Range extension and the northern limit of the Chilean endemic *Anabittacus iridipennis* Kimmins, 1929 (Mecoptera, Bittacidae), with an updated distribution and biological notes

Rodrigo M. Barahona-Segovia, Javiera Chinga, Josefina Hepp

1 Departamento de Ciencias Biólogicas y Biodiversidad, Universidad de Los Lagos, Osorno, Chile • rodrigo.barahona@ulagos.cl, rbarahona13@gmail.com

2 Centre of Applied Ecology and Sustainability (CAPES), Santiago, Chile • javierab.ch@gmail.com

3 Coastal Social—Ecological Millennium Institute (SECOS), Santiago, Chile

4 Fundación Chilco, María Pinto, Chile • josefinahepp@gmail.com

* Corresponding author

Abstract. Chile has six species of Mecoptera, among which is *Anabittacus iridipennis* Kimmins, 1929. The genus *Anabittacus* Kimmins, 1929 (family Bittacidae) is monotypic and highly endemic to the southern part of the country. Here, we report two new localities for the rare *A. iridipennis* in southern Chile, specifically in the Los Ríos Region. Our new data extend the northern geographical limits of this species from the locality type. We provide a detailed diagnosis of this species and notes about the biology and the habitat of this enigmatic species.

Keywords. *Bittacus*, hanging flies, Los Ríos, southern Chile, Valdivian Forest

Introduction

Hangingflies (Bittacidae) are the most diverse family of Mecoptera in the Neotropical realm with 72 valid species grouped into seven genera: *Anabittacus* Kimmins, 1929 (one species; Kimmins 1929); *Bittacus* Latreille, 1805 (40 species; Machado et al. 2009, 2018; Machado 2019); *Eremobittacus* Byers, 1997 (two species; Byers 2011); *Issikiella* Byers, 1972 (five species; Machado et al. 2009); *Kalobittacus* Esben-Petersen, 1914 (nine species; Rodriguez-Rojas 2016); *Nannobittacus* Esben-Petersen, 1927 (five species; Byers and Roggero 1992), and *Pazius* Navás, 1913 (10 species; Lima and Dias 2016). Bittacidae are predators of mainly of soft-bodied insects such as flies or aphids, but bittacids also feed on like spiders, pollen, fruit juices, and probably carrion (Byers and Thornhill 1983). Hangingflies inhabit mainly forest ecosystems where they are associated with the understory and where the females drop their eggs on litter (Byers and Thornhill 1983).

Anabittacus is monotypic and is the most enigmatic genus of the family Bittacidae in the Neotropics. The sole species, *A. iridipennis* Kimmins, 1929, was at one time phylogenetically placed at the base of the evolution within the family (Penny 1975). Recently, new evidence of this basal position of *A. iridipennis* among extant Bittacidae was given by Bashkuev (2023), which included on tarsal armament and wing venation, as well as male and female terminalia; Bashkuev (2023) positioned the species close to the fossil genera *Antiquanabittacus* Petrulevičius & Jarzembowski, 2004 and *Liaobittacus* Ren, 1993.

Anabittacus iridipennis has been scarcely collected since its original description, and confirmed individuals are restricted to several localities in the Los Lagos Region of southern Chile (Kimmins 1929; Machado et al. 2009). The biology and ecology of this species are unknown. Here, we extend the geographic range of *A.*
iridipennis northward in the Los Ríos Region. We also provide an updated range map and notes on the biology and habitat of this species.

Methods
We collected individuals of hangingflies at three new localities: Valdivia Province (39°48′51″S, 073°14′45″W), Ancud, Chiloé Province (41°54′11.23″S, 073°54′32.68″W), and Fierro Comau, Palena Province (42°28′20.75″S, 072°22′44.66″W); all sampling was conducted during the austral summers of 2020 and 2023. All localities have a temperate climate with high precipitation and low temperatures in fall and winter, and a dry summer, especially during January and February. The native forest in Valdivia Province is comprised of Nothofagus Blume spp. (Nothофagaceae), Myrcygenia O.Berg and Luma apiculata (DC) Burret (Myrtaceae), together with Aextoxicum punctatum Ruiz & Pav. (Aextoxicaceae) and Embothrium coccinum J.R.Forst. & G.Forst. (Proteaceae). The native forests in Ancud have a similar composition to the forests in Valdivia Province. On the other hand, in Caleta Porcelana, the dominant trees are Nothofagus dombei (Mirb.) Oerst., Myrcygenia planipes (Hook. & Arn.) O.Berg, L. apiculata, and Drimys winteri J.R.Forst. & G. Forst. (Winteraceae). In both localities, the forest has a developed understory with Aristotelia chilensis (Molina) Stuntz (Elaeocarpaceae) and several Chusquea Kunth spp. (Poaceae).

Hangingfly individuals were collected by hand after beating the understory using an entomological umbrella. The samples were stored in 90% alcohol in the entomological collection of the Universidad de Los Lagos (ULA, Osorno, Chile). Photographs of the live hangingflies were taken with an Olympus OM-D E-M5 Mark III camera with a 60 mm macro lens, while the dead insect was photographed with a Sony A6600 with a Laowa 65mm 2× lens and Meike flashes. The distribution map was constructed from records in the literature and was created with QGIS v. 3.32.2 (QGIS Development Office 2023). The extant of occurrence (EOO) and area of occupancy (AOO) were determined with “ConR” (Dauby et al. 2017) using R v.2022.07.2 software (R Development Core Team 2022). The distribution map was created with QGis v. 3.32.2 (QGIS Development team 2022).

We used the original description of Kimmins (1929) to initially identify the collected individuals. We verified our determination using the keys by Penny and Byers (1979) and Machado et al. (2009). The terminology used in the identification section follows Machado et al. (2018) and Zhang et al. (2020).

Results
Order Mecoptera Hyatt & Arms, 1891
Family Bittacidae Handlirsch, 1906

Genus Anabittacus Kimmins, 1929
Kimmins 1929:192 (original description); Smithers 1973: 300 (Australian Mecoptera); Penny 1975: 341 (evolution), fig. 6B (wing); Penny and Byers 1979: 363 (key), figs. 1–5 (male terminalia); Byers and Thornbill 1983: 204 (biology); Petrulevičius 2003: 258 (systematic paleontology); Petrulevičius and Jarzembowski 2004: 1197 (systematic paleontology); Petrulevičius et al. 2007: 146 (systematic paleontology); Machado et al. 2009: 36 (checklist); Tan and Hua 2009: 28 (key); Hünefeld and Beutel 2012: 235 (biology of Nannochorista); Yang et al. 2012: 200 (systematic paleontology).

Anabittacus iridipennis Kimmins, 1929
Figures 1A–F, 2A, B
Kimmins 1929: 192 (description); Byers 1965: 136 (male terminalia), figs. 1–5 (male terminalia); Penny and Byers 1979a: 363 (key); Penny and Byers 1979b: 366 (checklist); Machado et al. 2009: 36 (checklist); Bashkuev 2023: 1 (description and comparison with fossil Mecoptera).

New records. CHILE – Valdivia • Valdivia, Parque Oncon; 39°42′10″S, 073°18′21″W; 537 m a.s.l.; 12.I.2020; R. Barahona-Segovia leg.; caught by hand; 1 ♀, MEC001/ULA • Corral, Reserva Costera Valdiviana; 39°59′42″S, 073°34′40″W; 362 m a.s.l.; 13.I.2007; Elizabeth Arias leg.; 1 sex indet., EMEC106576 • same locality; 39°59′42″S, 073°34′40″W; 362 m a.s.l.; 13.I.2007; Elizabeth Arias leg.; 1 sex indet., EMEC106576 – Llanqui­hue • Pargua; [41°47′27″S, 073°27′20″W, 20 m a.s.l.]; 30.XI.1966; J. Solervicens leg.; sex indet., MZUC – Chiloé • Ancud, Agrosol; 41°54′11″S, 073°54′32″W, 148 m a.s.l.; 18.I.2017; Rodrigo Barahona-Segovia leg.; caught by hand; 1 ♀, MEC002/ULA • Ancud, Chepu; 42°02′34″S, 074°00′30″W; 33 m a.s.l.; 12.II.2021; Ricardo Varela Leg.; sex indet., photograph only – Palena • Río Vuduhue, Placeta, Caleta Porcelana; 42°28′20″S, 072°22′44″W; 256 m a.s.l.; 9.I.2017; Rodrigo Barahona-Segovia, Javiera Chinga & Josefinna Hepp leg.; caught by hand; 1 ♀, MEC003/ULA (Fig. 2).

Other specimens. CHILE – Osorno • Puheue National Park, Aguas Calientes; 40°44′07″S, 072°18′42″W; 5.XI.1987; 496 m a.s.l.; B.R. Stuckenberg leg.; 1 sex indet., NMSA-Mec975 – Llanquihue • Puerto Varas, 3 km NW of Ensenada; 41°10′59″S, 072°31′59″W; 92 m a.s.l.; 29.I.1998; N. Woodyle leg.; GenBank MN345193; 1 sex indet., USNM01639692.1 • same locality; 41°10′59″S, 072°31′59″W; 92 m a.s.l.; 29.I.1998; N.
Figure 1. *Anabittacus iridipennis* Kimmins, 1929.
A. Lateral view. B. Details of thoracic segments and legs, lateral view. C. Details of the head, frontal view. D. Fore wing. E. Hind wing. F. Female terminalia. Ce = Cercus; SaP = subanal plate; SgP = subgenital plate; T(number) = tergites.
Woodley leg.; 1 sex indet., USNMENT01454480 • Llanquihue, Peulla; [41°05′S, 072°00′W; 323 m a.s.l.]; 12–13. XII.1926; F. & M. Edwards leg.; 1 sex indet., record 686039, NHMUK • Llanquihue, Casa Pangue; [41°2′S, 071°52′W; 387 m a.s.l.]; 4–10. XII.1926; F. & M. Edwards leg.; 1 sex indet., NHMUK010729837 • Lago Chapo, Hornohuincu; [41°24′S, 072°38′W; 369 m a.s.l.]; 1 sex indet., INPA • Alerce Andino National Park; [41°34′S, 072°32′W]; 10–11. I.2014; E. Lukashevich & D. Sherbakov leg. – Chiloé • Huillinco, Puente La Caldera; 42°40′0′01″S, 074°00′48″W; 16 m a.s.l.; 26. XII.1993; C. Flint & O. Flint leg.; GeneBank MN346030; 1 sex indet., USNMENT01454479 • same locality; 42°40′0′01″S, 074°00′48″W; 16 m a.s.l.; 26. XII.1993; C. Flint & O. Flint leg.; 1 sex indet., USNMENT01639691.1 • 11km SE of Chonchi, on road to Queilen; 42°37′12″S, 073°46′36″W; 8. XII.1987; B.R. Stuckenberg leg.; 1 sex indet., NMSA-Mec972; 1 sex indet., NMSA-Mec973; 1 sex indet., NMSA-Mec974.

Diagnoses. *Anabittacus iridipennis* is the only species in its genus. According to Kimmins (1929), Penny and Byers (1979), and Machado et al. (2009), this species can be differentiated from those in other bittacid genera because vein M₄ in the forewing arises at the first fork of M and cross veins of pterostigma are absent (Figs. 2D). Here we redescribed this species based on the diagnosis provided by Kimmins (1929) and our collected specimens.

Redescription. Head reddish-brown; ocellar triangle black, with three prominent red ocelli. Antennae reddish-brown and as long as forewings (Fig. 1C). Scape wider than pedicel; first flagellomere longer than scape and pedicel combined. Each flagellomere with short, darkish setae. Both the labrum and the distal part of the maxillary and labial palps are brownish, with many brownish setae. Eyes darkish (Fig. 1C).

Pronotum, mesonotum, and metanotum reddish-brown with a black medial stripe along the length of thorax and reaching posterior margin of scutellum (Fig. 2A). Pleura unevenly pale yellowish, with a black stripe running entire length (Figs. 1A, 2A). Femora brownish-yellow (Figs. 1B, C, 2B). Tibiae brownish, with 5–11 setae sparsely distributed on lateral side, and with two strong tibial spurs on distal part (Figs. 1B, C, 2A, B). Tarsi brownish. First tarsomere of the fore legs twice length of first tarsomere of hind legs, and with some black setae (Figs. 1A–C). First tarsomeres of mid- and hind legs ¼ longer than the second tarsomere (Figs. 1B, C, 2A–B). Hyaline wings with pterostigma at apex of cell r₁ and near apices of cell r₂ and without cross-vein near the apex of vein R₁ (Fig. 1D). Subcostal cross-vein of hind wing extends slightly beyond fork of radial sector; fork of M far beyond that.

Abdomen reddish-brown and twice as long as thorax. Tergites pale brownish-yellow with anterior margins blackish and medial black stripe (Fig. 1A, 1F). Sternites pale yellow, without black marks. Abdominal segments in older individuals brownish (Figs. 1B, C). Female terminalia with 9th tergite, cercus, and subanal plate yellowish, covered of dozens of fine, yellowish piles. Cerci slightly longer than subanal plate. Subgenital plate reddish, equal in length to subanal plate.

Biological notes. *Anabittacus iridipennis* inhabit native forests with trees approximately 20–30 m high. These native forests cooler than in the matrix and along unforested roads, and they present a well-developed understory with high structural complexity. Plant species such as *Ugni molinae* Turcz., *Aristotelia chilensis* (Molina) Stuntz and *Chusquea* spp. are characteristic of the understory inhabited by *A. iridipennis*. The forest floor is completely covered by leaf litter. An individual of *A. iridipennis* was observed feeding on a female of *Dilophus* sp. (Bibionidae) at midday in Los Ríos Region. A couple of individuals (not captured) were observed mating in a *Myrceugenia* sp. near the forest floor.
Distribution. The species is endemic to Chile and restricted to the Los Ríos and Los Lagos regions. The EOO was calculated as 37,412 km², and AOO is 48 km². There are 12 subpopulations known (Fig. 3).

Discussion

The geographic range of *A. iridipennis* is extended 189 km northwest from the type locality at Peulla to Oncol Park in the Los Ríos Region (Fig. 3). The new records of this hangingfly species in the Valdivian Forest represent the northernmost limits of this species; however, *A. iridipennis* may occur farther to the north, as do other taxa of Valdivian origin such as rodents and marsupials (Saavedra and Simonetti 2001), giant leeches, snails (Barahona-Segovia et al. 2019, 2021), frogs (Cuevas & Cifuentes 2011), and bats (Rodríguez-San Pedro et al. 2015). In fact, Byers (1965) mentioned other northern localities as Enco (Los Ríos Region) or Palo Botado (Biobío Region), but all of these records are unconfirmed because repository information is not available. Interestingly *A. iridipennis* has not been recorded in the Valdivian Forest in the coastal range between these new northern limits and Pargua (approximately 200 km in straight line); this coastal range retains large patches of native forest. There is a possibility that *A. iridipennis* might also occur *Nothofagus* forests in Argentina. Additional specimens could bring us better ecological data to support the modeling of this species’ distribution and fill the spatial gaps in the distribution of this scarce mecopteran.

The biology and ecology of many hangingfly species are unknown (Byers and Thornhill 1983). *Anabittacus iridipennis* is not a very abundant mecopteran, and the few specimens collected have been caught in Malaise traps or by hand in the understory. Not only does this habitat offer a high diversity and availability of soft-bodied insects as prey, but it is also a suitable place to find a mate, breed, and lay eggs. A single specimen was collected in Palena Province in *Nothofagus* forest having an understory of Chilean bamboo (*Chusquea* spp.) where this specimen was observed waiting for flying soft-bodied insects. In Chiloé, two other *A. iridipennis* (not captured) were observed mating and hanging from a branch of *Myrceugenia* sp. near the ground. According to Byers and Thornhill (1983), leaf litter the likely place that eggs are deposited, although it seems that the development of the eggs and larvae would depend on the ambient temperatures. A third individual (collected) was feeding on a *Dilophus* (Bibionidae) on a juvenile *Myrceugenia* sp. in Parque Oncol. In all cases, the individuals collected or observed were using the understory.
More field studies on *A. iridipennis* are required to better understand how in the understory influences this species' abundance and occurrence.

Acknowledgements

We are grateful to the Fundación Chilco and Fundación Alerce 3000 (http://www.fundacionalerce3000.cl) for providing access to and the logistics of carrying out our study in Vodudahue Reserve. We also thank Esteban Gallardo for his help with the distribution map and Ricardo Varela-Varela for photographing specimens in the lab. Finally, we thank to our reviewers, Wesley Bicha and Adrian Gómez-Jacome, as well as to our editors Renato José Pires Machado and Robert Forsyth for your comments and suggestions. Rodrigo Barahona-Segovia thanks to ANID-SIA grant no. 85220045.

Author Contributions

References

