On the distribution and conservation of *Sievekingia hirtzii* Waldvogel (Orchidaceae, Stanhopeinae): first records from Colombia

Natalia Rodríguez-S1, Albeiro Rojas-P2, Alejandro Lizcano3, Edwin Trujillo Trujillo2, Oscar Perdomo3,4

1 Biology Program, Universidad de la Amazonía, Florencia, Caquetá, Colombia. NR: narosan.69@gmail.com https://orcid.org/0000-0001-8170-519X
2 Agroecological Engineering Program, Laboratory of Agrobiodiversity and Malherbology LAMUA, Universidad de la Amazonía, Florencia, Caquetá, Colombia • AR: rjose8869@gmail.com https://orcid.org/0000-0002-2734-5127 • AL: edd.lizcano@udla.edu.co https://orcid.org/0000-0002-5601-540X
3 NÚCLEO – Basic Science Research Group, Faculty of Science and Engineering, Universidad de Boyacá, Tunja, Boyacá, Colombia • OP: oscarperdomobaez@gmail.com https://orcid.org/0000-0003-1260-1965
4 Laboratory of Systematics of Vascular Plants, Postgraduate Program in Botany, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, Brazil

* Corresponding author

Abstract. We newly report two populations of the orchid *Sievekingia hirtzii* in the Andean–Amazonian foothills of Caquetá, Colombia. Following the B criterion of the International Union for the Conservation of Nature, we propose the categorization of this species as Endangered, due to its small Area of Occupancy and Extent of Occurrence, the limited number of populations, and habitat fragmentation and degradation caused by the expansion of agriculture. Additionally, we propose actions for *in situ* and *ex situ* conservation of this orchid, including habitat protection and cultivation in botanical gardens.

Keywords. Andes, Amazonia, Caquetá, foothills, risk of extinction

Academic editor: Juliana de Paula-Souza
Received 29 May 2023, accepted 29 October 2023, published 8 November 2023

Introduction

The Orchidaceae Juss. are epiphytic, lithophyte, terrestrial, and mycoheterotrophic plants and have a diversity of near 25,000 species worldwide (Chase et al. 2015; Phillips et al. 2020; Pérez-Escobar et al. 2022). Colombia harbors nearly 20% of this diversity, mainly in the Andes (Betancur et al. 2015). The tribe Stanhopeinae Benth. (subfamily Epidendroideae Kostel.) has Neotropical distribution and encompasses 21 genera, all of them producing short-duration flowers that emit a scent to attract euglosine male bees; when these bees enter upside down flowers, the pollinarium is attached to the trochanter of their legs (Dressler 1976; Rehman et al. 2016). The genera of the tribe Stanhopeinae—*Cirrhaea* Lind., *Soterosanthus* F. Lehmb. ex Jenny, *Sievekingia* Rchb. f., and *Trevoria* F. Lehmb.—have a hook-shaped viscidium adapted to stick the pollinarium in the legs of the bees. In *Sievekingia* the stipe twists inward under the body of the pollinator (Dressler 1976; Whitten et al. 2000; Gerlach 2003).

Sievekingia is characterized by small to medium-sized plants with rounded to pyriform, sulcated pseudobulbs, one terminal leaf, and compact inflorescences with numerous flowers (Dressler 1976; Villegas 2007). The flowers of this genus are less specialized; the shallow pouch behind the callus contains the osmophores, and the labellum may be distinguished from the petals,
but is difficult to differentiate the hypochile, mesochile, and epichile (Curry et al. 1991; Rehman et al. 2016). This genus is composed of 14 species distributed in Central and South America, six of them known to occur in Colombia: S. colombiana Garay, S. cristata Garay, S. fillifera Dressler, S. herklotziana Jenny, S. reichenbachiana Rolfe, and S. suavis Rchb.f.. The first three species occur in the Andes at 600–1200 m a.s.l. and the last two species in the Chocó bioregion to elevations of 500 m (Betancur et al. 2015; Bernal et al. 2019, POWO 2023).

Extending from Amazonia to the Andes, the department of Caquetá harbours more than 9% (418 species from 98 genera) of the Orchidaceae of Colombia (Arias et al. 2023). Unfortunately, Caquetá is one of the departments with uncontrolled deforestation, mainly caused by illegal wood extraction and the expansion of the agricultural frontier for livestock and illicit crops (Myers et al. 2000; Armenteras et al. 2007; Malhi et al. 2008). This has led to the loss of more than 30% of the forest cover, which is habitat for many species, and the decline of biodiversity (Köster et al. 2009, 2011; Hoffmann et al. 2018; Sierra et al. 2022).

Local and national policies to ensure biodiversity conservation have a low impact in Caquetá. In consequence, deforestation, illegal extraction, and the trade of orchids, plus the lack of knowledge about species’ diversity, are threats to the survival of wild orchid populations. To help improve knowledge of the orchid diversity in Colombia, we report the first records of S. hirtzii from Colombia, assess the risk of extinction of this species using IUCN criteria, and propose actions to protect and conserve this species.

Methods

We found two populations of Sievekingia hirtzii in the department of Caquetá, in the Colombian Amazon. One population is in Alto Fragua Indi-Wasi National Natural Park (municipality of Belén de Los Andaquies; Fig. 1) and was found during an expedition of the project “Taxonomy diversity of epiphytes in the Andean–Amazonian Foothills of the Caquetá department”. The other population was found in the Caraño river basin (rural Florencia; Fig. 1), in an expedition supported by the project “Strategy for knowledge, study, and conservation of the orchid flora of the Andean–Amazonian foothills of Caquetá department”. We compared individuals from these populations to the description of the species by Waldvogel (1977). We searched for geographical information in the Global Biodiversity Information Facility (GBIF), Distributed Information System for Biological Collections (SpeciesLink), Tropicos.org, and Plants of Colombia Catalogue. In addition, we searched online records in the databases of the COAH and COL herbaria (acronyms according to Thiers 2023), and we used Google Scholar to scientific literature on S. hirtzii.

Our voucher specimens were deposited the CUVC herbarium (acronym according to Thiers 2023). We used the location of the populations and the B criterion of the International Union for Conservation of Nature categories and criteria (IUCN 2022) to risk of extinction for S. hirtzii. Forest-cover loss data from 2001 to 2022 (Hansen et al. 2013) were used in R (R Core Team 2022) to estimate deforestation in the Extent of Occurrence (EOO) of the species; this was used as a proxy for
habitat loss. The map (Fig. 1) and bar plot (Fig. 3) were produced using RStudio (RStudio Team 2022).

Results

Sievekingia hirtzii Waldvogel. Die Orchidee 28: 5–7 (Waldvogel 1977) Figure 2

Previously known records (Fig. 1). ECUADOR – Tun-
guragua • Río Negro, 1200 m; 23.V1.1979, A. Hirtz 890;
SEL. – Pastaza • Baños-Puyo way, 1000 m elev.; V.1985,
A. Hirtz 2558; RPSC.

New records (Fig. 1). COLOMBIA – Caquetá • Belén
de los Andaquies, National Natural Park Alto Fragua
Indi-Wasi, 01.5948, −075.9406, 643 m elev.; 03.X.2021,
O. Perdomo, C. Núñez, & E. Trujillo; CUCV 82120 –
Caquetá • Florencia, Vereda El Caráño, Camino real
hacia la Finca Las Brisas; 01.7564, −075.6708, 1053 m
elev.; 23.VIII.2021; O. Perdomo, A. Rojas, N. Rodríguez,
& E. Trujillo; CUCV 82121.

Global distribution. This species was previously con-
sidered endemic to Ecuador and known from only
two herbarium collections. The new records extends
the geographic distribution of *S. hirtzii* to the Andean–
Amazonian foothills of Colombia.

Identification. This species is easily distinguishable by
the pale-yellow lip, orange at the base and the margins,
concave, trilobate with nine orange keels in the base
and five in the middle portion, the lateral lobes erect,
subrectangular, and the mid lobe triangular, obtuse
acuminate with two orange ornaments.

Description. *Plant* epiphytic, herbaceous, caespitose, to
35 cm tall. *Pseudobulbs* 4.0–5.0 × 2.5–3.0 cm, clumped,
ovoïd, sulcate, subtended by imbricated paperyaceous
sheaths, unifoliolate. *Leaf* simple, elliptical, acuminate,
plicate; petiole 7.5 cm long, 2.5 mm in diameter; blade
4.5 × 22 cm, coriaceous. *Inflorescence* racemose, to 20
cm long, pendular, arising from base of pseudobulb;
peduncle 7 cm long, with ovate, paperyaceous bracts
1.7 × 1.0 mm, 5–8 flowers. *Ovary* + pedicel 2.5 mm
long, to 3 mm in diameter. *Sepals* creamy yellow, con-
cave, elliptical, acute, acuminate; *dorsal sepal* obovate-
eliptical, 22.6 × 9.6 mm; *lateral sepals* oblong, 19.3 ×
10.8 mm. *Petals* orange, degrading to creamy yellow at
base, oblong-linear, concave, obtusely acuminate, 18
× 6 mm; *lip* pale yellow, orange at base and margins,
concave, 16 × 18 mm, trilobate with 9 keels at base and
five at middle portion, orange; *lateral lobes* erect, sub-
rectangular; *mid-lobe* triangular, obtusely acuminate,
2-ornate, with callus bilobate. *Column* semiterete, pale
yellow, 17 mm long, claviform, obtusely ate, slightly
arched; *rostellum* about 2 mm long. *Anther* orange, sub-
quadrate, 4 mm long. *Pollinarianium* viscidium circular,
about 0.7 mm in diameter; stipe linear basally, rhombic
above, 2.0 × 0.7 mm; *pollinia* oblong, cochlolate, about
1.6 × 0.7 mm. *Capsule* 2.5–3.5 × 0.9–1.2 mm, 6-sulcate,
with marcescent flower at apex.

Conservation status. We categorized *S. hirtzii* as globally
Endangered under criteria B1 + B2ab(i, iii) because there
are four populations, the AOO is only 16 km², and
there is a continuing loss and degradation of habitat
that has led to the loss of 12.6% (2,118 km²) of the forest
cover in the EOO (16,699 km²).

Conservation strategies. We propose five strategies
that may help in the conservation of *S. hirtzii* populations
and their habitat. All strategies are from literature
dealing with the conservation of epiphytic orchids.

1) In situ conservation—preserve species’ habitat;
consider life history traits; follow development of pop-
ulations and their ecological relationships with mycor-
rhizal fungi, pollinators, dispersers, and predators

2) Ex situ conservation—cultivate plants in botani-
cal gardens and institutions dedicated to plant conser-
vation; collect and cryopreserve germplasm; conserve
and reproduce associated mycorrhizal fungi (Seaton et

3) Sustainable use—implement through programs
to develop trade of cultivated specimens obtained from
vegetative and *in vitro* reproduction; implement orchid
cotourism; secure equitable distribution of social, eco-
nomic, and environmental benefits of use (Orejuela-
Gartner 2012; Fay 2018; Zhou et al. 2021; Longchar and
Deb 2022; Mutum et al. 2023).

4) Research—study pollination biology and repro-
ductive biology of species; identify pollinators, dispers-
ers, and predators; determine the risk of extinction of
the species; establish conservation priorities and poli-
cies (Orejuela-Gartner 2012; Wraith et al. 2020; Zhou
et al. 2021)

5) Education—involve people in rural and urban ar-
 eas and employees of institutions in conservation and
surveillance of natural resource exploitation; expand
knowledge on the importance of conservation of or-
chids, as well as on biology and ecology of orchid spe-
cies; develop and understanding of the relationship
between socio-economic development and orchid con-
servation (Swarts and Dixon 2009; Orejuela-Gartner
2012; Gale et al. 2018).

Discussion

Caquetá department in Colombia harbours incredible
biodiversity, mainly due to its location at the conflu-
ence of the Amazonia and Andes biomes (Gentry 1992;
Bush et al. 2008). This region is classified into three alti-
tudinal subregions: Amazonian lowlands below 250
m, Andean–Amazonian foothills at 250–800 m, and
Andean Amazonia above 800 m (Hockstra et al. 2010).
Consequently, there are many niches for orchids, es-
pecially in the Andean region, which is considered the
most species-rich in Colombia (Betancur et al. 2015).
Our new records of *Sievekingia hirtzii* in two differ-
ent areas in the Caquetá foothills indicates that there
is a need for more botanical expeditions to explore and
identify the whole orchid diversity of this department.
Figure 2. Sievekingia hirtzi. A. Plant with inflorescence. B. Plant with inflorescence in anthesis. C. Infructescence, D. Inflorescence in anthesis. E. Flower.
Our assessment of *S. hirtzii* as Endangered highlights the threats that this species faces, mainly the loss of the habitat in the cloud forests as a consequence of deforestation and agricultural expansion (Viña and Cavelier 1999; Dixon and Phillips 2015; Hoffmann et al. 2018; Sierra et al. 2022). The loss of phorophytes is a driver of habitat loss for this species and numerous other orchid species (Califa and Bravo 2020; Montibeller-Silva et al. 2020). One *S. hirtzii* population that we found was in Indi-Wasi National Natural Park, a protected area of 72,600 ha. This park is in eastern Caquetá department, on the eastern slopes of the Andes and a portion of Andean–Amazonian foothills (Rebolledo 2019). The park implies that the habitat of this population is protected, but the other population, in the Caraño river basin, is in a forest fragment of less than 1 ha, is threatened by the expansion of surrounding pastures (Fig. 3). Other orchid species from this area, like *Epidendrum porphyreocostatum* Hågsater & R. Jiménez, *E. whitstenii* Hågsater & Dodson, and the recently described *Masdevallia leonor-baeziana* Os.Perd., Edwin Trujillo & Karremans, were categorized as at risk of extinction because of deforestation, habitat fragmentation, and an expanding agricultural frontier (Perdomo et al. 2020, 2023).

Although the illegal commercialization of orchids does not affect the area of occurrence of *S. hirtzii*, we point out the need for strategies to protect this species from this largely unnoticed threat, which is currently categorized as an urgent, global priority for orchid conservation (Cooney et al. 2017; Margulies et al. 2019). We highlight the lack of conservation policies and efforts to conserve orchids in the Caraño river basin and the scarcity of government presence in environmental control and protection. Although *S. hirtzii* is in Appendix II of the CITES (https://www.speciesplus.net/), the restriction for the trade needs to be declared and applied by local authorities. Finally, another threat to the orchid flora is climate change, which has now been said to be the most critical threat to all the biodiversity on Earth (Dixon and Phillips 2015).

Both populations require monitoring for growth, reproduction, and ecological interactions to ensure their survival (Orejuela-Gartner 2012; Zhou et al. 2021). *Ex situ* conservation actions, like inclusion of specimens in botanical gardens, reproduction by institutions dedicated to plant conservation, and preservation of germplasm and pollen, are required to secure genetic material for future research (Seaton et al. 2010; Merritt et al. 2014). *In vitro* propagation should be done to obtain vegetative materials of *S. hirtzii* to reproduce and cultivate in nursery gardens (Longchar and Deb 2022; Mutum et al. 2023). The beautiful, colorful flowers of this species, characteristics sought after in orchids, suggest potential trade in this species.

Although knowledge of the diversity of Orchidaceae in Colombia has improved in recent decades, biology, ecology, and risk of extinction remain unassessed for most species (Orejuela-Gartner 2012; Alba et al. 2021). For *S. hirtzii*, no studies have been developed, and there is only its original description (Waldvogel 1977) and a host–epiphyte analysis (Paredes et al. 2021). Thus, additional research is needed to improve our understanding of this species and better develop conservation strategies. Finally, environmental education on this species, including its biology, ecology, risk of extinction, and trade restriction under CITES, is needed to highlight the importance of this and other orchid species to the ecosystem and socio-economic development of the region (Orejuela-Gartner 2012; Dixon and Phillips 2015; Gale et al. 2018). Education will lead to the valuation of orchids and their habitat from a sustainable
perspective, where the environment and plants are at the center of local socio-economic development.

Acknowledgements

We thank the National Natural Parks of Colombia, the administration of Indi-Wasi National Natural Park, and the University of the Amazonia for economic and administrative support. We especially acknowledge the late Mr. Edgar Gómez and his family for their help and hospitality during our fieldwork in Indi-Wasi.

Author Contributions

Conceptualization: NR, OP. Data curation: AL, ETT. Formal analysis: NR, AR, OP. Funding acquisition: ETT, OP. Investigation: NR, AR, AL, ETT, OP. Methodology: NR, OP. Visualization: NR, OP. Writing – original draft: NR, OP. Writing – review and editing: NR, AR, AL, OP.

References

