Discovery of *Helorus brethesi* Oglobin, 1928 (Hymenoptera, Heloridae) in Honduras and Guatemala

Patricia E. Corro-Chang¹, Yostin J. Añino²*, Roberto A. Cambra²

1 Universidad de Panamá, Panamá • PCC: estherpatricia04@gmail.com ● https://orcid.org/0000-0003-4385-1596
2 Museo de Invertebrados G. B. Fairchild, Facultad de Ciencias Naturales, Exactas y Tecnología, Universidad de Panamá, Panamá • YJA: yostin0660@gmail.com ● https://orcid.org/0000-0002-8870-8155 • RAC: cambramiup60@gmail.com ● https://orcid.org/0000-0002-3799-4710
* Corresponding author

Abstract
We report the first records of the family Heloridae in Honduras and Guatemala. We illustrate and report the presence of *Helorus brethesi* Oglobin, 1928 as the only species known from the Neotropics. We include habitus photographs and updated distributional patterns of the species across the Neotropics.

Keywords
Neotropics, new records, Proctotrupoidea, wasps

Academic editor: Filippo Di Giovanni | Received 4 July 2022 | Accepted 10 October 2022 | Published 28 October 2022

Citation: Corro-Chang PE, Añino YJ, Cambra RA (2022) Discovery of *Helorus brethesi* Oglobin, 1928 (Hymenoptera, Heloridae) in Honduras and Guatemala. Check List 18 (5): 1191–1194. https://doi.org/10.15560/18.5.1191

Introduction
Heloridae (Hymenoptera, Proctotrupoidea) is a small family of endoparasitic wasps with the particular habit of solitary koinobionts in larvae of species of *Chrysopa* Leach in Brewster, 1815 (Neuroptera, Chrysopidae) (Clancy 1946). The family had a broader diversity in the past, with 10 genera and 20 species from the Jurassic or Cretaceous and one species from the Oligocene (Muona 2020). There are only 19 extant species, all in the genus *Helorus* Latreille, 1802 (Pschorn-Walcher 1955; Townes 1977; van Achterberg 2006; Izadizadeh et al. 2015; Zhang et al. 2020). Based on literature data, *Helorus brethesi* Oglobin, 1928 is the only species of the family currently known from the Neotropics.

During an exploratory online search in the Global Biodiversity Information Facility (GBIF), we noticed several records of *H. brethesi* occurring in Neotropical countries, including Chile, Honduras, and Guatemala. These records have not been published in the literature. In addition, there are only 20 scientific publications on this species (Añino et al. 2016) despite its broad distribution extending from Mexico to Argentina.

Here, we produce an updated distributional database of the species in the Neotropics by the corroboration of informal records and inclusion of our new records from Honduras and Guatemala (records provided by open access initiatives such as GBIF).

Methods
We searched the GBIF platform, using the key word “Heloridae”, which generated 1008 occurrences. Those collections that had records from the Neotropical region...
were contacted. The presence of *Helorus brethesi* in Honduras (Fig. 1A–C) and Guatemala (Fig. 2A–C) was confirmed.

The entomological collections examined are the following:
- CMNH: Cleveland Museum of Natural History, OH, USA.
- MSU: Albert J. Cook Arthropod Research Collection, Michigan State University, USA.

**Results**

*Helorus brethesi* Ogloblin, 1928

*Helorus brethesi* Ogloblin 1928: 77.

Figures 1–3

**Type material.** Loreto, Misiones, Argentina (Ogloblin 1928; Townes 1977).


**Identification.** Specimens were identified by the following combination of diagnostic features. Color: head and metasoma blackish; mesosoma mostly red, except tegula whitish, mesopleuron black and propodeum mostly blackish; antennae, mandibles and legs mainly stramineous to pale yellow-brown; wings hyaline. Head: frons almost smooth, punctures inconspicuous; antenna with 15 segments; mandibles sickle-shaped. Mesosoma: mesoscutum with trans-scutal suture developed, integument mostly smooth except with sparse unremarkable punctures; scutellum smooth; mesopleuron with a row of small foveae behind the prepectal carina. Metasoma: segment one about 3.4× as long as wide and petiolate, tergum one with longitudinal striae and sparse punctures at the base and apex, other areas almost smooth.

**Distribution** (Fig. 3; Appendix Table A1). Argentina (Ogloblin 1928; Townes 1977); Brazil (Townes 1977; Dorfey et al. 2011); Colombia (Sosa-Calvo and Campos 2005); Panama (Añino et al. 2016); Costa Rica (Masner 1995); Guatemala; Honduras (present study); Mexico (Townes 1977).

**Comments.** We contacted Anthony I. Cognato, MSU, who rectified the record of a specimen of *H. brethesi* from Chile (MSUC_ARC_145821). The identification was erroneous; it’s not a helorid (A.I. Cognato pers. comm.).

**Discussion**

The distribution of *Helorus brethesi* in the Neotropical region appears very broad (Fig. 3), although scattered, most probably due to insufficient systematic investigations, as with many other hymenopteran groups. The presence of this species in Guatemala and Honduras was largely expected based on the previous distributional pattern.

Detailed study of external morphological features and the inclusion of good quality photographs of the habitus are necessary for the correct identification of species. For example, the mesonotum, petiolus, femora, and pterostigma represent structures with diagnostic characters at the species level (Pschorn-Walcher 1955; Townes 1977; Prpic-Schäper 2010). Most of the literature that we consulted need to be updated with good quality figures and better delimited morphological characters.

In preparation of the present paper, we note the great value of entomological collections, as well as initiatives such as GBIF, which provides a link between biological collections and naturalists in order to determine distributional patterns of species. It is important that museum records are confirmed by a specialist, which is essential to avoid mistaken identifications and errors in
Figure 2. *Helorus brethesi* Oglobin, 1928 from Guatemala. **A.** Dorsal view. **B.** Lateral view. **C.** Specimen labels. Photographs: Nicole Gunter (CMNH).

Figure 3. Map showing the known distribution of *Helorus brethesi* Oglobin, 1928, including first records from Honduras and Guatemala.
distributions. Digitization is the future of natural history collections, which will make collections accessible and open to international collaboration, and facilitate updating. Digitization will also promote their persistence over time and provides a backup in the case of catastrophes. Digitization of natural history collections opens a broad range of opportunities and the development of new disciplines such as bioinformatics.

Acknowledgements
We thank Jadranka Rota, MZLU, for providing photos of the two specimens from Honduras; Anthony L. Cognato, MSU, for the information provided; Nicole Gunter, CMNH, for assistance to one of us (RAC). We also thank Paul E. Hanson, University of Costa Rica, for reviewing our English and helpful suggestions to improve the manuscript. PCC would like to thank the National Secretariat of Science, Innovation and Technology (SENACYT) for the financial support of her research in Panama, for the grant Nuevos Investigadores 2015 (APY-NI-2015–27). International Academic Mobilization, PhD grant (002-2015), Sistema Nacional de Investigadores (SNI-NM2021–012) and Programa de Inserción de Becarios 2021 (PIB-2021–004) kindly financially supported this research in Panama.

Authors’ Contributions
Conceptualization: YJA. Investigation: PECC, YJA, RAC. Writing – original draft: RAC, PECC, YJA. Visualization: YJA. Writing – review and editing: YJA, RAC.

References

Appendix

Table A1. Specimens of Helorus brethesi from the Neotropics.

<table>
<thead>
<tr>
<th># specimens</th>
<th>Sex</th>
<th>Location</th>
<th>Country</th>
<th>Latitude</th>
<th>Longitude</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Undetermined</td>
<td>Cerro Frantzis, Puntarenas</td>
<td>Costa Rica</td>
<td>09.0551</td>
<td>-082.9895</td>
<td><a href="https://doi.org/10.11646/palaeontolgy.003.4.4">https://doi.org/10.11646/palaeontolgy.003.4.4</a></td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>Puerta Parada, Guatemala</td>
<td>Guatemala</td>
<td>14.5667</td>
<td>-090.4676</td>
<td><a href="https://doi.org/10.11646/palaeontolgy.003.4.4">https://doi.org/10.11646/palaeontolgy.003.4.4</a></td>
</tr>
<tr>
<td>1</td>
<td>Undetermined</td>
<td>Boquete, Chiriquí</td>
<td>Panamá</td>
<td>08.6896</td>
<td>-082.4467</td>
<td><a href="https://www.gbif.org/es/occurrence/1801002395">https://www.gbif.org/es/occurrence/1801002395</a></td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>Palo de Comba, Yoro</td>
<td>Honduras</td>
<td>15.1883</td>
<td>-087.6500</td>
<td><a href="https://www.flickr.com/photos/tags/mzlu00174277">https://www.flickr.com/photos/tags/mzlu00174277</a></td>
</tr>
<tr>
<td>1</td>
<td>Male</td>
<td>Misiones</td>
<td>Argentina</td>
<td>-26.7871</td>
<td>-054.6558</td>
<td>Ogloblin 1928</td>
</tr>
<tr>
<td>7</td>
<td>Male, Female</td>
<td>Horco Molle and Tucumán</td>
<td>Argentina</td>
<td>-26.7676</td>
<td>-065.3092</td>
<td>Townes 1977</td>
</tr>
<tr>
<td>1</td>
<td>Male</td>
<td>Jataí, Goiás</td>
<td>Brasil</td>
<td>-17.4533</td>
<td>-051.6515</td>
<td>Townes 1977</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>Palmeira</td>
<td>Brasil</td>
<td>-25.4125</td>
<td>-050.0501</td>
<td>Dorley et al. 2011</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>Quintín, Genova</td>
<td>Colombia</td>
<td>04.3950</td>
<td>-075.7653</td>
<td>Sosa-Calvo and Campos 2005</td>
</tr>
<tr>
<td>1</td>
<td>Male</td>
<td>Jardín Botánico Las Cruces, Puntarenas</td>
<td>Costa Rica</td>
<td>08.7845</td>
<td>-082.9603</td>
<td>Masner 1995</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>Cerro Frantzis, Puntarenas</td>
<td>Costa Rica</td>
<td>09.0551</td>
<td>-082.9686</td>
<td>Añino et al. 2016</td>
</tr>
<tr>
<td>2</td>
<td>Female</td>
<td>Santa Fe, Veraguas</td>
<td>Panama</td>
<td>08.5426</td>
<td>-081.1301</td>
<td>Añino et al. 2016</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>Motozinha, Chiapas</td>
<td>Mexico</td>
<td>15.3686</td>
<td>-092.2284</td>
<td>Townes 1977</td>
</tr>
<tr>
<td>1</td>
<td>Female</td>
<td>Yerba Buena, Chiapas</td>
<td>Mexico</td>
<td>16.9124</td>
<td>-092.8742</td>
<td>Townes 1977</td>
</tr>
</tbody>
</table>