Sixty-seven species newly recorded for the flora of Angola: recent findings from vegetation surveys and herbarium collections

Thea Lautenschläger1*, Anne Göhre2, Barbara Ditsch2, Christin Baumgärtel1, Mawunu Monizi3, José Lau Mandombe3, Marcus Lehner4, Carel C.H. Jongkind5, Hans J.G.M. Persoon6, Martin Cheek7, Alexandre Monro7, David Goyder7, Iain Darbyshire7, Alan Paton7, Fernanda Lages8, Tom Wells9, Norbert Jürgens10, Manfred Finckh10, Paulina Meller10

1 Institute of Botany, Technische Universität Dresden, Germany • TL: thea.lautenschlaeger@tu-dresden.de • CB: christin.baumgaertel@tu-dresden.de • https://orcid.org/0000-0003-4013-9456
2 Botanical Garden, Technische Universität Dresden, Germany • AG: anne.goehre@tu-dresden.de • https://orcid.org/0000-0002-9035-4130
3 University of Kimpa Vita, Uíge, Angola • MM: m.mawunu2000@gmail.com • https://orcid.org/0000-0001-6658-9223
4 Herbarium, Institute of Biology/Geobotany and Botanical Garden, Halle, Germany • marlehnert@yahoo.com • https://orcid.org/0000-0002-5444-2985
5 Meise Botanic Garden, Belgium • carel.jongkind@kpnmail.nl • https://orcid.org/0000-0002-1491-2030
6 Utrecht University Botanic Gardens, Utrecht, the Netherlands • j.g.m.persoon@uu.nl • https://orcid.org/0000-0003-1829-5225
7 Royal Botanic Gardens, Kew, UK • MC: m.cheek@kew.org • https://orcid.org/0000-0003-4343-3124 • AM: A.Monro@kew.org • https://orcid.org/0000-0003-4013-3804 • DG: d.goyder@kew.org • https://orcid.org/0000-0002-3449-7313 • ID: i.darbyshire@kew.org • https://orcid.org/0000-0002-5514-9561 • AP: a.paton@kew.org • https://orcid.org/0000-0002-6052-6675
8 Herbário do Lubango, Instituto Superior de Ciências de Educação da Huíla, Lubango, Angola • herbario.lubango@gmail.com • https://orcid.org/0000-0002-3210-183X
9 Department of Plant Sciences, University of Oxford, Oxford, UK • tom.wells@plants.ox.ac.uk • https://orcid.org/0000-0002-4664-7868
10 Biodiversity, Ecology and Evolution of Plants, Institute for Plant Science and Microbiology, Universität Hamburg, Germany • NJ: Norbert Juergens@t-online.de • https://orcid.org/0000-0003-2111-0549 • MF: manfred.finckh@uni-hamburg.de • https://orcid.org/0000-0003-2186-0854 • PM: paulina.meller@gmx.de • https://orcid.org/0000-0001-6711-4385

* Corresponding author

Abstract
Angola is a tropical country with many biogeographical units and, therefore, has a high floristic diversity. Although an increasing number of floristic studies has been carried out in Angola in recent years, the country is still considered to be underinvestigated as many species being collected were previously unknown there. Several scientific groups working in different parts of Angola contributed to this paper their data from biodiversity assessments. With this we can add 67 species newly recorded for Angola, including two new generic records and five alien species, to the almost 7,300 vascular plant taxa known so far for Angola. Most of the new records for Angola are also present in different neighbouring countries, but they are little known, and their IUCN threat status has not been assessed yet. However, ongoing fieldwork and exploration are needed to complete the floristic knowledge of the understudied country.

Keywords
Tropical Africa; plant diversity; disjunct populations; alien species

©The authors. This is an open access article distributed under the terms of the Creative Commons Attribution License (CC BY 4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Introduction

Angola is a tropical country encompassing 15 terrestrial ecoregions that range from coastal deserts, through miombo woodland–grassland mosaics to dense Congolian rainforests (Burgess et al. 2004). Figueiredo et al. (2009) presented 6,735 indigenous plant species for Angola, with a rate of endemism of 14.8%. An extensive review of floristic research in Angola since the 17th century was given by Goyder and Gonçalves (2019) and Figueiredo and Smith (2021), building on earlier summaries by Mendonça (1962) and Figueiredo and Smith (2008).

Although recent collections and descriptions of new species are adding more and more information (e.g. Hind and Goyder 2014; Darbyshire and Goyder 2019), knowledge on floristic diversity in Angola is still far from complete. The “Angolan Protetced Area Expansion Strategy – APAES” (Huntley 2010) highlighted 11 areas of particular biological significance. According to Goyder and Gonçalves (2019), much recent botanical study has focused on these areas.

The floristic findings presented here were contributed by several scientific groups working in different parts of Angola (Fig. 1). The northern provinces are characterized by elements of both the Guineo-Congolian and the Zambesian Regions and form a Regional Transition Zone of high complexity (White 1983). Recent botanical studies in this region have focused on new records or species of vascular plants (Cheek et al. 2015; Abrahamczyk et al. 2016; Lautenschläger et al. 2020b, Smith and Lautenschläger 2021), ferns and lycophytes (Mezonda et al. 2020), and mosses (Müller 2015; Müller et al. 2018, 2019), or on the documentation of traditional knowledge regarding plant uses (Göhre et al. 2016; Lautenschläger et al. 2018, 2020a). Darbyshire et al. (2014) updated the checklist of the flowering plants, gymnosperms, and pteridophytes of Lunda-Norte Province provided by Cavaco and Gonçalves (2019), much recent botanical study has focused on these areas.

The floristic findings presented here were contributed by several scientific groups working in different parts of Angola (Fig. 1). The northern provinces are characterized by elements of both the Guineo-Congolian and the Zambesian Regions and form a Regional Transition Zone of high complexity (White 1983). Recent botanical studies in this region have focused on new records or species of vascular plants (Cheek et al. 2015; Abrahamczyk et al. 2016; Lautenschläger et al. 2020b, Smith and Lautenschläger 2021), ferns and lycophytes (Mezonda et al. 2020), and mosses (Müller 2015; Müller et al. 2018, 2019), or on the documentation of traditional knowledge regarding plant uses (Göhre et al. 2016; Lautenschläger et al. 2018, 2020a). Darbyshire et al. (2014) updated the checklist of the flowering plants, gymnosperms, and pteridophytes of Lunda-Norte Province provided by Cavaco and Gonçalves (2019), much recent botanical study has focused on these areas.

The Bié Plateau in Central Angola is characterized by an undulating, small-scale mosaic of wetlands, grasslands, and miombo woodlands. The upper catchment areas of some of the largest rivers in Angola are located there (Huntley 2019). This plateau is a diversity hotspot for geoxyles (Zigelski et al. 2019), and the heterogeneous landscape is rich in woody species in general (Monteiro 1970; Revermann et al. 2017a). East of the Bié Plateau lies the upper Zambezi basin, in which wide plains covered by savannahs and swamp forests get inundated annually (Huntley 2019). The seasonal inundations lead us to expect highly adapted plant species, but except for a general overview of the Camaia region of eastern Moxico Province (Zigelski et al. 2018), no comprehensive floristic work has been published so far.

The middle and lower Cubango (Okavango) river traverses the south-eastern corner of Angola and is fringed by open woodland and gallery forests. Some recent botanical work in this sparsely populated area has been done with regard to the impact of land use patterns (Wallenfang et al. 2015; Revermann et al. 2017b), while the botanical diversity of the Cuito headwaters was reviewed by Goyder et al. (2018). Further expeditions have taken place in the very arid south-western corner of Angola, where the northern part of the Namib Desert and Kao-koveld Center of Endemism is located. Several species, and even a genus new to science were described from this area recently (e.g. Van Jaarsveld and Van Wyk 2005; Swanepoel 2019; Tripp and Darbyshire 2020; Swanepoel et al. 2021). Even in well-studied, easily accessible areas like the escarpment viewpoint Tundavala near Lubango, botanical discoveries are ongoing (Hind and Goyder 2014), which stresses the need for further floristic assessments.

Study Area

Angola is a tropical country in southern central Africa with a size of 1.25 million km². Due to its location between the Congolian rainforests to the north, the miombo woodland region to the east, the Namib and Kalahari (semi-) deserts to the south, and the Atlantic Ocean to the west, Angola takes part in numerous African ecoregions. Collections from some of those ecoregions are presented in this article. Our collections from northern Angola have been made in rainforest fragments, wet savannahs, and limestone formations. In eastern Angola, collections stem from flooded savannahs and miombo woodlands, which are part of the Camaia National Park. In southern Angola, collections have been made in Baikiaea-Burkea woodlands (partly within the Bicuar National Park), in Afromontane grasslands, and in the coastal Namib desert (partly within Iona National Park). Lastly, collections in central Angola come from miombo woodland–grassland mosaics, and integrated wetlands. National parks are legally protected, but often only poorly so. Outside of national parks is mostly community land, which is not protected.

Methods

Unless otherwise stated, the new records are based on herbarium specimens that have been collected during scientific expeditions since 2000. Floristic research in Uíge Province has been conducted since 2012 in cooperation between the Universidade Kimpa Vita and the Technische Universität Dresden. The specimens are stored at the Herbarium Dresdense (DR). Duplicates will be transferred to Uíge as soon as suitable conditions including a herbarium are established. The biodiversity assessments in central, southern, and eastern Angola (Bié, Cuando-Cubango, Huila, and Moxico Provinces) were conducted under the framework of The Future Okavango (TFO) (2011–2016) and South African Science Service Centre for Climate Change and Adapted Land Management (SASSCAL) (2011–2020), while assessments in
south-western Angola (Namibe Province) are linked to BIOTA Southern Africa (2000–2009).

All Angolan specimens collected in the context of BIOTA, TFO, and SASSCAL are deposited at the Herbarium Hamburgense (HBG) in Hamburg. If sufficient material was available, a duplicate was made, which is stored at the herbarium LUBA in Lubango, Angola.

Additionally, herbarium specimens from LUBA were studied for new records: findings from the Namibe province in south-western Angola mostly trace back to work in the context of Skeleton Coast–Iona Transfrontier Conservation Area (SCIONA 2018), and to specimens deposited in the herbarium LUBA collected in 2009 by Ernst van Jaarsveld. Further collections stored at LUBA from David Goyder, Nigel Barker, Ralph Clark, and Nicola Bergh on the escarpment near Humpata, close to Lubango, Huila province, also contributed two new records. We also studied six new records from the Hess collection, collected in 1951–1952 and being stored at the United Herbaria (Z+ZT) of the University of Zurich and ETH Zurich.

We used the Plants of the World Online database PoWO (2021) as source for accepted species names, taxon authorities, plant family affiliation and distributions, except for Pteridophyta where Hassler (2021) was used. The distribution of taxa presented in this study is characterized by four categories: localized – a taxon is

Figure 1. Collection sites in Angola of the new records. Colours indicate phytogeographical units based on the map of Barbosa (1970). The numbers 2–6 combined with the letters A–H mark the locations of important habitats that are shown in Figure 2, and of the species depicted in Figures 3–6, respectively. Map made with QGIS v. 3.10.14.
Figure 2. Typical habitats from where plant species were documented. Locations of these sites are marked in Figure 1. A. Serra Pingano mountain range, Uíge province. B. Limestone rocks near Ambuila, Uíge province. C. Swampy meadow, Uíge province. D. Open Baikiaea – Burkea woodlands in Bicuar NP, Huíla province. E. Escarpment with Afromontane forest-grassland mosaics near Tundavala, Lubango, Huíla province. F. Saline sand fields in the Iona desert, Namibe province. G. Small-scale mosaic of miombo woodlands, geoxyle grasslands and wetlands on the Bié Plateau, Bié province. H. Seasonally flooded savannah and emerging woodland patches in the Cameia NP, Moxico province. Photos: A–C by T. Lautenschläger; D–E and H by P. Meller; F by N. Jürgens; G by M. Finckh.
endemic to one contingent ecoregion or country, e.g. a Katanga (D.R. Congo) endemic; regional – a taxon occurs within one contingent biome, e.g. in miombo woodlands; widely – a taxon occurs widely within Africa, distribution can be patchy, e.g. when occurring in disturbed places; beyond Africa – a taxon occurs also beyond Africa. The conservation status of each taxon was retrieved from the IUCN Red List database (2022). The indicated habitats are the habitats in Angola where the given samples were found.

For identification, relevant floristic works used are listed in the species records below. The checklist of Figueiredo and Smith (2008) was used as the baseline for assessing Angolan species records. Species missing there but subsequently reported in later publications (Swane poel 2009; Bergh and Nordenstam 2010; De Sousa et al. 2010; Catarino et al. 2013; Abreu et al. 2014; Hind and Goyder 2014; Paton 2014; Cheek et al 2015; Darbyshire 2015; Abrahamczyk et al. 2016; Gonçalves and Goyder 2016; Gonçalves et al. 2016; Darbyshire et al 2018; Harris and Wortley 2018a, 2018b, 2018c; Darbyshire and Goyder 2019; Darbyshire et al. 2019; Swane poel 2019; Tripp and Darbyshire 2020; Lautenschläger et al. 2020b; Darbyshire et al. 2021; Smith and Lautenschläger 2021; Swane poel et al. 2021, Figueiredo and Smith 2022) were excluded.

All records were also cross-checked against the evidence in GBIF (2022, last cross-check in June 2022). Some species would be new records for Angola, as they are not listed in the checklist (Figueiredo and Smith 2008). They were not included in this study; however, if they are already documented in GBIF for Angola, or in publications newer than the checklist (e.g., Pavetta gardenifolia Hochst. ex A.Rich var. gardenifolia, Sher bournia hapalophylla subsp. wernhamiana (N.Hallé) Sonké & L.Pauwels).

Results

The present study documents records for 67 species newly reported for the flora of Angola, including two new generic records (Remusatia, Crinum binghamii Nordal & Kwembeya). Of these, 62 are native species (1 Pteridophyta, 23 monocotyledons, and 38 dicotyledons) and five are neophytes (5 dicotyledons).

The records belong to 32 plant families, with mostly single to few records per family except for some larger families such as Commelinaceae, Cyperaceae, and Lamiaceae. 92.5% of the recorded species also occur in neighbouring countries. Five species show disjunct distribution patterns. Sixteen species have narrow and localized distributions (sub-ecoregion), and 25 have more regional patterns (supra-ecoregion). The remaining species show either wide often patchy intra-African distributions (18), or wide distributions also beyond Africa (8). An overview of the 67 species with information about their distribution patterns and IUCN conservation status is presented in Table 1. In the following text, the species are sorted by groups and families and alphabetically within the families.

Native species

Division Pteridophyta

Family Aspleniaceae

Asplenium megalura Hieron.

Examined material. ANGOLA – Uíge Province • Municipio de Quitexe, Serra Pingano; 07°40′17″S, 014°55′20″E; 836 m; 19.XI.2019; T. Lautenschläger leg. [TL2019-065492].

Identification. A medium-sized to large species of *Asplenium* with fronds to ca. 50 cm long, with the genus-specific linear sori following the straight flabellate veins on the underside of the pinnae. This species is recognized by the dark brown petiole and rhachis and the particular shape of the pinnae, which are fan-shaped to rhomboid with a long-excurrent tip and serrate margins. The blade is not tapering at the tip but ends in an apical segment similar to the lateral pinnae. A regular epiphyte but also often found growing on rocks in full sun. Being a widespread species in Africa, its presence in Angola is not surprising.

Distribution and habitat. Burundi, D.R. Congo, Kenya, Malawi, Mozambique, Rwanda, São Tomé and Príncipe, Sierra Leone, Sudan (MacLeay 1953), Tanzania, Uganda, Zambia (Hassler 2021). Rainforest.

References. Schelpe (1977); Roux (2009).

Division Spermatophyta

Clade Angiospermae monocotyledons

Table 1. Overview of the 67 newly recorded species for the flora of Angola. Sorted by family, with information on distribution patterns and IUCN conservation status.

<table>
<thead>
<tr>
<th>Family</th>
<th>Taxon</th>
<th>Present in neighbouring countries</th>
<th>Disjunct distribution</th>
<th>Neophyte</th>
<th>Distribution range</th>
<th>IUCN status</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acanthaceae</td>
<td>Dichiptera carvalhoi Lindau</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Acanthaceae</td>
<td>Hypoestes potamophila Heine</td>
<td></td>
<td></td>
<td>Localized</td>
<td>VU</td>
<td></td>
</tr>
<tr>
<td>Alismataceae</td>
<td>Bumalia ennoordii Micheli</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>LC</td>
<td></td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Amaranthus tortuosus Hornem.</td>
<td></td>
<td></td>
<td>Beyond Africa</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Amaranthaceae</td>
<td>Calicorema capitata (Moq.) Hook.f.</td>
<td></td>
<td></td>
<td>Localized</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Amaryllidaceae</td>
<td>Cynium binghamii Nordal & Kwembeya</td>
<td>x</td>
<td></td>
<td>Localized</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Lannea schwefelii var. stuhlmanni (Engl.) Kokwaro</td>
<td>x</td>
<td></td>
<td>Widely</td>
<td>Not assessed</td>
<td></td>
</tr>
<tr>
<td>Family</td>
<td>Taxon</td>
<td>Present in neighbouring countries</td>
<td>Disjunct distribution</td>
<td>Neophyte</td>
<td>Distribution range</td>
<td>IUCN status</td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td>-----------------------------------</td>
<td>-----------------------</td>
<td>----------</td>
<td>--------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>Anacardiaceae</td>
<td>Ocimum plicatulum (Sond.) R.Fern. & A.Fern.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>VU</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Locustinae villosa J.G.M. Pers.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Apocynaceae</td>
<td>Tabernaemontana brayhoreta Stapf</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Araceae</td>
<td>Remusatia vispani (Rehb.) Schott</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Asparagaceae</td>
<td>Chlorophyllum sparsiflorum Baker</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Aspleniaceae</td>
<td>Asplenium megalura Heron.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Astereaceae</td>
<td>Inula robynsii De Wild.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Astereaceae</td>
<td>Senecia venosa Harv.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Astereaceae</td>
<td>Veronica laudabensis De Wild.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Bursaraceae</td>
<td>Commiphora giesii J.J.A.van der Walt</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Capparaceae</td>
<td>Basicia integrifolia J.St.-Hil.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Combretaceae</td>
<td>Combretum rueinosagnum Klotzsch</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionaly</td>
<td>LC</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Commelina pycnospatha Brenan</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Commelina robynsii De Wild.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Gynotis foenuncia DC. ex Hassk.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Ficuspa leisthera Brenan</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Commelinaceae</td>
<td>Stanfleidela algamia (Mildbr.) Brenan</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Connaraceae</td>
<td>Agapanthus paradoxus var. microcarpa Longkind</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td>Ipomoea hederacea (Cav.) Jacobi</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Convolvulaceae</td>
<td>Ipomoea magniculata Schinz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Bulbostylis cardiacapodes Chem.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Cyperus chersinus (N.E.Br.) Kük.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Cyperus longispicula Muasya & D.A.Simpson</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>DD</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Cyperus majestatusus (P.A.Doung. & G.Léonard) Bauters</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Cyperus tanzaniae (Lye) Lye</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>LC</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Cyperus testus (Chem.) Reynolds</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Fimbriostylis bivalvis (Lam.) Lye</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Cyperaceae</td>
<td>Scleria isteplana Nelmes</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Eriocaulaceae</td>
<td>Eriocaulon glandulosum Kimp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Eriocaulaceae</td>
<td>Eriocaulon sinualorum Kimp.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia erythrophala P.R.O.Bally & Milne-Redh.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia phylloclada Boss.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Euphorbiaceae</td>
<td>Euphorbia rhomphylou L.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Cristalana miranda Milne-Redh.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Cyclocarpa stellariae Azel. ex Urb.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Dolichos subcapitatus var. angustiflorus Mackinder</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Fabaceae</td>
<td>Humularia pseudoschizantha Verdc.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lamiaeae</td>
<td>Acrotome tenuis G.Taylor</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lamiaeae</td>
<td>Cleoradendrum glandulosum R.Thomas</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lamiaeae</td>
<td>Coleus melleri (Baker) A.J.Paton & Phillipson</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lamiaeae</td>
<td>Rathecuti wildi (Moldenke) R.Fern.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Lamiaeae</td>
<td>Tetraneura jonesiius van Jaarsv. & A.Evan Wyk</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Malvaceae</td>
<td>Pterygota bauerni De Wild.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>VU</td>
</tr>
<tr>
<td>Meliaceae</td>
<td>Caespa macrantha Harms.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Orchidaceae</td>
<td>Habenaria humilior Rchb.f.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Passifloraceae</td>
<td>Aristea solida Breteler</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Entolosia ovineca Stapf</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Eragrostis fimbriolata Cope</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Localized</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Poaceae</td>
<td>Panicum chinasum Merz</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>LC</td>
</tr>
<tr>
<td>Portulacaceae</td>
<td>Portulaca grandiflora Hook.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Rhamnaceae</td>
<td>Helinus mysticusus (Aiton) E.Mey. ex Steud.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>LC</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Berberis litoralis N.Hale.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Leptaciton kententia Deweure var. laurentiana</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Pavetta membranifolia K.Krause</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Rubiaceae</td>
<td>Vangueria pygmyae Schitr.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Simaroubaceae</td>
<td>Bruceja javanica (L.) Merr.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Elatosistema pauroanum Wedd.</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Widely</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Scepuspus flamiginosus (Lambinon) T.Wells & A.K.Monro</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Urticaceae</td>
<td>Scepuspus repens (Wedd.) T.Wells & A.K.Monro</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Regionally</td>
<td>Not assessed</td>
</tr>
<tr>
<td>Verbenaceae</td>
<td>Lantana hervida subsp. sthilfico (Cham.) J.R.W.Sanders</td>
<td>x</td>
<td>x</td>
<td>x</td>
<td>Beyond Africa</td>
<td>Not assessed</td>
</tr>
</tbody>
</table>
Family Alismataceae

Burnatia enneandra Micheli

Examined material. ANGOLA – Moçico Province
- Cameia National Park, Biodiversity Observatory; 11°31’53”S, 020°54’51”E; 1125 m; III.2022; M. Finckh s.n. leg.; in damp and seasonally flooded grassland; HBG[HBG527149].

Identification. A perennial aquatic, monocoeous herb, the only accepted species in the genus *Burnatia*. The tuberous rhizome bears several linear-lanceolate leaves with a petiole up to 50 cm long, and a peduncle of up to 90 cm long with 1–3 lax inflorescences. Male inflorescences are up to 40 cm long, and female inflorescences are up to 15 cm long. A second specimen in the Hess collection was originally identified by Walo Koch, ETH Zurich and now confirmed by us.

Distribution and habitat. Tropical and southern Africa. Swamps, shallow lakes, and edges of slow-flowing rivers and streams.

Family Amaryllidaceae

Crinum binghamii Nordal & Kwembeya

Figure 4D

Examined material. ANGOLA – Moçico Province
- Cameia National Park, Biodiversity Observatory; 11°31’53”S, 020°54’51”E; 1125 m; III.2022; M. Finckh s.n. leg.; damp and seasonally flooded grassland; HBG[HBG527149].

Identification. Unlike the superficially similar Zambebian *C. buphanoides* Welw. ex Baker, this Zambebian species occurs only in swampy or seasonally waterlogged areas. In comparison to *C. buphanoides*, *C. binghamii* also has longer peduncles (up to 75 cm) and smaller, but aggregated, whitish bulbs (not a single large, brownish bulb). Furthermore, molecular data places *C. binghamii* nearer to the Guineo-Congolian *C. natans* Baker and *C. purpurascens* Herb.

Distribution and habitat. West Zambia. Swampy areas on black clay soil.

Family Araceae

Remusatia vivipara (Roxb.) Schott

Figure 3G

Examined material. ANGOLA – Uíge Province • Municipio de Ambuila; 07°43’08”S, 014°44’45”E; 600 m; 15.XI.2019; T. Lautenschläger 2019 11 90 leg.; in moist rock fissure on inselberg; DR[DR062803].

Identification. Nonflowering specimens of this species are easily distinguished from other African Araceae by coppery modified peduncles bearing burr-like bulbils covered with hooked prickles. They may be little more than 30 cm long and arise from the tuber after dormancy simultaneously with the young leaves.

Distribution and habitat. Tropical and subtropical Old World. Rock fissures on limestone.

Reference. Hepper (1968b).

Family Asparagaceae

Chlorophytum sparsiflorum Baker

Figure 6A

Examined material. ANGOLA – Uíge Province • Serra Pingano, forest near waterfall in Serra do Pingano; 07°40’56”S, 014°56’05”E; 687 m; 16.II.2015; B. Ditsch 067227 leg.; in moist rock fissure on inselberg; DR[DR067227].

Identification. *Chlorophytum sparsiflorum* is a variable species with mostly unbranched inflorescences longer than the leaves, that carry about 2–5 flowers per node, with the pedicels jointed at or below the middle. Our specimen has about 5–6.5 cm broad leaves arranged in a rosette. It differs from similar species such as *C. lancifolium* Welw. ex Baker and *C. brachystachyum* Baker, for example, in having a distinct petiole shorter than the leaf blade, a minutely scabrid inflorescence axis, and lax racemes.

Distribution and habitat. Tropical Africa. Rainforest.

References. Hepper (1968a); Meerts (2015).

Family Commelinaceae

Commelina pycnospatha Brenan

Figure 4B

Examined material. ANGOLA – Bié Province • Chitembo municipality, Cusseque TFO core site; 13°40’09’’S, 017°05’15’’E; 1531 m; I.2018; P. Meller s.n. leg.; HBG[HBG527147].

Identification. Verified by Robert Faden. This species is similar to *C. africana* L., in that it has a decumbent habit and yellow flowers. However, the inflorescences consist of densely clustered spathes (not solitary as in *C. africana*), much smaller and rather orange-yellow flowers (not lemon-yellow) and wine-red shoots (not green).

Distribution and habitat. Tropical Central and eastern miombo region. (Damp) grasslands on sandy soils.

References. Faden (2012a); Faden pers. comm.

Commelina robynsii De Wild.

Examined material. ANGOLA – Bié Province • Chitembo municipality; 13°43’03’’S, 016°57’30’’E; 1542 m; IV.2012; R. Revermann 134303 leg.; psammoferalithic geoxyle grassland; HBG[HBG526997].

Reference. Nonflowering specimens of this species are easily distinguished from other African Araceae by coppery modified peduncles bearing burr-like bulbils covered with hooked prickles. They may be little more than 30 cm long and arise from the tuber after dormancy simultaneously with the young leaves.

Distribution and habitat. Tropical and subtropical Old World. Rock fissures on limestone.

Reference. Hepper (1968b).
Figure 3. Selected plant species from the Northern Uíge province. **A.** Agelaea paradoxa. **B.** Barteria solida. **C.** Clerodendrum globuliflorum. **D.** Carapa macrantha. **E.** Coleus melleri. **F.** Habenaria humilior. **G.** Remusatia vivipara. **H.** Rotheca wildii. Photos: **A, B, D, G, H** by T. Lautenschläger; **C, F** by B. Ditsch; **E** by A. Göhre.
01°23′32″E; 1541 m; III.2019; P. Zigelski 145342A leg.; miombo woodland–geoxyle grassland ecotone; HBG [HBG526996].

Identification. Verified by Robert Faden. In the Flora of Tropical East Africa, this taxon is included in *C. aspera* G.Don ex Benth., which is known to occur in Angola. *Commelina aspera* encompasses a species complex with wide morphological variation throughout its range, and the status of *C. robnitii* is not finally determined yet, as it is a poorly studied taxon known only from the original description and type material.

Distribution and habitat. D.R. Congo. Ferrallithic geoxyle grassland, ecotone to miombo woodland.

References. De Wildeman (1930); Faden pers. comm.

Cyanosis foecunda DC. ex Hassk.

Examined material. **ANGOLA – Cuando Cubango Province** • Caiundo, TFO core site, 16°26′17″S, 01°49′00″E; 1155 m; II.2013; R. Revermann 136201 leg.; open Baikiaea woodland; HBG[HBG526998], LUBA[LUBA035530-0] • Comuna de Savate, 16°38′00″S, 01°46′12″E; 1185 m; II.2013; J.Wallenfang and R. Revermann 136378 leg.; open Baikiaea woodland; HBG [HBG526999], LUBA[LUBA035917-0] • Comuna de Savate; 16°39′07″S, 01°46′13″E; 1186 m; III.2013; J.Wallenfang and R. Revermann 136393 leg.; HBG[HBG527000], LUBA[LUBA035916-0].

Identification. Distinguished from similar *C. longifolia* Benth. by strongly decumbent and zigzagging habit, with much shorter and broader leaves.

Distribution and habitat. Eastern Central and Southern Africa. *Baikiaea* woodland.

Floscopa leiothyrsa Brenan

Figure 6F

Examined material. **ANGOLA – Mexico Province** • Cameia National Park, Biodiversity Observatory; 11°31′44″S, 02°05′05″E; 1125 m; V.2016; M. Finckh and P. Zigelski 143294 leg.; open Baikiaea woodland; HBG[HBG527001], LUBA[LUBA036296-0] • Cameia National Park, Biodiversity Observatory; 11°31′37″S, 02°05′44″E; 1126 m; V.2016; M. Finckh and P. Zigelski i43264 leg.; open Baikiaea woodland; HBG[HBG527002], LUBA[LUBA036290-0].

Identification. Distinguished from other *Floscopa* species in the area by inflorescence being a lax fascicle of helically aggregated flowers, both axillary and terminal. Overall with straggling habit.

Distribution and habitat. Patchily throughout Africa. Seasonally flooded grassland.

Stanfieldiella oligantha (Mildbr.) Brenan

Figure 6C

Examined material. **ANGOLA – Uíge Province** • Municipio de Damba, near village Katembo; 07°55′22″S, 015°07′46″E; 1061 m; 26.II.2015; B. Ditsch 856 leg.; forest; DR[DR066917].

Identification. It differs from *Stanfieldiella imperforata* (C.B.Clarke) Brenan in having a smaller and more compact inflorescence about 3 cm long and wide and larger leaves and capsules.

Distribution and habitat. West to West-Central Tropical Africa. Rainforest.

Family Cyperaceae

Bulbostylis cardiocarpoides Cherm.

Examined material. **ANGOLA – Uíge Province** • Municipio de Uíge, near Cunga Quiximba; 07°37′03″S, 014°59′27″E; 799 m; 12.IV.2014; A. Göhre 112 leg.; DR [DR066702] • Municipio de Uíge, in future Botanic Garden Universidade Kimpa Vita; 07°35′32″S, 014°59′42″E; 815 m; 17.III.2013; B. Ditsch BD 311 leg.; savannah; DR [DR067352].

Identification. It is characterised by having smooth culms without hairs, carrying about 3 or more sessile spikelets with acute broadly boat-shaped glumes about 2 mm long with the midrib of the glume reaching the apex. The similar *Bulbostylis filamentosa* (Vahl) C.B.Clarke, which is documented for Angola, has larger glumes and an inflorescence composed of 12–20 closely packed spikes.

Distribution and habitat. Burundi, Gabon, Uganda, Zambia, D.R. Congo. Disturbed dry sandy ground.

References. Goetghhebeur and Coudijzer (1985); Gordon-Gray and Browning (2020).

Cyperus chersinus (N.E.Br.) Kük.

Examined material. **ANGOLA – Cuando Cubango Province** • Comuna de Savate; 16°42′25″S, 017°44′18″E; 1182 m; III.2013; J. Wallenfang and R. Revermann 136440 leg.; dense woodland; HBG[HBG527006], LUBA[LUBA035544-0].

Identification. This species is annual or a weak perennial growing on more clayey soils in the Okavango region. It has been collected in Masari (Namibia) before, close to the Angolan border, and we provide here the first definitive collection in Angola. The wet-looking, tubular spikelets are distinctive.

Distribution and habitat. Southern Africa. Woodland.

Cyperus longispicula Muasya & D.A.Simpson

Figure 6D

Examined material. **ANGOLA – Huila Province** • Bicuar National Park; 15°07′51″S, 014°41′01″E; 1265 m; XI.2016; M. Finckh and P. Zigelski 143716 leg.; woodland–wetland ecotone; HBG[HBG527007].

Identification. This species has a very delicate appearance, with slender culms and filiform leaves and bracts. The capitate inflorescence comprises numerous
conspicuously long (up to 25 mm by 2.4 mm), reddish-brown spikelets radiating to all directions. This differentiates it from the related *C. kirikii* C.B.Clarke, which has much shorter and stouter spikelets.

Distribution and habitat. Zimbabwe and Mozambique. Peaty soil in rocky outcrops and vlei grasslands.

Cyperus majestuosus (P.A.Duvign. & G.Léonard) Bauters

Figure 6B

Examined material. ANGOLA – Moçixo Province • Camaea National Park; 11°3′1′′S, 020°5′5′′E; 1132 m; III.2022; M. Finckh and P. Meller 145228 leg.; flooded savannah; HBG{HBG527152}.

Identification. This species has a very conspicuous appearance, as thin, white, up to 2 cm long extensions of the glumes radiate all around the terminal inflorescence. As the inflorescence is glomerate, consisting of up to 9 contracted spikes, the thin frays are not arranged uniformly, but in bundles. These very long, bundled, white frays set *C. majestuosus* apart from other Cyperaceae of which the flattened culms can attain more than 1 m in height. This feature, together with much reduced and inconspicuous leaves sheathing the swollen base, and the long spikelets (7–20 mm), are diagnostic.

Distribution and habitat. Southeast to Eastern Africa, Madagascar. Waterlogged, peaty areas, and swamps.

Reference. Hoenselaar et al. (2010).

Scleria iostephana Nelmes

Examined material. ANGOLA – Uíge Province • Municipio de Maquela do Zombo; 06°0′1′′S, 015°24′56′′E; 806 m; 26.IX.2018; T. Lautenschläger 2018_10_49 leg.; wetland meadow; HBG{HBG527008}.

Identification. *Scleria iostephana* differs from *S. nau manniana* Boeckeler in having slightly larger, purplish achenes, and the straight tip of the fertile glume exceeding the achene. The specimen in the Hess collection was originally identified in 1984 by Alain Mincier, Ghent University and now confirmed by us.

Distribution and habitat. Tropical Africa. Gallery forest.

Reference. Hooper (1972b).

Family Eriocaulaceae

Eriocaulon glandulosum Kimp.

Examined material. ANGOLA – Moçixo Province • Municipio de Maquela do Zombo; 06°0′1′′S, 015°24′56′′E; 806 m; 26.IX.2018; T. Lautenschläger 2018_10_49 leg.; wetland meadow; HBG{HBG527008}.

Identification. A small annual species usually below 10 cm height. The scapes are conspicuously 3-ribbed and papillous. This is diagnostic together with a capitula diameter of 1–2 mm, featuring rounded, involucral bracts that are markedly paler (straw-coloured) than the floral bracts (greyish/blackish).

Distribution and habitat. D.R. Congo, Tanzania. Dry-rising margins of temporary pools.

Eriocaulon sinealaeum Kimp.

Examined material. ANGOLA – Moçico Province • Cameia National Park, Biodiversity Observatory; 11°31′60″S, 020°54′55″E; 1124 m; V.I.2017; M. Finckh and P. Ziegelski 143769 leg.; damp grassland after receding inundation; HBG\[HBG527011].

Identification. This annual species is the only *Eriocaulon* species in the Flora zambesiaca area with only 3 stems. The leaf rosettes are often submersed.

Distribution and habitat. D.R. Congo. Damp and flooded grasslands.

Family Orchidaceae

Habenaria humilior Rchb.f.

Examined material. ANGOLA – Uíge Province • Municipio de Mucaba; 07°13′01″S, 015°06′08″E; 1181 m; 23.II.2017; C. Neinhuis PV1 leg.; moorland; DR [DR062749] photo.

Identification. The species much resembles *Habenaria huillensis* Rchb.f., which was recorded from southern Angola before. At times, it was regarded as conspecific with the latter (see e.g. Flore d’Afrique centrale). Both orchids show lateral petals that are two-lobed almost to the base. In *H. huillensis*, the lower petal lobes are about twice as long as the upper lobes, narrowly lanceolate, acute and spreading forwards and upwards. Instead, the spreading lower petal lobes of *H. humilior* are broader and shorter oblong-lanceolate, less than twice as long as the upper lobes and usually obtuse. Moreover, the bracts of the lower flowers reach the perianth in *H. huillensis*, while they are shorter in *H. humilior*. Kränzlin (1891) separates the two species based on the relative length of the median labellum lobe (33% longer than the lower lobes) and *H. huillensis* is hardly any longer than the lateral lobes in *H. humilior*. Modern floras no longer use this as a diagnostic character.

Distribution and habitat. From Sudan to Mozambique and Congo Republic to D.R. Congo. Swamps.

Family Poaceae

Entolasia olivacea Stapf

Examined material. ANGOLA – Uíge Province • Província de Luanda [correct name at that time: district of Congo, today: province of Uíge]; Congo, nördlich des Postens Sanza Pombo (Concelho Sanza Pombo); 06°56′09″S, 016°21′49″E; 10.IV.1952; H.E. Hess and E. Hess-Wyss 52/1270 leg.; Wälder mit viel wildem Kaffee; HBG\[HBG527018\], LUBA[LUBA036355-0].

Identification. The ciliate frill at the apex of the lemma and palea are diagnostic and eponymous for this species.

Distribution and habitat. Zambia. Grassland, peaty margin of river.

Family Acanthaceae

Dicliptera carvalhoi Lindau

Examined material. ANGOLA – Huila Province • 6 km NNW of Humpata, towards Estação Zoótécnica; 14°58′07″S, 013°21′00″E; 2093 m; X.2013; D. Goyder, N. Barker and V.R. Clark 7422 leg.; on rocky soil disturbed by cultivation; LUBA[LUBA35422-0], K[K000508845].

Identification. *Dicliptera carvalhoi* Lindau encompasses 4 subspecies. This specimen is allied to subsp. *laxiflora* but differs in habit and may be a distinct taxon/subspecies. The subspecies *laxiflora* shows at least some pedunculated umbels, with the primary peduncle up to 9–16 mm long and not compounded into a verticillate synflorescence. Furthermore, the capsules are 5.5–6.5 mm long with seeds smooth or tuberculate (then the tubercles less dense and shorter than in subsp. *erinaeae*). The cymule bracts are 6.5–10.0 mm long. Hitherto, *D.
carvalhoi was only listed for Angola as doubtful (Darbyshire et al. 2015).

Distribution and habitat. Eastern miombo region. Montane grasslands and shrublands.

References. Darbyshire (2008); Darbyshire et al. (2015).

Hypoeos potamophila Heine

Examined material. ANGOLA – Uige Province • Municipio de Uige, near village Pambu; 07°25′59″S, 015°10′23″E; 1244 m; 18.VII.2015; T. Lautenschläger 2015_7_37a leg.; understory of rainforest; DR [DR048288]; Municipio de Uige, near village Pambu; 07°25′59″S, 015°10′23″E; 1244 m; 18.VII.2015; T. Lautenschläger 2015_7_37b leg.; understory of rainforest; DR [DR048227].

Identification. This species was previously considered to be endemic to Gabon where it grows as a rheophyte (Heine 1966; Sosef et al. 2006). The Angolan specimen is a good match for the type material, for example in the narrow lanceolate leaves and lax, long-pedunculate inflorescences. However, this species is closely allied to H. triflora (Forssk.) Roem. and Schult., which is one of the four species of Hypoeos previously recorded in Angola (Darbyshire 2015), and it may ultimately prove to be an extreme variant of that widespread species.

Distribution and habitat. Gabon. Amongst rocks along streams and rivers.

References. Heine (1966); Sosef et al. (2006); Darbyshire (2015).

Family Amaranthaceae

Calicorema capitata (Moq.) Hook.f.

Figure 4A

*Examined material. ANGOLA – Namibe Province • Cunene river bank near Otchinunqua; 17°13′15″S, 014°55′13″E; 1197 m; 14.II.2019; C. Heinze CH 2019_35 leg.; forest; DR [DR056598].

Identification. Stems are greenish grey and intertwined, with few linear, succulent leaves. The single flowers are well distinguishable in the field.

Distribution and habitat. Western Namibia, South Africa: Northern Cape. Stony or gravelly areas along dry riverbeds.

Reference. Cooke and Wright (1915).

Family Anacardiaceae

Lannea schweinfurthii var. stuhlmannii (Engl.)

Kokwaro

*Examined material. ANGOLA – Bié Province • Chitembo municipality, near Jamba; 13°36′31″S, 016°37′28″E; 1627 m; V.2012; R. Revermann 134696 leg.; miombo woodland; HBG [HBG526988], LUBA [LUBA035239-0].

Identification. This variety differs from the others in having more or less glabrous leaflets. Unlike other Lannea species, the inflorescences appear simultaneously with the leaves (not before) and are borne solitary in the leaf axils (not terminally aggregated on short branches).

Distribution and habitat. Kenya to southern Africa. Miombo woodland.

References. Exell and Mendonça (1954a); Kokwaro and Gillett (1980).

Ozoroa paniculosa (Sond.) R.Fern. & A.Fern.

Figure 6G

*Examined material. ANGOLA – Huila Province • Bicuar National Park, Biodiversity Observatory; 15°10′19″S, 014°55′13″E; 1197 m; V.2016; M. Finckh 143452 leg.; woodland–grassland ecotone towards a shallow river valley; HBG [HBG526989], LUBA [LUBA036258-0].

Identification. It has been collected near Ruacana (Namibia) before, close to the Angolan border, and we provide here the first definitive collection in Angola. Distinguished from other Ozoroa species by oblong leaves with clearly raised lateral nerves below and an undulate margin.

References. Exell and Mendonça (1954b); Fernandes and Fernandes (1966).

Family Apocynaceae

Landolphia villosa J.G.M.Pers.

*Examined material. ANGOLA – Uige Province • Municipio de Milunga; 06°46′58″S, 016°12′38″E; 1062 m; 14.II.2019; C. Heinze CH 2019_35 leg.; forest; DR [DR056598].

Identification. Landolphia villosa and *L. jumellei* (Pierre ex Jum.) Pichon are distinguishable from other species of Landolphia in Central Africa (including Angola) by their more or less dense rusty hisrtle indumentum, in combination with a densely hairy ovary and an axillary inflorescence. The indumentum is denser on younger branches. *L. villosa* differs from *L. jumellei* in the shape of the calyx lobes. *L. jumellei* has recurved (at the apex) calyx lobes at least 1.9 times as long as wide, while *L. villosa* has straight calyx lobes up until 1.1 times as long as wide. Furthermore, *L. jumellei* has a thicker flower bud, well distinguishable in the field.

Distribution and habitat. Central Africa excluding Gabon. Primary, secondary, and gallery forests. Elevation 0–700 m.

Tabernaemontana brachyantha Stapf

*Examined material. ANGOLA – Uige Province • Municipio de Uige; in Serra do Pingano; 07°25′59″S, 015°10′23″E; 1244 m; 18.VII.2015; T. Lautenschläger 2015_7_37b leg.; understory of rainforest; DR [DR067786].

Identification. This species has not until now been re-
corded from Angola, but collections do exist from ca. 200 km to the north in Bas Congo, across the border in D.R. Congo. Photos of the flower show no twisting of the corolla tube, which helps to distinguish this species from the otherwise similar *T. pachysiphon* Stapf.

Distribution and habitat. South-east Nigeria, Cameroon, Gabon, Equatorial Guinea, D.R. Congo (Bas Congo). Rainforest.

Family Asteraceae

Inula robynsii De Wild.

Examined material. ANGOLA – Uíge Province • Near Mucaba swamp; 07°12′52″S, 015°06′23″E; 1160 m; II.2018; T. Lautenschläger 2018-02-78 leg.; sandy savannah; DR[DR068232].

Identification. *Inula robynsii* differs from other *Inula* species by its cauleine leaves that are cuneate and not caudate or auriculate. Furthermore, the up to 2 cm wide capitula are clustered in terminal corymbose cymes. The involucral bracts are herbaceous above. All florets are tubular and hermaphroditic.

Distribution and habitat. D.R. Congo, Zambia, Cameroon. Sandy area at 1200 m height.

Senecio venosus Harv.

Figure 4G

Examined material. ANGOLA – Huíla Province • Few km S of Humpata; 15°02′44.87″S, 013°22′59.88″E; 1846 m; I.2009; N.G. Bergh 1859 leg.; on clayey soils in shaded places; LUBA[LUBA34185-0].

Identification. This species can be distinguished from the very similar *S. latifolius* DC., *S. retrorsus* DC., and *S. pergamentaceus* Baker by the clearly translucent veins that become apparent when holding a leaf against the light. Also, unlike *S. latifolius*, it is not known to be poisonous to livestock.

Distribution and habitat. Southern Africa. Woodland and grassland.

Vernonia lualabaensis De Wild.

Figure 6H

Examined material. ANGOLA – Bié Province • Chimombo municipality; 13°42′14″S, 017°05′02″E; 1544 m; XII.2014; M. Finckh 135898 leg.; psammoferalithic geoxyle grassland; HBG[HBG526991] • Cusseque, Biodiversity Observatory; 13°41′09″S, 017°05′02″E; 1544 m; XII.2014; M. Finckh 135898 leg.; psammoferalithic woodland–grassland ecotone; HBG[HBG526991].

Identification. This is a poorly known taxon of which only the original description and type material are available. The diagnostic leaves are markedly discoloured, with a pale golden-brown underside that is densely tomentose, whereas the upper side is dark brown-green and glabrous.

Distribution and habitat. D.R. Congo. Ferralithic geoxyle grassland, ecotone to miombo woodland.

Reference. De Wildeman (1915: 93).

Family Burseraceae

Commiphora giessii J.J.A.van der Walt

Figure 4C

Examined material. ANGOLA – Namibe Province • Iona National Park; 16°40′50″S, 012°26′13″E; 482 m; VII.2007; N. Juergens 30593 leg.; gravel plain; HBG[HBG527148].

Identification. *Commiphora giessii* is a dioecious shrub with numerous straight slender woody stems with a reddish-brown bark and trifoliate leaves. It differs from *C. virgata* Engl. by the lack of the thickened basal stem and the bark is not or only slightly peeling.

Distribution and habitat. Namibia. Mostly found in rocky slopes and plains with shallow gravel above rock.

References. Exell and Mendonça (1951a); van der Walt (1973).

Family Capparaceae

Boscia integrifolia J.St.-Hil.

Examined material. ANGOLA – Cuando Cubango Province • Comuna de Caiundo; 14°59′22″S, 017°39′44″E; 1415 m; III.2013; R. Revermann 136374A leg.; dense *Baikiaea* woodland; HBG[HBG526992].

Identification. *Boscia integrifolia* is closely related to *B. cauliflora* Wild, but with much denser leaf reticulation and corymbose terminal inflorescences. The synonym *B. angustifolia* A.Rich. is often in use.

Distribution and habitat. Tropical, southern and eastern Africa, Arabian Peninsula. *Baikiaea* woodland.

References. Exell and Mendonça (1937); Dale and Greenway (1961).

Family Combretaceae

Combretum elaeagnoides Klotzsch

Examined material. ANGOLA – Bié Province • Chimombo municipality; 13°41′23″S, 017°38′40″E; 1494 m; IV.2013; R. Revermann 136327 leg.; sandy savannah; DR[DR068232]. – Cuando Cubango Province • Comuna de Caiundo; 14°59′22″S, 017°39′44″E; 1415 m; III.2013; R. Revermann 136374A leg.; dense *Baikiaea* woodland; HBG[HBG526992], LUBA[LUBA035913-0].

Identification. This species is a small deciduous tree up to 6.5 m, with narrowly elliptic leaves, and 4-merous, subcircular to elliptic fruits <3.5 cm. Most organs are conspicuously lepidote, i.e. densely covered by silvery...
scales of 120–175 µm diameter. The occurrences in Angola demonstrates that this species is not restricted to the course of the Zambezi River.

Distribution and habitat. Southern East Africa. Various types of open woodland.

Family Euphorbiaceae

Euphorbia erythrocephala P.R.O.Bally & Milne-Redh. Figure 5B

Examined material. ANGOLA – Moixo Province • Cameia National Park; 11°31′41″S, 020°54′58″E; 1132 m; III.2022; M. Finckh and P. Meller 145543 leg.; ecotone between flooded savannah and miombo woodland; HBG [HBG527151].

Identification. *Euphorbia erythrocephala* has a broom-like appearance, with small, inconspicuous leaves along several straight, unbranched, dull green shoots. As a characteristic feature, each shoot bears a terminal inflorescence of crimson color, consisting of 1–4 cyathia. The shoots are annual and emerge from a perennial, thick woody rootstock; all of which contain white latex.

Distribution and habitat. West Zambia. Dambo grassland and open miombo woodland.

Family Fabaceae

Crotalaria miranda Milne-Redh.

Examined material. ANGOLA – Bié Province • Chimombo municipality, Cusseque, TFO core site; 13°41′24″S, 017°05′08″E; 1558 m; XI.2011; R. Revermann 133144A leg.; recently HBG [HBG527014].

Identification. *Crotalaria phylloclada* is a spreading to prostrate annual to perennial herb. Very attractive series of opposite green-white colored bracts at apical branches are characteristic. *Euphorbia phylloclada* is sister to the annual *E. glanduligera* Pax.

Distribution and habitat. Namibia, South Africa. Dry riverbeds, sand and gravel plains, and on rocky slopes.

Family Convolvulaceae

Ipomoea hackeliana (Schinz) Hallier f.

Examined material. ANGOLA – Cuando Cubango Province • Calai municipality; 17°52′20″S, 019°45′21″E; 1083 m; IV.2013; R. Revermann 136512 leg.; degraded *Baikiaea* woodland; HBG [HBG527003].

Identification. It has been collected near Oshikango (Namibia) before, close to the Angolan border, and we provide here the first definitive collection in Angola. Diagnostic features are its annual habit, cordate-ovate leaves, and rather small whitish flowers. Often at disturbed sites.

Distribution and habitat. Southern Africa. Open woodland.

Ipomoea magnusiana Schinz

Examined material. ANGOLA – Huila Province • Biacur National Park, Biodiversity Observatory; 15°10′42″S, 014°55′37″E; 1231 m; XII.2015; M. Finckh 141681 leg.; *Baikiaea* woodland; HBG [HBG527004].

Identification. It has been collected near Ruacana (Namibia) before, close to the Angolan border, and we provide here the first definitive collection in Angola. Diagnostic features are its palmate (3–5), long pedicelled leaves and solitary pinkish flowers on peduncles up to 10 cm long.

Distribution and habitat. Southern Africa. *Baikiaea* woodland.

Family Euphorbiaceae

Euphorbia erythrocephala P.R.O.Bally & Milne-Redh. Figure 5B

Examined material. ANGOLA – Bié Province • Cameia National Park; 11°31′41″S, 020°54′58″E; 1132 m; III.2022; M. Finckh and P. Meller 145543 leg.; ecotone between flooded savannah and miombo woodland; HBG [HBG527151].

Identification. *Euphorbia erythrocephala* has a broom-like appearance, with small, inconspicuous leaves along several straight, unbranched, dull green shoots. As a characteristic feature, each shoot bears a terminal inflorescence of crimson color, consisting of 1–4 cyathia. The shoots are annual and emerge from a perennial, thick woody rootstock; all of which contain white latex.

Distribution and habitat. West Zambia. Dambo grassland and open miombo woodland.

Family Fabaceae

Crotalaria miranda Milne-Redh.

Examined material. ANGOLA – Bié Province • Chimombo municipality, Cusseque, TFO core site; 13°41′24″S, 017°05′08″E; 1558 m; XI.2011; R. Revermann 133144A leg.; recently HBG [HBG527014].

Identification. *Crotalaria phylloclada* is a spreading to prostrate annual to perennial herb. Very attractive series of opposite green-white colored bracts at apical branches are characteristic. *Euphorbia phylloclada* is sister to the annual *E. glanduligera* Pax.

Distribution and habitat. Namibia, South Africa. Dry riverbeds, sand and gravel plains, and on rocky slopes.

Family Fabaceae

Crotalaria miranda Milne-Redh.

Examined material. ANGOLA – Bié Province • Chimombo municipality, Cusseque, TFO core site; 13°41′24″S, 017°06′45″E; 1561 m; XI.2011; R. Revermann 132931 leg.; open miombo (*Julbernardia*) woodland; HBG [HBG527012].

Identification. *Crotalaria phylloclada* is a spreading to prostrate annual to perennial herb. Very attractive series of opposite green-white colored bracts at apical branches are characteristic. *Euphorbia phylloclada* is sister to the annual *E. glanduligera* Pax.

Distribution and habitat. Namibia, South Africa. Dry riverbeds, sand and gravel plains, and on rocky slopes.

Family Fabaceae

Crotalaria miranda Milne-Redh.

Examined material. ANGOLA – Bié Province • Chimombo municipality, Cusseque, TFO core site; 13°41′24″S, 017°06′45″E; 1561 m; XI.2011; R. Revermann 132931 leg.; open miombo (*Julbernardia*) woodland; HBG [HBG527012].

Identification. *Crotalaria phylloclada* is a spreading to prostrate annual to perennial herb. Very attractive series of opposite green-white colored bracts at apical branches are characteristic. *Euphorbia phylloclada* is sister to the annual *E. glanduligera* Pax.

Distribution and habitat. Namibia, South Africa. Dry riverbeds, sand and gravel plains, and on rocky slopes.

Family Fabaceae

Crotalaria miranda Milne-Redh.

Examined material. ANGOLA – Bié Province • Chimombo municipality, Cusseque, TFO core site; 13°41′24″S, 017°06′45″E; 1561 m; XI.2011; R. Revermann 132931 leg.; open miombo (*Julbernardia*) woodland; HBG [HBG527012].

Identification. *Crotalaria phylloclada* is a spreading to prostrate annual to perennial herb. Very attractive series of opposite green-white colored bracts at apical branches are characteristic. *Euphorbia phylloclada* is sister to the annual *E. glanduligera* Pax.

Distribution and habitat. Namibia, South Africa. Dry riverbeds, sand and gravel plains, and on rocky slopes.

Cyclocarpa stellaris Afzel. ex Urb.

Examined material. ANGOLA – Uíge Province • Provincia de Luanda [correct name at that time: district of Congo, today: province of Uíge]; Congo 1 km nördlich der Mission Sanza Pombo; Blüten gelb; 07°21′12″S, 016°07′04″E; 15.IV.1952, H.E. Hess and E. Hess-Wyss 52/1335 leg.; Savanne; ZT[ZT00077785].

Identification. The slender shrub is characterized by its coiled fruits with 9 or 10 segments and paripinnate sub-sessile leaves. Stipels are ovate to acuminate and have a long lanceolate basal appendage. The 3–4 pairs of leaflets do not exhibit stipels. The specimen of the Hess collection were originally identified in 1990 by F. Smagghe, Ghent University and now confirmed by us.

Dolichos subcapitatus var. angustifolius Mackinder

Figures 4E, 6E

Examined material. ANGOLA – Êibe Province • Chitembo municipality; 13°42′12″S, 017°05′06″E; 1513 m; I.2020; M. Finckh and P. Zigelski 145340B leg.; sandy geoxyle grassland; HBG[HBG527015].

Identification. The big triangular stipules are very conspicuous. The nominate form has broader leaflets and is known from the floristically eccentric Katanga region in D.R. Congo, whereas var. angustifolius has been known to occur further south in Zambia. Our Angolan specimen show even narrower leaflets.

References. Torre (1966); Mackinder (1999).

Humularia pseudoaeschnomone Verde.

Examined material. ANGOLA – Moxico Province • Cameia National Park; 11°44′28″S, 021°10′40″E; 1114 m; XI.2016; M. Finckh and P. Zigelski 143566 leg.; on elevated (not inundated) termitarium within a seasonally flooded plain; HBG[HBG527016], LUBA[LUBA036188-0].

Identification. Distinguished from other Humularia species in the area in that bracts are all completely divided to the base.

Distribution and habitat. Zambia. Lowly elevated islets in seasonally flooded grassland.

References. Torre (1966); Verdcourt (1972).

Family Lamiaceae

Acrotome tenuis G.Taylor

Examined material. ANGOLA – Êibe Province • Chitembo municipality; 13°34′23″S, 016°48′03″E; 1646 m; V.2012; R. Revermann 134517 leg.; degraded miombo woodland; HBG[HBG527017].

Identification. Unlike other Acrotome species, flowers of A. tenuis are aggregated in solitary terminal capitulae and the general habit is slender and unbranched.

Reference. Taylor (1932).

Clerodendrum globuliflorum B.Thomas

Figure 3C

Examined material. ANGOLA – Uíge Province • Municipal de Uíge, Kunga Quixinha; 07°36′17″S, 014°57′34″E; 880 m; 9.III.2013; B. Ditsch BD175 leg.; nahe Bachlauf; DR[DR067349].

Identification. The sessile inflorescences of this species are lateral on leafless hollow branches.

References. Morton (1963); Paton et al. (2019).

Coleus melleri (Baker) A.J.Paton & Phillipson

Figure 3E

Examined material. ANGOLA – Uíge Province • Municipal de Uíge, Kunga Quixinha; 07°36′17″S, 014°57′34″E; 880 m; 9.III.2013; B. Ditsch BD175 leg.; nahe Bachlauf; DR[DR065503].

Identification. The species is characterized by more or less fusiform densely brown-villose bulbls in leaf axils of branches and inflorescences.

Distribution and habitat. Liberia, Gabon, Uganda to southern tropical Africa, Madagascar. Swampy forest patches.

References. Morton (1963); Paton et al. (2019).

Rotheca wildii (Moldenke) R.Fern.

Figure 3H

Examined material. ANGOLA – Uíge Province • Municipal de Ambuila, near village Bombo; 07°31′01″S, 015°06′08″E; 1181 m; 17.XI.2015; T. Lautenschläger 2019_s.n. leg.; swampy forest patch; DR[DR050183].

Identification. Very few described species of Rotheca flower without leaves. Rotheca wildii is easily distinguished from other species by the bark being purplish-grey when young, becoming pale to dark greyish-brown and corky and longitudinally wrinkled when dry, with whitish prominent lenticels and concave cordate-elliptic to semicircular leaf scars surrounded by raised corky margins. Rotheca wildii is widespread, but this occurrence in Angola is disjunct being over 1500 km from the nearest other collections which are in Mazabuka and Chiwefwe Districts of in southern and central Zambia respectively and Nunga river area in north-western Botswana. Elsewhere, it is found on sandy soils around granite outcrops and on dry rocky hillsides in dry wooded grassland at 150–1500 m. Although the distribution is wide, the habitat is naturally fragmented and long-distance dispersal is the most likely cause of the disjunct pattern.

Distribution and habitat. Botswana, Malawi, Mozambique, South Africa (Limpopo), Zambia, Zimbabwe. On limestone rock, 800 m.

Tetradenia kaokoensis van Jaarsv. & A.E.van Wyk

Examined material. ANGOLA – Namibe Province • Municipality of Bungo, Serra Mucaba; 07°50′28″S, 014°50′32″E; 738 m; 14.XI.2019; T. Lautenschläger 2019_102 leg.; forest edge; DR[DR067783].

Identification. The species is clearly distinguishable from *Helinus integrifolius* (Lam.) Kuntze by the well-developed indumentum: hairs cover the sepals, the inflorescence and flowers on the upper side of the branches.

Distribution and habitat. From Eritrea in the north to Mozambique in the south and the D.R. Congo in the west.

References. Exell and Mendonça (1954d); Drummond (1966).

Family Rubiaceae

Bertiera loraria N.Hallé

Examined material. ANGOLA – Uíge Province • Municipality Uíge; near village Bemvindo; 07°45′02″S, 015°11′21″E; 1094 m; 20.XI.2014; M. Futuro s.n. leg.; forest remnant; DR[DR042749].

Identification. *Bertiera loraria* is characterised by contracted terminal inflorescences, linear calyx lobes about 4–9 mm long, and tubular stipules. It differs from the similar *B. letouzey* in having glabrous to only slightly puberulous leaf blades with cuneate base. More hairs are present on the leaf veins, with domatia in the nervation axils.

Distribution and habitat. From South Nigeria to D.R. Congo; 500–1600 m. Rainforest.

Family Malvaceae

Pterygota bequaertii De Wild.

Figure 5G

Examined material. ANGOLA – Uíge Province • Municipio de Quitexe, Serra Vamba; 07°25′49″S, 014°50′32″E; 738 m; 14.XI.2019; T. Lautenschläger 2019_11_102 leg.; forest edge; DR[DR066681].

Identification. This usually monocaulous tree has leaves longer than 60 cm with truncate leaflets lacking any indumentum. The 5-merous flowers are composed of a dark purple calyx and dark purple petals, as well as an up to 4.5 mm long, 10-lobed staminal tube.

Distribution and habitat. From South Nigeria to D.R. Congo. Rainforest.

References. Exell and Mendonça (1951b); Kenfack (2011).

Family Passifloraceae

Barteria solida Breteler

Figure 3B

Examined material. ANGOLA – Uíge Province • Municipality of Damba; near street between Mucaba and Damba; 06°55′09″S, 015°11′21″E; 1094 m; 20.XI.2014; M. Futuro s.n. leg.; forest remnant; DR[DR042749].

Identification. In contrast to *Barteria nigritana* Hook.f., *B. dewevrei* De Wild. and T.Durand, and *B. fistulosa* Mast., the branches of *B. solida* are solid without housing ants. The species has 1 or 2 flowers per axillary inflorescence and flowers on the upper side of the branches.

Family Rhamnaceae

Helinus mystacinus (Aiton) E.Mey. ex Steud.

Figure 5D

Examined material. ANGOLA – Uíge Province • Provincia de Luanda [correct name at that time: district of Congo, today: province of Uíge]: Congo, nördlich des Postens Sanza Pombo (Concelho Sanza Pombo); Blütten Weiss; 06°58′36″S, 016°22′47″E; 10.IV.1952; H.E. Hess and E. Hess-Wyss 52/1261 leg.; Walden mit viel wildem Kaffee; ZT[ZT00082847].

Identification. The species is clearly distinguishable from *Helinus integrofolius* (Lam.) Kuntze by the well-developed indumentum: hairs cover the sepals, the inflorescences, the tendrils, and even the capsules.

Distribution and habitat. From Eritrea in the north to Mozambique in the south and the D.R. Congo in the west. Forest margins.

References. Exell and Mendonça (1954d); Drummond (1966).

Family Meliaceae

Carapa macrantha Harms

Figure 3D

Examined material. ANGOLA – Uíge Province • Municipality of Bungo, Serra Mucaba; 07°50′28″S, 014°50′32″E; 738 m; 14.XI.2019; T. Lautenschläger 2019_102 leg.; secondary forest near stone quarry; DR[DR 066681].

Identification. This usually monocaulous tree has leaves longer than 60 cm with truncate leaflets lacking any indumentum. The 5-merous flowers are composed of a dark purple calyx and dark purple petals, as well as an up to 4.5 mm long, 10-lobed staminal tube.

Distribution and habitat. From South Nigeria to D.R. Congo. Rainforest.

References. Exell and Mendonça (1951b); Kenfack (2011).
waterfall in Serra do Pingano; 07°40′56″S, 014°56′05″E; 687 m; 16.II.2015; B. Ditsch BD740 leg.; forest; DR[DR067226].

Identification. *L. laurentiana* is a lianescent shrub with small erect stipules up to 1 cm long and terminal inflorescences. The variety *laurentiana* is distinguished from var. *seretii* (De Wild.) Neuba by the fruits less than 1 cm long.

Distribution and habitat. From Cameroon to D.R. Congo. Rainforest.

Reference. Neuba et al. (2014).

Pavetta membranifolia K.Krause

Examined material. ANGOLA – Uíge Province • 07°43′08″S, 014°44′45″E; 600 m; 21.II.2017; T. Lautenschläger 2017-2-98 leg.; forest; DR[DR052015].

Identification. *P. membranifolia* belongs to the subgenus *Pavetta*, characterised by a long corolla tube exceeding the lobes in length with the throat of the corolla not bearded. The species can be recognised by its lax inflorescences and linear to triangular calyx lobes about 4–7 mm long. The leaves are obovate-oblong, up to 18 × 9 cm large, with a petiole of 2–3 cm. The corolla tube is about 2 cm long, the style about 7 cm.

Distribution and habitat. Cameroon, Gabon, D.R. Congo. Rainforest near limestone.

Vangueria pygmaea Schltr.

Figure 4H

Examined material. ANGOLA – Huila Province • Tundavala SASSCAL Observatory; 14°47′58″S, 013°24′01″E; 2226 m; I.2022; P. Meller s.n. leg.; Afromontane grassland; HBG[HBG527150].

Identification. Generally known under the synonym *Pachystigma pygmaeum* (Schltr.) Robyns. Diagnostic features separating it from other *Vangueria* and *Pachystigma* species is the suffrutescent habit with an extended underground woody rhizome, and few inflorescences borne near the ground.

Distribution and habitat. Southern to eastern Africa. Geoxyle grassland.

Family Urticaceae

Elatostema paivaeanum Wedd.

Figure 5A

Examined material. ANGOLA – Uíge Province • Municipality of Quitexe, Serra do Pingano; 07°41′07″S, 014°55′46″E; 930 m; 31.X.2013; B. Ditsch BDS547b leg.; border of a creek in the forest; DR[DR050815].

Identification. This species differs from *E. welwitschii* in having a smaller number of teeth on each side of the long-acuminate leaf lamina (16–22).

Distribution and habitat. From west tropical Africa to Malawi and Tanzania. Rainforest.

References. Hutchinson et al. (1958b); Friis (1991).

Scepcocarpus flamignianus (Lambinon) T.Wells & A.K.Monro

Examined material. ANGOLA – Uíge Province • Serra Pingano; 07°40′56″S, 014°56′05″E; 687 m; 12.II.2017; T. Lautenschläger 2014_s.n. leg.; in forest; DR[DR060198] • Serra Pingano; 07°40′56″S, 014°56′05″E; 687 m; 12.II.2017; T. Lautenschläger 2014_s.n. leg.; in forest; DR[DR060198].

Identification. Also known as *Urera flamigniana* Lambinon, but this genus was recently revised by one of the co-authors (see Wells et al. 2021) and is yet not changed in PoWO. With a distinctively dense covering of hairs on leaves, which are often tinted silver or reddish-golden. Inflorescences are compact corymbs, generally with a pronounced initial fork in the peduncle. Female flowers are subtended by a dense ring of stinging hairs, and the perianth is almost entirely fused, covering the entire ovary.

Distribution and habitat. West tropical Africa, from eastern Nigeria to D.R. Congo. Rainforest.

References. Sosef et al. (2018); Wells et al. (2021).

Scepcocarpus repens (Wedd.) T.Wells & A.K.Monro

Figure 5H

Examined material. ANGOLA – Uíge Province • Municipality of Uíge; Serra Pingano; 07°40′56″S, 014°56′05″E; 687 m; 12.II.2017; T. Lautenschläger 2017_16a leg.; near waterfall; DR[DR050898].

Identification. Also known as *Urera repens* Wedd., but this genus was recently revised by one of the co-authors (see Wells et al. 2021) and is yet not changed in PoWO. The slender stems and trailing habit distinguish this species from the majority of *Scepcocarpus* species, which are generally shrubby lianas growing to many metres in height. Also distinctive are the suborbicular to broadly cordate leaves and the compact corymbs.

Distribution and habitat. West tropical Africa, from eastern Nigeria to D.R. Congo. Rainforest floor near small creeks.

References. Sosef et al. (2018); Wells et al. (2021).

NEOPHYTES

Clade Angiospermae dicotyledons

Family Amaranthaceae

Amaranthus tortuosus Hornem.
are broadly triangular at the base.

Distribution and habitat. Tropical America. Often cultivated and escaped.

Reference. Hutchinson and Dalziel (1954).

Family Euphorbiaceae

Euphorbia thymifolia L.

Figure 5C

Examined material. ANGOLA – Uíge Province • Kunga Quiximba; 07°36′51″S, 014°58′59″E; 810 m; 29.IV.2014; A. Göhre 373 leg.; edge of village; DR[DR042692] • Municipio de Maquila do Zombo; 06°03′58″S, 015°06′33″E; 890 m; 18.II.2018; G. Jendras L18 leg.; DR[DR051624] • Banga; 08°43′41″S, 015°10′06″E; 846 m; 17.XI.2016; C. Heinze 129 leg.; DR[DR067257].

Identification. *Euphorbia thymifolia* differs from other prostrate species of *Euphorbia* by having subsessile pilose capsules included within the involucre.

Distribution and habitat. A pantropical weed from Tropical South America, Native to southern South America, D.R. Congo. Disturbed areas, facing the headquarters; interior D.R. Congo. Widely introduced in tropical Africa, including in the adjacent D.R. Congo. Disturbed grounds at the village edge.

Family Portulacaceae

Portulaca grandiflora Hook.

Figure 5F

Examined material. ANGOLA – Huila Province • Bicuar National Park; near the headquarters; 15°06′02″S, 014°50′22″E; 1245 m; III.2022; M. Finckh s.n. leg.; HBG527146.

Identification. A plant that is cultivated for ornamental uses because of its large, brightly colourful flowers. In warmer regions, these cultivated plants can escape easily. It is an annual or short-lived perennial, and grows prostrate on the ground, forming an attractive cushion full of flowers.

Distribution and habitat. Native to southern South America but introduced to North America and parts of Europe, Africa, and Asia. Ruderal plant.

Reference. Coelho et al. (2010).

Family Simaroubaceae

Brucea javanica (L.) Merr.

Examined material. ANGOLA – Uíge Province • Municipality Ambuila, estaleiro Kisanga; 07°40′09″S, 015°02′00″E; 756 m; 15.XI.2019; M. Monizi 2018 s.n. leg.; savannah; DR[DR056856].

Identification. In contrast to the other species, the leaves of *B. javanica* are serrate. The species was found in the neighbouring D.R. Congo.

Distribution and habitat. Tropical and subtropical Asia, northern Australia, D.R. Congo. Disturbed areas.

Family Verbenaceae

Lantana horrida subsp. *tilifolia* (Cham.) R.W.Sanders

Examined material. ANGOLA – Uíge Province • municipality Uíge, campus of UniKiVi; 07°35′42″S, 014°59′09″E; 798 m; 31.1.2014; T. Lautenschläger s.n. leg.; savannah; DR[DR050177].

Identification. The lowermost bracts are linear-lanceolate and only up to 2 mm wide. The plant is covered with gland-tipped and bristle-like hairs. The fruits spikes do not elongate when fruiting.

Distribution and habitat. Tropical South America, Zambia. Degraded savannah.

Discussion

This study provides records of 67 plant species that were not previously known from Angola. This is a remarkable number, which highlights the need for further surveys of old collections stored in herbaria, and for new plant collections from more remote areas.

In comparison, recent studies reporting new records in tropical regions list fewer species, e.g. 11 new records in Singapore (Lim et al. 2018), 23 from Shan state in Myanmar (Kang et al. 2018), or 55 from Santa Catarina, Brazil (Funez et al. 2017). Those studies focus on a single region, whereas our study combines the work of several groups working in Angola, thus providing more new floristic knowledge at once. This work adds to recent reports of new records (Lautenschläger et al. 2020b) and species (e.g. Swanepoel et al. 2021) in Angola, and we expect more to come if survey efforts will be increased, and/or more alien species are introduced (Rejmánek et al. 2017).

With their occurrence now confirmed in Angola, five species show a disjunct distribution pattern, with several hundreds to thousands of kilometres to the nearest known population, e.g. *Senecio venosus* and *Cyperus longispicula*. Several explanations are possible for such patterns, e.g. populations in between exist but have not been found yet; populations in between existed under past climatic conditions but are now extinct (Ehrich et al. 2007; Kuhn et al. 2016); long distance dispersal of seeds (Popp et al. 2011; Villaverde et al. 2015) or human transport and introduction (Hulme 2009).

For instance, *Senecio venosus* is found in humid Afromontane regions in western Angola, and far away South Africa/Eswatini. But from there, it ranges throughout the wetter eastern part of Southern Africa as far as southern Zambia, making the distance superable. The remaining gap might be conquerable via aerial seed dispersal, of which particularly Asteraceae species are capable of, because of their pappi (Muñoz et al. 2004).

Similarly, *Rotheca wildii* is known from elevated rocky sites in southern East Africa, and the population...
nearest to the Angolan one is in Zambia, 1500 km away. Since *Rotheca* does not have wind dispersed seeds, this distribution pattern is more likely caused by animal dispersal (Popp et al. 2011), or by a broader corridor of Afrotropical habitats in this area during the Pleistocene (Allen et al. 2021).

Several findings from eastern Angola (Moxíco) represent logical range extension from similar and contingent habitats in western Zambia and southern D.R. Congo, being part of the Flora zambesiaca area. *Eriocaulon glandulosum* for instance was originally collected in wetlands directly at the Angola/D.R. Congo boarder, but on the Congolian side; we collected it approximately 180 km away from this place in similar habitats on the Angolan side. Such patterns are not surprising as Angola, and particularly Eastern Angola, are floristically still little explored (Goyder and Gonçalves 2019).

Within our study, we identified two species hitherto thought to be endemic to D.R. Congo as new records for Angola (*Commelina robynii* and *Vernonia luala-baensis*), thereby expanding their geographic range. Both are poorly sampled and little-known species. Therefore, we provide additional information about their habitat and distribution. *Commelina robynii*, *Vernonia luala-baensis*, and *Dolichos subcapitatus var. angustifolius* are known from the Upper Katanga (copperbelt) area, where metal-rich soils promote a unique flora (Malaisse et al. 2016). In Angola, they occur in comparable woodland–grassland mosaics on shallow bedrock (Bié Plateau), where the soils have a lower metal content and are rather dominated by iron/aluminium than by copper/cobalt (Grönroös 2013). More than 900 km including the Zambezi graben separate these populations, but this Katanga–Bié distribution pattern has been reported before, for example for the Asteraceae *Schistostephium crataegifolium* (DC.) Fenzl ex Harv. (Gonçalves et al. 2016).

Many of the new records from Uíge presented here have a Guineo-Congolian background. This is because the mountain ranges in Uíge are covered by evergreen tropical forest and represent an exclave of the Guineo-Congolian Floristic Region (Lautenschläger et al. 2020b). Probably, the exclave is a remnant of a broader expanse of montane habitats in the Pleistocene, when a corridor of evergreen tropical forests likely spanned from Cameroon over Angola to East Africa (Allen et al. 2021). The finding of a high number of new records in Uíge province in the recent past reflects increasing research effort, but also improved accessibility into the steep mountain ranges by logging companies (Lautenschläger pers. obs.). However, increasing uncontrolled deforestation, agroforestry and bushmeat hunting (Teutloff et al. 2021) follows this improved access.

Four of the five newly documented alien species originate from the Neotropics. The only neophytic species of Asian and northern Australian origin, *Brucea javanica*, was already documented for the provinces of Kinshasa and Équateur in the adjacent D.R. Congo (GBIF 2022). It was found in savannah at the edge of a village and may well have been introduced to Angola from the D.R. Congo recently by local people because of its medicinal properties (Chen et al. 2013).

All of the five alien species new to Angola are already known from tropical Africa. *Lantana hordria* subsp. *tiliifolia* was up to now only found in Zambia and Burundi. *Amaranthus tortuosus* was already found in West Africa (Benin, Cote d’Ivoir, Senegal, and Burkina Faso) as well as in East Africa (Tanzania and Rwanda). It may have escaped from cultivation as a green vegetable for human nutrition or as a medicinal herb (CABI 2021). According to the CABI website, several African countries list *A. tortuosus* as invasive. Still, neither this species nor the remaining ones are listed as invasive by the IUCN Global Invasive Species Database (ISSG 2015).

Unless Angola’s number of naturalised aliens compared to Zimbabwe and South Africa is still rather modest (Rejmánek et al. 2016; Spear et al. 2013; Smith and Figueiredo 2017; Figueiredo and Smith 2022), constant monitoring in the future is needed as higher rates are to be expected due to decreasing isolation of the country.

Only 10 of the 67 listed taxa are assessed for the IUCN Red List (2022) (Table 2). Two of these are categorized as Vulnerable with unknown population status (*Hypoestes potamophila* and *Pterygota bequaertii*). The finding of additional populations and areas of occurrence in Angola will therefore improve their conservation status. This kind of information is urgently needed for reliable updated assessments. Seven taxa are listed as Least Concern, the remaining 58 taxa are stable, or their population trend is unknown. Thus, the conservation status of 85% of the species presented here is not assessed yet, which sadly is representative of many other tropical regions globally, where status of plant species is Data Deficient (Brummitt et al. 2008). For instance, 15 of the taxa presented here that where not assessed for the IUCN Red List show localized distributions (Table 1). This could be threatening for the taxa when their area of occurrence is experiencing habitat loss and/or climate change (Brooks et al. 2002).

Angola is undergoing rapid land use change and intensification since the end of the civil war, often in an uncontrolled way resulting in habitat degradation and loss. It has one of the highest rates of tree cover loss in Africa due to poorly controlled and increasing extraction of natural resources (Hansen et al. 2013; Catarino et al. 2020). Chiteculo et al. (2018) states that clearance for timber and charcoal production heavily affects the

Table 2. IUCN conservation status categories for the 67 newly recorded species.

<table>
<thead>
<tr>
<th>Category</th>
<th>Count out of 67</th>
<th>Percent %</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not assessed</td>
<td>57</td>
<td>85.1</td>
</tr>
<tr>
<td>Data Deficient</td>
<td>1</td>
<td>1.5</td>
</tr>
<tr>
<td>Least Concern</td>
<td>7</td>
<td>10.4</td>
</tr>
<tr>
<td>Vulnerable</td>
<td>2</td>
<td>3.0</td>
</tr>
</tbody>
</table>
The seasonally flooded savannahs in the Moixa province have been targeted for large-scale rice plantations, even within the Camaia National Park (Chiamb et al. 2019; Finckh and Meller pers. obs.). On top of that, southern Angola is expected to get warmer and drier in the near future due to climate change (Barros et al. 2014). With most of the Angolan flora not assessed by the IUCN Red List, it is difficult to predict which effect this habitat loss will have on single species (Brooks et al. 2002). However, established and highly specialized species seldom benefit from habitat loss, and it is much more likely that generalist or invasive species will be at an advantage (Marvier et al. 2004). With ongoing fieldwork and exploration in Angola additional new records are very likely to be documented. However, time is of the essence as several habitats are at high risk of irreversible change, degradation or destruction from different human activities and climate change.

Acknowledgements

We thank Alessia Guggisberg for providing selected samples from the United Herbaria Z/ZT of the University of Zurich and the ETH Zurich that were collected by the married couple Hess who travelled through Angola in 1951–1952. Thanks are given to Robert Faden, Paul Goetgebuehr, David Kenfack, Andreas Schult, Daniel Layton, Geoffrey Levin, Elmar Robbrecht, and Jan Wieringa for their help with species identification, and thanks to Nigel Barker, Nicola G. Bergh, Stoffel Bester, Ralph Clark, Kyle Dexter, Francisco Maiato Gonçalves, Brian J. Huntley, Matt Janks, Rasmus Revermann, Erin Tripp, Ernst van Jaarsveld, and Johannes Wallenfang as collectors.

The University Kimpa Vita was an essential base for our fieldwork in northern Angola and provided logistical support. We are also grateful to the Botanical Garden of the TU Dresden for cultivating plants until essential characters for identification had developed. The fieldwork in Angola was supported by the program “Strategic Partnerships” of the TU Dresden. The published results were obtained in collaboration with the Instituto Nacional de Biodiversidade e Conservação (INBC) of the Ministério da Cultura, Turismo e Ambiente da República de Angola. Fieldwork of N. Jürgens, M. Finckh, and P. Meller (= P. Zigelski) in the central and southern parts of the country was funded by the German Ministry of Education and Research in the context of The Future Okavango (TFO) (grant number 01LL0912A) and SASSCAL (grant number 01LG1201A, M, N) projects.

Authors’ Contributions

Conceptualization: TL. Investigation: MC, DG, ID, ML, TL, TW, AG, BD, CCJ, NJ, PM, CB, HP, AP, MF, FL, AM. Resources: JLM, MM. Visualization: CB, PM. Writing – original draft: PM, TL. Writing – review and editing: TL, PM.

References

Faden RB (2012b) Commelinaceae: Cyanotis foecunda. In: H. Beentje
Empetrum Hook.f. (Rubiaceae, Pavetteae). Adansonia 36: (Cynsp. nov.: with a
PoWO (Plants of the World Online) (2021) Plants of the world online.
Persoon JGM, Van Dilst FJH, Kuijpers RP, Leeuwenberg AJM, Vonk
Paton AJ, Mwanyambo M, Govaerts RH, Smitha K, Suddee S, Phillip
Paton A (2014) A new species of Orthosiphon (Lamiaceae) from
Angola. Biodiversity Data Journal 2: e1162. https://doi.org/10.3897/
bdj.e1162
Paton AJ, Mwanambo M, Govaerts RH, Smitha K, Suddee S, Philip-
changes in Coleus and Plectranthus (Lamiaceae): a tale of more
than two genera. Phytotaxa 129: 1–158. https://doi.org/10.3897/
phytotaxa.129.34988
Raven PH, Hong D (Eds.) Flora of China 11. Science Press, Bei-
jing, China, 103–104.
Persoon JGM, Van Dilst FJH, Kuijpers RP, Leeuwenberg AJM, Vonk
GJA (1992) Landolphia villosa. In: Persoon JGM, Van Dilst FJH,
Kuijpers RP, Leeuwenberg AJM, Vonk GJA (Eds.) The African
species of Landolphia P. Beauv. (Ser. revis. Apocynaceae 34). Agri-
cultural University, Wageningen, the Netherlands, 195–199.
Polhill RM (Ed.) Flora of Tropical East Africa: 2. Royal Botanic Gar-
dens, Kew, UK, 9.
Polhill RM, Martins ES (Eds.) Flora zambesiaca 3(7). Royal Bo-
tanic Gardens, Kew, UK, 9.

Popp M, Mirré V, Broichmann C (2011) A single Mid-Pleistocene long-
distance dispersal by a bird can explain the extreme bipolar dis-
junction in crowberries (Empetrum). Proceedings of the National
Academy of Sciences of the United States of America 108: 6520–
6525. https://doi.org/10.1073/pnas.1012249108
PoWO (Plants of the World Online) (2021) Plants of the world online.
survey of the invasive plant species in western Angola. African
species of the Moombo woodlands and geoxyl grasslands of the
https://doi.org/10.15566/13.1.2030
Revermann R, Wallenfang J, Oldeland J, Finckh M (2017b) Species
richness and evenness respond to diverging land-use patterns—a
cross-border study of dry tropical woodlands in southern Africa.
of Africa, Madagascar and neighbouring islands. Sistelitia 23.
SANBI (South African National Biodiversity Institute) Publish-
ing, Pretoria, South Africa, 298 pp.
Schelpe EACLE (1977) Aspleniaceae. In: Fernandes A, Laurnert E,
Mendes EJ (Eds.) Conspectus Flora Angolensis, vol. Pterido-
phyta. Junta de Investigacoes Ultramar, Lisboa, Portugal, 135–149.
Simpson DA, Maaya AM (2004) Three new species of Cyperus (Cy-
peraceae) from eastern and southern Africa. Kew Bulletin 59 (4):
593–598. https://doi.org/10.2307/4110917
Smith GF, Figueiredo E (2017) Determining the residence status of
widespread plant species: studies in the flora of Angola. African
Smith GF, Lautenschläger T (2021) Aloe uigensis (Asphodelaceae sub-
fam. Alaoideae), a new species from northwestern Angola. Phyt-
taxa 521 (3): 227–231. https://doi.org/10.11646/phytotaxa.521.3.8
Sosef MSM, Wieringa JJ, Jongkind CCH, Achoudong G, Issembé YA,
Bedigian D, Van den Berg RG, Breteler FJ, Cheek M, Dreef J,
Faden RB (2006) Cyperaceae endemic to the Namib Desert of Southwestern Angola. Sys-
Nordal I, Kwembeya EG (2004) Crinum binghamii sp. nov.: with a
crystal to Crinum species with radially symmetrical flowers in
org/10.1177/194008291500800402

Swanepoel W (2019) Erythrococca kaokoensis (Euphorbiaceae), a
https://doi.org/10.11646/phytotaxa.392.1.5
species of Syzygium (Myrtaceae) from the lower Kume River of
org/10.11646/phytotaxa.491.4.3
Swanepoel W (2009) Euphobria ohiva (Euphorbiaceae), a new species
from Namibia and Angola. South African Journal of Botany 75 (2):
249–255. https://doi.org/10.1016/j.sajb.2008.11.009
Taylor G (1932) Acrotome tenus. Notes from the British Museum Her-
Teutloff N, Meller P, Finckh M, Cabalo AS, Ramiro GJ, Neinhuis C,
Lautenschläger T (2021) Hunting techniques and their harvest
as indicators of mammal diversity and threat in northern An-
org/10.1007/s10344-021-01541-y
Torre AR (1962) Papilionoideae: genus Crotalaria. In: Exell AW,
Fernandes A (Eds.) Conspectus florae angolensis 3(1). Junta de Inves-
tigações do Ultramar, Lisboa, Portugal, 6–76.
Torre AR (1966) Papilionoideae: genus Dolichos. In: Exell AW, Fer-
nandes A (Eds.) Conspectus florae angolensis 3(2). Junta de Inves-
Tripp EA, Darbyshire I (2020) Mcladea: a new genus of Acanthace-
aeae endemic to the Namib Desert of Southwestern Angola. Sys-
tematic Botany 45 (1): 200–211. https://doi.org/10.1600/0363644
20X15801369352478
Van der Walt JJA (1973) A new species of Combimphora from the Kao-
Van Jaarsveld EJ, Van Wyk AE (2003) Lamiaceae: Tetradenia ka-
koensis, a new species from Kaokoland, Namibia. Bothalia 33:
107–108.
Verdcourt B (1972) Studies in the Leguminosae-Papilionoideae-He-
dysaeae (senus latu) for the “Flora Zambesiaca”. 2. Kew Bul-
Escudero M, Luceño M, Martín-Bravo S (2015) Long-distance dis-
persal during the middle–late Pleistocene explains the bipolar
disjunction of Carex maritima (Cyperaceae). Journal of Biogeog-
JR (Eds.) Flora zambesiaca 14. Royal Botanic Gardens, Kew, UK,
268–306.
shifting cultivation on dense tropical woodlands in southeast Ango-
org/10.1177/19400829150800402

raw_text_end
https://doi.org/10.1016/j.ympev.2020.107008

