First record of *Camponotus textor* Forel, 1899 (Hymenoptera, Formicidae) from Ecuador

Ignacio J. Moreno-Buitrón', Selene Escobar-Ramírez, Isabel Becdach-Mesia', Diego F. Cisneros-Heredia1,3

1 Universidad San Francisco de Quito USFQ, Colegio de Ciencias Biológicas y Ambientales, Instituto de Biodiversidad Tropical IBOTROP, Laboratorio de Zoología Terrestre, Museo de Zoología, Quito 170901, Ecuador
2 Universita di Bologna, Department of Biological, Geological, and Environmental Sciences, Bologna, Italy
3 Instituto Nacional de Biodiversidad INABIO, Quito, Ecuador

Corresponding authors: Ignacio J. Moreno-Buitrón (ignaciomorenob99@gmail.com); Diego F. Cisneros-Heredia (diego.cisnerosheredia@gmail.com)

Abstract. We present the first records of *Camponotus textor* Forel, 1899 (Hymenoptera, Formicidae) from Ecuador, representing the first records from west of the Andes. We explore the use of participatory science data from iNaturalist and scientific collections to understand the distribution of *C. textor*. While iNaturalist data alone cannot confirm the presence of *C. textor* due to the need for precise morphometric data, it can be a valuable tool for assessing the species’ potential distribution. This study increases Ecuador’s known ant species to 826 and *Camponotus* species to at least 61. Challenges in distinguishing *C. textor* and *C. senex* prevent us from determining *C. textor*’s native status and highlight the need for further research on *Camponotus* in Ecuador.

Key words. Camponotini, distribution, Formicinae, insect, Pacific lowlands, new records, weaver ant

INTRODUCTION

Ants are a group of eusocial insects accounting for more than 14,000 described extant species worldwide (Kass et al. 2022; Bolton 2024). More than 4,000 species and subspecies of ants are recorded in the Neotropics, and research efforts in the last decades have significantly advanced ant diversity characterisation in the region (Cardoso et al. 2010; Achury and Suarez 2017; Fernández et al. 2021; AntWeb 2024a). In Ecuador, recent studies have improved our understanding of the ant fauna, and currently 825 ant species and subspecies have been identified (Guénard et al. 2017; Pazmiño-Palomino and Troya 2022). However, further research is needed to enhance our understanding of regional and local biodiversity patterns and ecological processes of ant communities in this megadiverse country.

Camponotus Mayr, 1861 is the second largest ant genus, after *Pheidole* Westwood, 1839, with over 1,000 described species, further divided into 43 subgenera (Bolton 2024). Given the high morphological variability within *Camponotus*, a general taxonomic characterisation of this group poses challenges (Bolton 1973). *Camponotus* is distributed worldwide and comprises more than 450 species in the Neotropics (Fernández et al. 2021; AntWeb 2024a). Although the diversity of *Camponotus* in Ecuador has not been thoroughly revised, and the literature and specialised databases still have many inconsistencies, at least 60 species and five subspecies of *Camponotus* are known in mainland Ecuador (Salazar et al. 2015; Guénard et al. 2017; Pazmiño-Palomino and Troya 2022). However, further research is needed to enhance our understanding of regional and local biodiversity patterns and ecological processes of ant communities in this megadiverse country.

Camponotus Mayr, 1861 is the second largest ant genus, after *Pheidole* Westwood, 1839, with over 1,000 described species, further divided into 43 subgenera (Bolton 2024). Given the high morphological variability within *Camponotus*, a general taxonomic characterisation of this group poses challenges (Bolton 1973). *Camponotus* is distributed worldwide and comprises more than 450 species in the Neotropics (Fernández et al. 2021; AntWeb 2024a). Although the diversity of *Camponotus* in Ecuador has not been thoroughly revised, and the literature and specialised databases still have many inconsistencies, at least 60 species and five subspecies of *Camponotus* are known in mainland Ecuador (Salazar et al. 2015; Guénard et al. 2017; Pazmiño-Palomino and Troya 2022; AntWeb 2024b).

Camponotus textor Forel, 1899 is a weaver ant that inhabits across the Neotropics, with populations reported in Mexico, Honduras, Costa Rica, Panama, French Guiana, Brazil, and Bolivia (Longino 2006; Ramalho et al. 2017; Dáttilo et al. 2020; AntWeb 2023a). *Camponotus textor* was previously considered a subspecies of the cavity-dwelling *C. senex* (Smith, 1858), until Longino (2006) validated it as a separate species. Its recognition as a distinctive species is currently supported by morphological, behavioural, ecological, biochemical (cuticular hydrocarbons), and molecular traits (Longino 2006; Ramalho et al. 2016a, Fox et al. 2017).

Traditional biodiversity data sources, such as museums and field surveys, are invaluable. However, these sources alone often struggle to keep pace with the vastness and complexity of ant diversity, making participative science an invaluable tool for researchers (Lucky et al. 2014). Thanks to the digital revolution,
participative science now plays a crucial role in expanding our understanding of ant diversity by engaging a large number of people (Braschler 2009; Lucky et al. 2014; Sorvari 2022). This broad participation expands the geographical and temporal scope of biodiversity data collection efforts, providing data points that researchers may not otherwise have access, including the identification and monitoring of rare ants or the early detection of non-native species (Sheard et al. 2020; Báthori et al. 2022).

In this contribution, we present the first records of *C. textor* from Ecuador, based on specimens collected during fieldwork in the Pacific lowlands, and explore the potential of participative science in detecting this species.

RESULTS

We conducted field expeditions to agricultural landscapes without remains of native forests nearby, and close to small human settlements in the Pacific lowlands of central Ecuador. Specimens were collected at two private farms: Hacienda La Chelita (HLC, −00.6170, −79.4689, 150 m elevation) and Hacienda Santa Teresa (HST, 00.5977, −79.3903, 170 m elevation), in Los Ríos province, Ecuador.

Access to HLC was through the main street of the town of Los Ángeles, on the Troncal de la Costa highway connecting the cities of Santo Domingo de los Colorados and Quevedo. HST is 9 km northeast of HLC, 3 km after the town of Patricia Pilar on the Troncal de la Costa highway. Both farms have small houses surrounded by maize, cocoa trees, and African oil palm plantations. Since the early 1960s, intensive agricultural activities have eliminated all native vegetation, including secondary forests and shrublands. The closest area with native vegetation is approximately 30 km E (Samama Mumbes Wildlife Refuge). Both sites have average temperatures ranging from 22 to 24 °C and over 2,400 mm of annual precipitation, with a wet season between December and May and a dry season between June and November (Caicedo-Camposano et al. 2016). Three surveys were carried out: 9 October 2022 (HLC), 19 February 2023 (HLC), and 20 May 2023 (HST). One hour of sampling effort was dedicated to each survey. These surveys were conducted under the authorization for specimens collection no. MAAE-ARSFC-2022-2203, issued by the Ministry of Environment, Water and Ecological Transition of Ecuador.

A total of 13 worker specimens were collected manually using entomological forceps and deposited in tubes with 70% ethanol. All collected specimens were dry-mounted and deposited at the Museo de Zoología, Universidad San Francisco de Quito, Quito, Ecuador (ZSFQ). Specimens were identified based on morphological and morphometric features following the guidelines of Fernández (2003) for genus identification, Longino (2006) and Mackay (2019) for subgenus identification, and Fox et al. (2017) for species identification. Specimens were examined using an Olympus SZX16 stereomicroscope and photographed with an attached Olympus DP73 digital camera. Eye length was measured between the anterior and posterior eye borders using cellSens Dimension v. 1.16. Measurements were made using photographs of all 13 workers in lateral view.

Occurrence data for *C. textor* from the Neotropics were obtained from iNaturalist, a participative science online portal by the California Academy of Science and National Geographic. Data search and extraction for iNaturalist were conducted on 20 September 2023 using the search terms “Camponotus textor” in the “Search” filter. We validated the taxonomic identification of each observation uploaded to iNaturalist and compiled geographic data, individually confirming all localities following the protocols described by Cisneros-Heredia and Peñaherrera-Romero (2020), and Cisneros-Heredia et al. (2023). iNaturalist data used for this study are available here: https://doi.org/10.5281/zenodo.10869127

To create the map showing the distribution of *C. textor*, we downloaded all occurrences available in the Global Biodiversity Information Facility (GBIF), excluding data from iNaturalist. Data search and extraction from GBIF were conducted on 26 July 2023 using the search terms “Camponotus textor” in the “scientific name” filter. These GBIF occurrences correspond to validated, vouchered records from the California Academy of Sciences, The International Barcode of Life Consortium, the European Nucleotide Archive EMBL-EBI, and the Instituto de Ecología INECOL of Mexico. GBIF data used for map creation are available here: https://doi.org/10.5456/ddi.89w2yw

METHODS

We conducted field expeditions to agricultural landscapes without remains of native forests nearby, and close to small human settlements in the Pacific lowlands of central Ecuador. Specimens were collected at two private farms: Hacienda La Chelita (HLC, −00.6170, −79.4689, 150 m elevation) and Hacienda Santa Teresa (HST, 00.5977, −79.3903, 170 m elevation), in Los Ríos province, Ecuador.

Access to HLC was through the main street of the town of Los Ángeles, on the Troncal de la Costa highway connecting the cities of Santo Domingo de los Colorados and Quevedo. HST is 9 km northeast of HLC, 3 km after the town of Patricia Pilar on the Troncal de la Costa highway. Both farms have small houses surrounded by maize, cocoa trees, and African oil palm plantations. Since the early 1960s, intensive agricultural activities have eliminated all native vegetation, including secondary forests and shrublands. The closest area with native vegetation is approximately 30 km E (Samama Mumbes Wildlife Refuge). Both sites have average temperatures ranging from 22 to 24 °C and over 2,400 mm of annual precipitation, with a wet season between December and May and a dry season between June and November (Caicedo-Camposano et al. 2016). Three surveys were carried out: 9 October 2022 (HLC), 19 February 2023 (HLC), and 20 May 2023 (HST). One hour of sampling effort was dedicated to each survey. These surveys were conducted under the authorization for specimens collection no. MAAE-ARSFC-2022-2203, issued by the Ministry of Environment, Water and Ecological Transition of Ecuador.

A total of 13 worker specimens were collected manually using entomological forceps and deposited in tubes with 70% ethanol. All collected specimens were dry-mounted and deposited at the Museo de Zoología, Universidad San Francisco de Quito, Quito, Ecuador (ZSFQ). Specimens were identified based on morphological and morphometric features following the guidelines of Fernández (2003) for genus identification, Longino (2006) and Mackay (2019) for subgenus identification, and Fox et al. (2017) for species identification. Specimens were examined using an Olympus SZX16 stereomicroscope and photographed with an attached Olympus DP73 digital camera. Eye length was measured between the anterior and posterior eye borders using cellSens Dimension v. 1.16. Measurements were made using photographs of all 13 workers in lateral view.

Occurrence data for *C. textor* from the Neotropics were obtained from iNaturalist, a participative science online portal by the California Academy of Science and National Geographic. Data search and extraction for iNaturalist were conducted on 20 September 2023 using the search terms “Camponotus textor” in the “Search” filter. We validated the taxonomic identification of each observation uploaded to iNaturalist and compiled geographic data, individually confirming all localities following the protocols described by Cisneros-Heredia and Peñaherrera-Romero (2020), and Cisneros-Heredia et al. (2023). iNaturalist data used for this study are available here: https://doi.org/10.5281/zenodo.10869127

To create the map showing the distribution of *C. textor*, we downloaded all occurrences available in the Global Biodiversity Information Facility (GBIF), excluding data from iNaturalist. Data search and extraction from GBIF were conducted on 26 July 2023 using the search terms “Camponotus textor” in the “scientific name” filter. These GBIF occurrences correspond to validated, vouchered records from the California Academy of Sciences, The International Barcode of Life Consortium, the European Nucleotide Archive EMBL-EBI, and the Instituto de Ecología INECOL of Mexico. GBIF data used for map creation are available here: https://doi.org/10.5456/ddi.89w2yw

RESULTS

Camponotus textor Forel, 1899

New records. ECUADOR – Los Ríos • Los Ángeles, Hacienda La Chelita; −00.6170, −79.4689, 150 m alt.; 09.X.2022; J. Montalvo & I. J. Moreno-Buitrón; hand collected, 1 ♂, ZSFQ-11759, dry preserved • same locality; 19.II.2023; J. Montalvo & I. J. Moreno-Buitrón; hand collected, 1 ♂, ZSFQ-11759, dry preserved; 3 ♀, ZSFQ-11748, dry preserved; 3 ♀, ZSFQ-11749, dry preserved • Patricia Pilar, Hacienda Santa Teresa; −00.5977, −79.3903, 170 m alt.; 20.V.2023; J. Montalvo & I. J. Moreno-Buitrón; hand collected, 3 ♀, ZSFQ-11755, dry preserved.

All collected specimens were workers (11 minor workers and two major workers). Ants were active
during the morning and afternoon hours. At night, ants were inactive, and instead, *Acromyrmex* leaf cutter ants were seen in the same trails and locations used by *C. textor* workers during the day at HLC. No foraging behaviours were observed at HLC, while at HST, several workers were seen drinking water in a small plastic container near the nest. Other ant species found in sympatry with *C. textor* at both localities include *Acromyrmex* spp., *Atta* spp., *Odontomachus* spp., *Tapinoma melanocephalum* (Fabricius, 1793), *Eciton hamatum* spp., *Crematogaster* spp., and *Paratrechina longicornis* (Latreille, 1802). A silk nest of *C. textor* was found on top of a palm tree (*Arecaceae: Bentickia* sp.) at HST on 20 May 2023. The nest was about 60 cm long and approximately 4 m from the ground, built in a single palm leaf. A separate, smaller part of the nest was found in a different leaf from the same palm tree, but it seemed to be abandoned, as no ants were seen there.

Identification. We identified these specimens as *Camponotus* based on the following characteristics: posterior margin of clypeus apart from antennal alveoli by a distance equal to or greater than the diameter of alveoli and closure of metapleural gland (Fernández 2003). Specimens were identified as members of the subgenus *Myrmobrachys* Forel, 1912 because all workers exhibited a box-like propodeum with a broad, subrectangular dorsal face and the presence of gastral pubescence, a common feature in most species of *Myrmobrachys* (Longino 2006; Mackay 2019). One key characteristic differentiating *C. textor* from *C. senex* is the presence of appressed dense yellow pubescence on the gaster, giving *C. textor* a yellowish-golden colouration (Figure 1) (Longino 2006). Workers of *C. textor* generally have more reddish legs than *C. senex* workers (Figure 1) (Fox et al. 2017). However, leg colour in *Camponotus* spp. can be variable (Longino 2006), so eye length is the most useful characteristic for differentiating *C. textor* and *C. senex* (Fox et al. 2017). Eye length in *C. textor* workers ranges from 0.44–0.51 mm, while in *C. senex* workers is 0.50–0.65 mm (Fox et al. 2017). All specimens examined for this study showed dense yellow pubescence on the gaster, reddish legs (Figure 1), and eye length 0.42–0.49 mm (0.45 ± 0.02 mm, n = 13). Additionally, while *C. senex* is a species with high worker polymorphism, *C. textor* exhibits low worker polymorphism, as major workers are only slightly larger than minor workers (Longino 2006). Two workers collected at HST are most likely major workers, as they are slightly larger than the other collected workers. Also, the nest of *C. textor* is diagnostic, being a weaver ant building silk nests attached to leaves hanging from trees (Figure 2) (Longino 2006; Santos et al. 2016; Ramalho et al. 2016a). In contrast, *C. senex* is an opportunistic cavity nester, building nests in dead branches and twigs scattered on leaf litter (Longino 2006; Ramalho et al. 2016a).

A total of 27 observations identified as *C. textor* were obtained from pictures in iNaturalist from the Neotropics, 10 of which were from Ecuador. These observations showed *Camponotus (Myrmobrachys)*...
ants with reddish legs and golden gaster. However, confirming the presence of *C. textor* based solely on photographs can be challenging. Eye length is the most reliable characteristic for distinguishing *C. textor* from *C. senex*, and it is not easy to measure in field-obtained photographs. We refrained from reporting the iNaturalist observations as confirmed records for *C. textor*. Nevertheless, iNaturalist observations suggest that the species occurrence in Ecuador is wider than can be inferred from our sampling in the Los Ríos province. Nine iNaturalist observations in Ecuador were from the Pacific lowlands, in the provinces of Los Ríos and El Oro, at elevations ranging from 10 to 490 m. One observation was from the inter-Andean valley in the Pichincha province at 2500 m. In addition to the Ecuadorian records, an observation of *C. textor* from Peru is also present in iNaturalist, from the Grapanazu sector, near Abra La Esperanza, Huancabamba district (iNaturalist 2022).

DISCUSSION

The records presented here are the first of *Camponotus textor* from Ecuador and the first west of the Andes, extending the geographic range of *C. textor* by approximately 1042 km from the nearest previously known locality (Platanilla, Panama; Figure 3) (AntWeb 2023b; GBIF.org 2023). *Camponotus textor* has been recorded in Central America (Honduras, Mexico, Costa Rica, and Panama; Longino 2006; Ramalho et al. 2017; Dáttilo et al. 2020) and South America (eastern Brazil, Bolivia, and French Guiana; Ramalho et al. 2017; AntWeb 2023a), making Panama the closest country to Ecuador in which *C. textor* is known (Figure 3). Given that *C. textor* was previously considered a subspecies of *C. senex* (Longino 2006, Ramalho et al. 2016a; Ramalho et al. 2016b), records of *C. senex* should be reviewed across its distribution to confirm its identification and avoid confusion with *C. textor*. *Camponotus senex* is considered a native species in several Central American countries and has also been reported in Venezuela, French Guiana, Guyana, Colombia, Peru, Ecuador, and Argentina (Escalante-Gutiérrez 1993; Fernández and Sendoya 2004; Longino 2006; Salazar et al. 2015; Franco et al. 2019). The paucity of information on the distribution of *C. textor*...
and the possible confusion with older records reported as *C. senex* in northern South America prevent us from determining if *C. textor* is native to Ecuador (and previously confused with *C. senex*) or corresponds to a non-native species recently introduced in the country. This situation is further exacerbated by the few records and scientific collections of ants made in the Pacific lowlands of Ecuador (Salazar et al. 2015). Species richness and composition of ant communities from western Ecuador are still poorly known (Salazar et al. 2015; Pazmiño-Palomino and Troya 2022; Salazar-Basurto et al. 2023).

Although participatory science data plays a significant role in providing geographic data for ant species (e.g., Salazar-Basurto et al. 2023), it is essential that identification characters can be clearly discernible in photographic records uploaded on participatory science platforms. Since *C. textor* and *C. senex* are cryptic species (Longino 2006; Ramalho et al. 2016a; Fox et al. 2017), key morphological characteristics used to diagnose *C. textor* are best observed in photographs taken under stereomicroscopic magnification (Fox et al. 2017), thus making their identification using field-taken photographs challenging. However, participatory science records could be valuable for identifying potential new locations where *C. textor* could be found.

Based on the data on iNaturalist for the provinces of El Oro and Pichincha, we recommend a survey to uncover the species of *Camponotus* present here.

Even though Longino (2006) reported that *C. textor* inhabits mature forest canopy, all our records come from agricultural lands, suggesting that *C. textor* may adapt to disturbed landscapes. Santos et al. (2016) reported that *C. textor* can build its nests on 24 plant species belonging to 14 families, some of them being economically important plants, such as mango and citrus trees. Our record of a nest of *C. textor* on an introduced cultivated palm *Bentinckia* sp. adds another host plant for this weaver ant.

Taxonomic changes, like the separation of cryptic taxa previously considered as the same species, make it difficult to provide a precise number for species of *Camponotus* in Ecuador, as there are several inconsistencies across different lists and online databases. For example, *Camponotus apicalis* is not reported by Salazar et al. 2015, but is considered a valid species for Ecuador in Fernández and Sendoya (2004), Guénard et al. (2017) and AntWeb (2024b). This discrepancy is due to its taxonomic status, since *C. apicalis* is considered a senior synonym of *Camponotus wheeleri* (Fernández 2002; AntWeb 2023c). Fernández (2002) reported *C. apicalis* as a junior synonym of *C. wheeleri*, Fernández and Sendoya (2004) reported both *C. apicalis* but not *C. wheeleri*, Salazar et al. (2015) reported *C. wheeleri* but not *C. apicalis*, and the databases GABI (Global Ant Biodiversity Informatics) (Guénard et al. 2017) and AntWeb (2024b) reported both...
C. apicalis and C. wheeleri for Ecuador. We suggest that further efforts should focus on a comprehensive revision of the genus Camponotus in Ecuador.

Our study highlights the importance of combining scientific collections and participatory science data to provide helpful information for identifying cryptic species. Although it is not possible to certainly identify observations from iNaturalist as C. textor, participative data can still be used as a first approach for assessing the potential distribution of this species in territories where they have not been previously reported (Báthori et al. 2022). While analyses based on morphological, ecological, behavioural, and molecular data are important to understand better the evolutionary relationships and taxonomy of Camponotus textor, participative data based on non-expert observations can aid in documenting this and other rare or poorly studied taxa. Further research on Camponotus ants in Ecuador should focus on their ecology. The ecological roles of C. textor need to be assessed to understand its impacts on agricultural ecosystems. Some carpenter ants have been reported as structural pests destroying wooden frameworks and electrical installations (e.g., Camponotus pennsylvanicus (De Geer, 1773) (Bueno and Campos-Farinha 1999); ecological facilitators of agricultural pests due to their aggressive behaviour safeguarding Homoptera (e.g., Camponotus rufipes (Fabricius, 1775) and Camponotus brasiliensis Mayr, 1862, Fowler 1991); or pest of honeybee colonies (e.g., Camponotus floridanus (Buckley, 1866), Akre and Hansen 1990). Carpenter ants may also be potential biocontrol agents in agricultural systems, with Camponotus senex demonstrating high efficiency in removing herbivores in mango trees (Santos et al. 2016) and reducing pests in shaded coffee (Philpott et al. 2004, 2005). Further analysis and research could provide insight into the role of C. textor both as a potential pest and a biological pest control agent in agricultural systems.

ACKNOWLEDGEMENTS

We are grateful to the owners of Hacienda La Chelita and Hacienda Santa Teresa for their hospitality and for granting us complete access to their properties for carrying out this research project, especially Jaime Andrade, Emma Andrade, Hilda Andrade, Walter Andrade, Nancy Andrade, María Fernanda Andrade, and Manuel León. We thank the staff of the Laboratory of Terrestrial Zoology, Institute of Tropical Biodiversity IBIOTROP, Universidad San Francisco de Quito USFQ (Ecuador) for their assistance during our use of its high magnification stereomicroscopy equipment and museum facilities, and the support offered by Margarita López-García, Emilia Peñaherrera, and Jorge Montalvo at the Museum of Zoology of Universidad San Francisco de Quito. Nelson Miranda, professor at USFQ and curator of the Herbarium of Economic Botany of Ecuador, helped us identify the host palm where the nest of C. textor was found. We thank Emilia Peñaherrera and Naia Andrade for their help with the map.

ADDITIONAL INFORMATION

Conflict of interest
The authors declare that no competing interests exist.

Ethical statement
This study was authorised by the Ministry of Environment, Water and Ecological Transition of Ecuador (no. MAAE-ARSFC-2022-2203)

Funding
This study was financially supported by Universidad San Francisco de Quito USFQ, through research, outreach and operative funds assigned to the Institute of Tropical Biodiversity IBIOTROP, and a publication grant awarded to Diego F. Cisneros-Heredia by the office of the Dean of Research.

Author contributions
Conceptualization: IJMB, SER, DFCH. Data curation: IJMB. Formal analysis: IJMB, DFCH. Funding acquisition: DFCH. Investigation: IJMB, DFCH. Methodology: IJMB, DFCH. Resources: IJMB, DFCH. Supervision: SER, DFCH. Visualization: IJMB. Project administration: IJMB. Validation: IJMB, SER, DFCH. Writing – original draft: IJMB, SER, IBM, DFCH. Writing – review and editing: IJMB, SER, IBM, DFCH.

Author ORCID iDs
Ignacio J. Moreno-Buitrón https://orcid.org/0009-0003-1067-7760
Selene Escobar-Ramírez https://orcid.org/0000-0002-1603-4710
Isabel Becdach-Mesia https://orcid.org/0009-0004-4626-501X
Diego F. Cisneros-Heredia https://orcid.org/0000-0002-6132-2738

Data availability
All data supporting this study's findings are available in the main text and the following depositories: https://doi.org/10.5281/zenodo.10869127 and https://doi.org/10.15468/dl.89w2yw.
REFERENCES

Báthori F, Jegh T, Csósz S (2022) Formerly considered rare, the ant species Cryptopone ochracea (Mayr, 1855) can be commonly detected using citizen-science tools. Biodiversity Data Journal 10: e83117. https://doi.org/10.3897/bdj.10.e83117

Cisneros-Heredia DF, Peña-Herrera E, Musschenga M (2023c) Formerly considered rare, the ant species Cryptopone ochracea (Mayr, 1855) can be commonly detected using citizen-science tools. Biodiversity Data Journal 10: e83117. https://doi.org/10.3897/bdj.10.e83117

Moreno-Buitrón et al. · Camponotus textor in Ecuador

Check List 20 (3) · https://doi.org/10.15560/20.3.577

