – Namibe Province • Espinheira; −16.7856, 012.3589; 472 m a.s.l.; FKH 0818; GenBank: ON006743 • Vitambi; −17.0822, 012.2638; 548 m a.s.l.; photographic record.

Identification. *Pythonodipsas carinata* (SVL 515–770 mm) can be distinguished by its flattened head and large eyes with vertical pupils (Branch 1998). The collected specimen is similar (~2%) to material from Namibia (GenBank accession: AY188075).

Biology and distribution. This nocturnal snake is commonly found in the rocky desert of Namibia and southwestern Angola (Branch 1998). Nevertheless, Angolan published records are scarce and mostly without accurate locations (Branch et al. 1997). Here, we report on the first three records from Iona NP for a total of only seven records for Angola. The first individual was observed on a rocky hill near Espinheira, the second was found in a dry river valley ~40 km south of Espinheira, and the third on a cliff along the Cunene River near Garota Nova. All the specimens were active at night moving amongst the rocks.

Leptotyphlopidae

Namibiana cf. occidentalis FitzSimons, 1962

Figure 8M

Material examined. ANGOLA – Namibe Province • Pediva camp; −16.2173, 012.5167; 329 m a.s.l.; PEM R25091.

Identification. *Namibiana occidentalis* is a small (maximum SVL 322 mm), slender thread snake previously only known to occur in deserts and arid savannas from the Namibian Kaokoveld to northernNamaqualand in South Africa (Branch 1998). The species is morphologically diagnosable by the absence of the first anterior upper labial and the subvertical nasal suture (FitzSimons 1962).

Biologie and distribution. Here, we report the first record of this species from Angola, collected just north of Pediva, near the northern border of Iona NP, thereby extending the known distribution to north of Cunene River. However, previous work from Namibia suggests that there is cryptic diversity within this group (Adalsteinson et al. 2009). Due to lack of genetic evidence, we tentatively assign this species as *Namibiana cf. occidentalis* with the final identification awaiting further analyses.

Discussion

Over the last two decades, knowledge of Angolan herpetofauna has increased dramatically, and this has brought about new appreciation of the richness and diversity of the region (e.g., Cordylidae [Stanley et al. 2016; Marques et al. 2019b], Gekkonidae [Marques et al. 2021], Ceriaco et al. 2020a, 2020c; Branch et al. 2021; Lobon-Rovira et al. 2021), and Lacertidae (Conradie et al. 2012; Branch et al. 2029; Parrinha et al. 2021)). However, some herpetofaunal groups remain poorly documented and large areas of the country still lack comprehensive survey data (Branch et al. 2019; Huntley et al. 2019). This highlights the importance of compiling updated regional inventories (Conradie et al. 2016, 2021; Baptista et al. 2019b; Butler et al. 2019; Ernst et al. 2020). We provide here the first detailed inventory of the herpetofauna for Iona NP and report the occurrence of five amphibian and 70 reptile species. This study reports new records of 47 species for Iona NP and represents ~75% of all species known from Namibe Province (see Marques et al. 2018). We also report three species never before recorded in Angola (*Pachydaactylus parascutatus, Namibiana cf. occidentalis*, and *Trachylepis sp.*), extend the known range of four endemic species (*Hemidactylus benguelensis*, *Cordylus namakuiyus*, *Lygodactylus nyanecka*, and *Panaspis mocamedensis*), and report on the occurrence of five undescribed species in the genera *Trachylepis* and *Pachydaactylus*. We provide new insights into the biology of poorly known species (such as *Pachydaactylus parascutatus, P. scutatus*, and *P. vanzyli*), and evidence of syntopy for several species (such as *Lygodactylus nyanecka* and *L. lawrencei*).

Iona National Park is one of the most geologically iconic and diverse areas in Angola with a panopoly of geological formations, extending across four main ecological zones. The majority of Iona’s herpetofauna are recognized as either psammophilic or ripiculous, with a few fossorial or arboreal species. Given the habitat and geological heterogeneity, we expected there to be an overall high species richness (e.g., Wiens 2004; Wollenberg Valero et al. 2019). Indeed, we found that the central plains are the most diverse region with 40 species recorded (57% of all species), followed by the mountainous region with 37 species recorded (representing 52%). Both regions have a large variety of soil and rock habitats. There are also 18 species more widely distributed,
occurring in both the mountainous regions and the central plains, with some species spanning an elevational range from sea level to above 2000 m a.s.l (e.g., *Kolekanos plumicaudus*, *Rhoptropus boultoni*, *Agama anchiteae*, and *Bitis arietans*).

Nevertheless, we record several species with distributions that were restricted to only one of these ecological zones. For example, we recorded *Pedioplanis huntleyi* only in the eastern mountainous region, while its sister species *P. haackei* occurs extensively across the central plains. Our data suggests that the mountain ecological zone has the most species that occur only in one zone, despite it being the least explored due to its remoteness and poor accessibility. These results highlight the need for more extensive surveys to assess the biodiversity of the mountain zone and reinforces the importance of comprehensive biogeographic and phylogenetic studies to examine and assess the speciation process in this area more fully.

For many of the specimens collected, we used DNA barcoding to aid in identification to species level (e.g., Vences et al. 2012). Assessment of genetic sequences show that several species are comprised of complexes and show significant intraspecific diversity, and indicates the need for further work (e.g., *Pachydatylus oreophilus*, *P. punctatus*, *P. cf. vanzylzi*, and *P. cf. rugosus*).

The number of snake species (16) reported is much lower than in other regions of Angola (Conradie et al. 2016, 2021; Baptista et al. 2019; Ernst et al. 2019) and neighbouring Namibia (Branch 1998). Some species, such as *Bitis peringueyi* (Boulenger 1888), that have never been reported in Angola (Branch 2018) may occur in Iona NP (Ceríaco et al. 2016a), because of the proximity of records in adjacent Namibia (Branch 1998). Despite several anecdotal observations of conspicuous sand tracks that might belong to this species (B. Bennet and B. Boon unpubl. data 2021), *B. peringueyi* has never been collected or photographed in Angola and it was not included in the list.

Other herpetofauna expected to be present, but not on our list, are the fossorial amphibiaenian lizards (Measey and Tolley 2013). Species of *Monopeltis* and *Zygaspis* are likely to occur in southwestern Angola and potentially inside Iona NP but are typically very cryptic and rarely encountered, even during targeted searches. Similarly, our species listed for Iona NP included a single scolopidphian snake, *Namibiana cf. occidentalis*, although we expect the area to include more members of the Leptocephalidae and Typhloidae, which are also difficult to detect.

While some groups are under-represented in the comprehensive species list, we report a remarkable diversity of gekkonids in this region with 21 recognized species (+3 potentially new species within *P. cf. punctatus* and *P. cf. oreophilus* complexes). Our 21 geckos represent 36% of the recognized reptile diversity in the study area and over the 50% of all Angolan gekkonids. This diversity may be due to high heterogeneity of rocky substrates within Iona NP that may influence gekkonid diversification in the Namib region (Bauer 1999). Iona NP is part of the Namib desert biome, and neighboring Namibia contains 68 recognized gekkonids (Herrmann and Branch 2013). It is expected that additional surveys, phylogenetic analyses, and sophisticated species delimitation approaches will result in an increase in the number of gecko species for the whole region.

As a result of the recent surveys, Iona NP is now recognised as the most herpetologically species-rich conservation area in Angola (Conradie et al. 2016, 2021; Ceríaco et al. 2018b; Baptista et al. 2019a; Ernst et al. 2020) and may be a regionally important area. We believe that the number of species is underestimated, especially for snakes and fossorial species. Armed with improved knowledge, it is likely that conservation planning (e.g., Key Biodiversity Areas and/or Alliance for Zero Extinction sites) for Angola and for Iona NP will help to preserve a unique herpetofauna. This work could promote protection for some CITES protected species and other vulnerable species (e.g., *Kolekanos plumicaudus*).

Acknowledgements

We dedicate this work to two legendary African herpetologists, the late William R. Branch and Wulf Haacke. Both initiated early herpetological work in Angola and their collections not only made this work possible but will also fuel innumerable future works on the herpetofauna of Angola and southern Africa. This work was only possible due to the institutional collaboration with the Ministry of Culture, Tourism and Environment of the Republic of Angola (MCTA), and in particular, the support received by Dr. Albertina Nzuzi, Director of Instituto Nacional de Biodiversidade e Conservação (INBC), and previous partnership under the Ministry of Environment of the Republic of Angola (MINAMB). Material was collected under permits MINAMB 31/ GGPPC/2016, ISCED/001/21. The biodiversity expedition of 2009 was funded by the National Research Foundation of South Africa and the South African National Biodiversity Institute. The mountain survey of 2021 was included in the SCIONA project, having received funding from the European Union under grant agreement FED/2017/394-802, and could not have been carried out without the hard work and organization ensured by Rolf Becker, Ansie Bosnam and Vera de Cauwer. Two additional surveys in 2021 were funded by The Wild Bird Trust through the Bill Branch Memorial Grant OWP015. A very special thanks to the owners of Omauha Lodge, Álvaro and Varito Baptista, for their generous logistical support, friendship and sharing of knowledge. We also thank Fernanda Lages and Vladimir Russo for coordinating institutional relationships and facilitating work authorizations. We especially thank Aaron Bauer in assisting with identifications and providing advice. We thank Ninda Baptista, Telmo Antonio, Octavio Mateus and Miguel Morais for providing useful photographs.
of snakes, habitats, and sea turtles, respectively. JLR is currently supported by Fundação para a Ciência e Tecnologia (FCT) contract PD/BD/140808/2018. We also thanks to CTM workers (specially Susana and Rocio) at CIBIO for their tireless work and support in lab. Finally, we thank African Parks Iona, who entered into a 20-year partnership with the Angolan Government in 2020 and have provide infrastructure and field support for the latest expeditions. This work was supported by the European Union’s Horizon 2020 Research and Innovation Programme under the Grant Agreement Number 857251.

Authors’ Contributions

Conceptualization: PVP, JLR, WC. Data curation: JLR. Formal analysis: JLR. Funding acquisition: KAT, PVP. Investigation: WC, PVP, JLR. Methodology: JLR. Supervision: PVP, WC. Writing – original draft: JLR. Writing – review and editing: SS, WC, KAT, GJM, PVP, FSB, BBe, BBo.

References

Lobón-Rovira et al. | Updated checklist of Iona National Park herpetofauna

