Annotated checklist of the Coccinellidae (Coleoptera, Coccinelloidea) of Switzerland

Andreas Sanchez1, Yannick Chittaro1

1 Info Fauna, Avenue Bellevaux 51, CH-2000 Neuchâtel, Switzerland

https://zoobank.org/29E44702-4560-4754-849F-3E7348C3D9DF

Corresponding author: Andreas Sanchez (andreas.sanchez@infofauna.ch)

Abstract

An updated checklist of the Swiss species belonging to the family Coccinellidae is presented and briefly discussed. This checklist includes 81 species (82 taxa including the subspecies) and is based on 33'976 occurrences obtained from the identification of specimens held in museum and private collections, as well as from records taken from the literature. Exochomus oblongus Weidenbach, 1859, Hyperaspis peezi Fürsch, 1976, Hyperaspis pseudopustulata Mulsant, 1853, Nephus bisignatus (Fürsch, 1984), Rhyzobius forestieri (Mulsant, 1853), Scymniscus anomus (Mulsant & Rey, 1852) and Scymnus doriae Capra, 1924 are recorded for the first time in Switzerland. In parallel, Chilocorus similis (P. Rossi, 1790), Bulaea lichatschovii (Hummel, 1827), Ceratomegilla rufocincta rufocincta (Mulsant, 1850), Coccinella undecimpunctata undecimpunctata Linnaeus, 1758, Chnootriba elaterii (P. Rossi, 1794), Henosepilachna vigintioctopunctata (Fabricius, 1775), Hyperaspis quadrimaculata (Redtenbacher, 1843), Scymnus marginalis (P. Rossi, 1794) and Novius cardinalis (Mulsant, 1850) were recorded from Switzerland in the past but are excluded from this list, either due to insufficient documentation or because they represent isolated cases of introductions of non-indigenous species that never became established in Switzerland.

Key Words

Insecta, beetle, ladybird, species list, new country records, faunistics, distribution

Introduction

Considered for a long time as a member of the super-family Cucujoidea, the beetle family Coccinellidae now belongs to the super-family Coccinelloidea (Robertson et al. 2015). More than 6'000 species of Coccinellidae are described worldwide (Vandenberg 2002; Kovář 2007), among them about 100 species occurring in Central Europe (Nedvěd 2015; Klausnitzer et al. 2022) and 196 in Continental Europe (Nedvěd and Durić 2022). The majority of the European species are predators of phytophagous arthropods, particular aphids (Aphidoidea), coccids (Coccoidea), whiteflies (Aleyrodoidea), spider mites (Acari) and larvae of chrysomelid beetles (Chrysomelidae) (Hodek and Honěk 2009; Weber and Lundgren 2009). Due to this diet, they are regularly used for biological control in agriculture and forestry. As an unexpected consequence, certain species of exotic Coccinellidae, initially introduced as biological control agents, have become invasive species (Soares et al. 2018). Other diets exist, however, to a lesser extent within this family, with some species either phytophagous or mycophagous (Sutherland and Parrella 2009; Klausnitzer 2019a).

Despite the fact that this is a charismatic family, no overview has been published in Switzerland since the catalog of Stierlin (1900). Since this last publication, our knowledge of the systematics and distribution of the species has evolved considerably, so that an update of this list was necessary. In addition, several introduced species used in biological control have now acclimatized and are reproducing in the field in Switzerland, so that they are now part of the fauna of Switzerland.
This publication aims to present an annotated checklist of the species in Switzerland. It is based on a review of the Swiss museum and private collections, as well as of the literature and data gathered by naturalists. Thus, resident species are distinguished from species that are mistakenly mentioned for Switzerland, insufficiently documented and those introduced but not established in the country.

Materials and methods

In order to present a complete list of the Swiss fauna, based on all existing information, we performed an exhaustive examination of the relevant material present in major Swiss museum collections, as was recently done for other beetle groups (see for example Sanchez et al. 2020; Chittaro et al. 2021). The collections in the following museums were studied (the contact person is reported in parentheses after each institution):

AGRO Agroscope-Changins, Nyon (Stève Breitenmoser)
BNM Bündner Natur-Museum, Chur (Stephan Liersch)
ETH Eidgenössische-Technische Hochschule, Zürich (Michael Greff)
KMLI Kantonsmuseum Baselland, Liestal (Marc Limat)
LEBA Laboratoire d’écologie et biologie aquatique (UNIGE), Genève
MHNF Musée d’histoire naturelle de Fribourg (Sophie Giriens)
MHNG Musée d’histoire naturelle de Genève (Giulio Cuccodoro)
MHNN Musée d’histoire naturelle de Neuchâtel (Jessica Litman)
MHNS Musée de la nature du Valais, Sion (Sonja Gerber)
MSNL Museo cantonale di storia naturale, Lugano (Lucia Pollini Paltrinieri)
MZL Musée cantonal de zoologie, Lausanne (Anne Freitag)
MZA Museum zu Allerheiligen, Schaffhausen (Urs Weibel)
NMAA Naturama, Aarau (Janine Mazenauer)
NMB Naturhistorisches Museum Basel (Matthias Borer)
NMBE Naturhistorisches Museum Bern (Hannes Baur)
NMLU Natur-Museum, Luzern (Marco Bernasconi)
NMSG Naturmuseum St. Gallen (Karín Urfer)
NMTG Naturmuseum Thurgau, Frauenfeld (Barbara Richner)
NMSO Naturmuseum, Solothurn (Marc Neumann)

We also cited data gathered from three museums outside Switzerland:

MAMU Manchester Museum, Great Britain
TLMF Tiroler Landesmuseum, Innsbruck, Austria
SMNS Staatlichen Museum für Naturkunde Stuttgart, Germany

Moreover, we included data from the private collections of the authors, as well as those of the following individuals. They are classified in alphabetical order. The municipality and the abbreviated canton of residence are indicated in brackets: Bastien Guibert (Gy GE), Berndt Eismann (Kreuzlingen TG), Hansjörg Brägger (Amriswil TG), Kevin Gurcel (France, Annecy), Stève Breitenmoser (Givins VD) and Werner Marggi (Thun BE).

All available data from the literature relevant for Switzerland were also considered. The references from these publications are included in the bibliography if they are specifically cited in the text. Publications consulted but not cited in the text are not mentioned.

The subfamily and tribal classifications adopted here follow Bouchard et al. (2011), Seago et al. (2011) and Robertson et al. (2015). Nomenclature and systematics followed are those of the “Catalogue of Palearctic Coleoptera” (Kovář 2007), with the following exceptions:

- Exochomus flavipes (Thunberg, 1781) does not belong to the Palearctic fauna and is therefore absent from this catalogue (Kovář 2007). For this species, we followed Fürsch (1961).
- Like Tomaszewska (2010), we preferred the combinations Rhyzobius forestieri (Mulsant, 1853) and Rhyzobius lophantheae (Blaisdell, 1892) instead of Lindorus forestieri (Mulsant, 1853) and Lindorus lophantheae (Blaisdell, 1892).
- Based on morphological and molecular examination, we considered the combination Chnootripha elaterii (P. Rossi, 1794) instead of Henosepilachna elaterii (P. Rossi, 1794), as proposed by Tomaszewska and Szawaryn (2016).
- As proposed by Pang et al. (2020), we use here the combination Novius cardinalis instead of Rodolia cardinalis (Mulsant, 1850).

When not otherwise specified, general information on species’ distributions is taken from Kovář (2007), Coutanceau (2014) and Nedvěd (2015).

The list of the main synonyms of each taxon is provided in “Catalogue of Palearctic Coleoptera” (Kovář 2007) and is therefore not reported here.

Once an exhaustive list of species was compiled, we followed the procedure proposed by Monnerat et al. (2015) in order to assess which of these species should be considered as belonging to the Swiss fauna. We only retained species whose relative data were deemed sufficient (unambiguous labeling, reliable collections, etc.) for inclusion on the national checklist.

Those species whose presence in Switzerland is substantiated by less than 30 valid observations are subject to an additional comment (the majority of these species are illustrated in Fig. 1). In these cases, species names in the
table are followed by a letter and a number in bold (“C1” for example) and all the examined specimens and published observations are mentioned in order to document and justify the presence or absence of these species on the checklist. When not otherwise specified, all examined material was identified or reviewed by the first author.

There are various genera and species groups in Coccinellidae (mainly among the genera *Nephus*, *Scymnus* and *Hyderapis*) for which the only known reliable characters are the male genitalia. For those species, only dissected males are counted as “verified” records, while records based exclusively upon female specimens were omitted as unverifiable.

The specimens and literature-based records presented here are listed in chronological order of discovery (or publication date) and then in alphabetical order by locality, depending on available information. All occurrences are cited according to the following scheme: number of specimens, locality (pre-2000 data) or municipality and abbreviated canton (post-2000 data), date, collector, determinator (in the case that the determinator was not one of the authors), collection and official acronym of the institution where the insect is deposited.

Information about localities and dates are reported as found on the labels. Interpretations of alphabetical abbreviations are placed within square brackets (“[]”). In old collections, the collector (leg.) is not always explicitly labelled. In such cases, we favored the « coll. » tag. In some cases, the original collection holder was not labelled but we were nonetheless able to identify the source of the collection based on type labels and/or handwriting.

The Charles Maerky collection, held by the Natural History Museum of Geneva, has long been considered problematic (Monnerat et al. 2015). In addition to specimens coming from his personal collection (“coll. Maerky C.”), it also contains insects from other sources (labelled, for instance, as “ex coll. Melly A.”) but lacking any original labels. In such cases, we maintained the “coll. Maerky C.” mention for his whole collection to ensure the association of these samples with the Maerky C. collection.

For literature-based data, detailed under “Published data”, we retained the locality as it appeared in the original citation. We consider the “source” of the records to be the author of the publication, for example: “Ormontsthal von Venetz I. (Stierlin and Gautard 1867)”. If the same records have been published more than once, then only the oldest publication is retained, given that localities in later publications are often altered and sometimes truncated.

Among the data cited in this paper under “Examined material” or “Published data”, we inserted a superscript material” or “Published data”, we inserted a superscript number code before those entries we considered insufficiently documented to be retained, using the following code to describe error type (following Monnerat et al. 2015). Thus if one of the following eight criteria is fulfilled, a record is considered as doubtful:

1. data source cannot be verified
2. incorrect identification
3. specimen from problematic collection
4. specimen of unknown origin but attributed to a Swiss locality
5. double labeling, original locality misinterpreted or incorrectly copied
6. confusion between localities: original finding, breeding or hatching place and collection storage site
7. non-Swiss localities or potentially Swiss localities that share their names with foreign place names (and thus of dubious Swiss origin)
8. chorological or ecological inconsistencies

Results

Swiss fauna Coccinellidae list

We consider that the 81 species (82 taxa) listed in bold and without square brackets “[]” either currently do or formerly did form populations in Switzerland, even if only scant information is available for many of them. We also consider here several allochthonous species, originating from other regions of the world (sometimes introduced), which maintain (or have maintained) continuous populations in Switzerland during several years.

On the other hand, the 14 species (15 taxa including the subspecies) listed in square brackets “[]” should not be considered as belonging to the Swiss fauna, until new data show otherwise. In this category, we placed species whose individuals come from problematic collections, such as Charles Maerky’s or Max Täschler’s (Monnerat et al. 2015), those that were erroneously mentioned for Switzerland due to incorrect identifications and those cited in old publications, like Stierlin and Gautard (1867), without reference to specific individuals and consequently considered as doubtful. Other species may eventually be found in the Swiss territory, but currently available data are not sufficient to confirm their establishment in Switzerland. We also consider here allochthonous species (but not established) certainly found in Switzerland but whose observation results each time from either new or attested or probable imports.

To facilitate the species’ search in this document, taxa appear in alphabetical order for subfamilies, tribes, genera, subgenera, species and subspecies. All collected information represents 33’976 occurrences within the concerned family.

Updated distribution maps of these species are available on the info fauna – CSCF cartographic server (http://lepus.unine.ch/carto/). All the valid data are also available in http://www.GBIF.org (https://doi.org/10.15468/dl.w7yjnn).
Figure 1. A. *Exochomus oblongus*; B. *Parexochomus nigromaculatus*; C. *Rhyzobius lophanthae*; D. *Calvia quindecimguttata*; E. *Ceratomegilla alpina redtenbacheri*; F. *Coccinella venusta adalioides*; G. *Coccinella trifasciata trifasciata*; H. *Oenopia impustulata*; I. *Hyperaspis concolor*, habitus; J. aedeagus ventral view; K. *Hyperaspis preezi*, habitus; L. aedeagus ventral view; M. *Hyperaspis pseudopustulata*, habitus; N. aedeagus ventral view; O. *Hyperaspis reppensis*, habitus; P. aedeagus ventral view; Q. *Clitostethus arcuatus*; R. *Nephus bisignatus*, habitus; S. aedeagus ventral view; T. aedeagus lateral view; U. *Scymniscus anomus*, habitus; V. aedeagus ventral view; W. *Scymnus doriae*, habitus; X. aedeagus ventral view. When no scale is specified, the scale bar is equal to 1 mm.
Figure 1. Continued.
Checklist of the Swiss species

Coccinellinae Latreille, 1807

Chilocorini Mulsant, 1846

Chilocorus bipustulatus (Linnaeus, 1758)
Chilocorus renipunctatus (L. G. Scriba, 1791) [*Chilocorus similis* (P. Rossi, 1790)](C1)
Exochomus oblongus Weidenbach, 1859 C2
Exochomus quadripustulatus (Linnaeus, 1758)
Parexochomus nigromaculatus (Goeze, 1777) C3

Coccidulini Mulsant, 1846

Coccidula rufa (Herbst, 1783)
Coccidula scutellata (Herbst, 1783) [*Cryptolaemus montrouzieri montrouzieri* Mulsant, 1853] C4
Rhyzobius chrysolomoides (Herbst, 1792)
Rhyzobius forestieri (Mulsant, 1853) C5
Rhyzobius littora (Fabricius, 1787)
Rhyzobius lophanthae (Blaisdell, 1892) C6

Coccinellini Latreille, 1807

Adalia (Adalia) *bipunctata* (Linnaeus, 1758)
Adalia (Adalia) *decempunctata* (Linnaeus, 1758)
Adalia (Adalina) *marginalis* (Linnaeus, 1758)
Anatis ocellata (Linnaeus, 1758)
Anisosticta novemdecimpunctata (Linnaeus, 1758)
Aphidecta obliterata (Linnaeus, 1758) [*Balaea lichatschovi* (Hummel, 1827)] C7
Calvia decempunctata (Linnaeus, 1767)
Calvia quatuordecimpunctata (Linnaeus, 1758)
Calvia quindeceimpunctata (Fabricius, 1777) C8
Ceratomegilla (Adaliopsis) *alpina alpina* (A. Villa & G. B. Villa, 1835)
Ceratomegilla (Adaliopsis) *alpina redtenbacheri* (Capra, 1928) C9
Ceratomegilla (Ceratomegilla) *notata* (Laechharting, 1781)
Ceratomegilla (Ceratomegilla) *rufocincta doderai* (Capra, 1944) [*Ceratomegilla* (Ceratomegilla) *rufocincta rufocincta* (Mulsant, 1850)] C10
Ceratomegilla (Ceratomegilla) *undecimnotata* (D. H. Schneider, 1792)
Coccinella (Chelonitis) *venusta adaloides* (Capra, 1944) C11
Coccinella (Coccinella) *hieroglyphica hieroglyphica* (Linnaeus, 1758)
Coccinella (Coccinella) *magnifica* L. Redtenbacher, 1843
Coccinella (Coccinella) *quinquepunctata* Linnaeus, 1758
Coccinella (Coccinella) *septempunctata* Linnaeus, 1758
Coccinella (Coccinella) *trifasciata trifasciata* Linnaeus, 1758 C12 [Coccinella (Spilota) *undecimnotata* undecimnotata *Linnaeus*, 1758] C13
Coccinula quatuordecimpunctata (Linnaeus, 1758)
Halyzia sedecimpunctata (Linnaeus, 1758)
Harmonia axyridis (Pallas, 1773)
Harmonia quadrupunctata (Ponoppidan, 1763)
Hippodamia (Hemisphaerica) *septemmaculata* (DeGeer, 1775)
Hippodamia (Hemisphaerica) *tredecimpunctata* (Linnaeus, 1758)
Hippodamia (Hippodamia) *variegata* (Goeze, 1777)
Myrrha (Myrrha) *octodecimpunctata* (Linnaeus, 1758)

Myzia oblongoguttata oblongoguttata (Linnaeus, 1758)
Oenopia congloboata congloboata (Linnaeus, 1758)
Oenopia impustulata (Linnaeus, 1767) C14
Oenopia lynceaa agnathaa (Rosenhauer, 1847)
Propylea quatuordecimpunctata (Linnaeus, 1758)
Psylllobora (Thea) *vigintiduopunctata* (Linnaeus, 1758)
Sospita vigintiguttata (Linnaeus, 1758)
Tytthaspis sedecimpunctata (Linnaeus, 1761)
Vibidia duodecimpunctata (Poda von Neuhaus, 1761)

Epilachnini Mulsant, 1850

[Chnootria elaterii (P. Rossi, 1794)] C15
Cynegetis impunctata (Linnaeus, 1767)
Henoepilachna argus (Geoffroy, 1785)
[Henoepilachna vigintioctopunctata (Fabricius, 1775)] C16
Subcoccinella vigintiquatuorpunctata (Linnaeus, 1758)

Hyperaspidini Mulsant, 1846

Hyperaspidis (Hyperaspidis) *campestris* (Herbst, 1783)
Hyperaspidis (Hyperaspidis) *concolor* (Suffrian, 1843) C17
[Hyperaspidis (Hyperaspidis) erythrocephala (Fabricius, 1787)] C18
Hyperaspidis (Hyperaspidis) *peezi* Fürsch, 1976 C19
Hyperaspidis (Hyperaspidis) *pseudopustulata* Mulsant, 1853 C20
[Hyperaspidis (Hyperaspidis) quadrarmaculata (Redtenbacher, 1843)] C21
Hyperaspidis (Hyperaspidis) *reppensis* (Herbst, 1783)

Noviini Mulsant, 1850

[Novius cardinalis (Mulsant, 1850)] C22

Platynaspini Mulsant, 1846

Platynaspis luteorubra (Goeze, 1777)

Scymnini Mulsant, 1846

Clitostethus arcuatus (P. Rossi, 1794) C23
Nephus (Bipunctatus) *bipunctatus* (Kugelann, 1794)
Nephus (Bipunctatus) *bisignatus* (Fürsch, 1984) C24
[Nephus (Bipunctatus) kiesenwetteri (Mulsant, 1850)] C25
[Nephus (Nephus) binotatus (C. N. F. Brisout de Barneville, 1863)] C26
Nephus (Nephus) *quadramaculata* (Herbst, 1783)
Nephus (Nephus) *redtenbacheri* (Mulsant, 1846)
Scymniscus anomus (Mulsant & Rey, 1852) C27
[Scymniscus horioni (Fürsch, 1965)] C28
Scymnus (Neopullus) *ater* Kugelann, 1794
Scymnus (Neopullus) *haemorrhoidalis* Herbst, 1797
Scymnus (Neopullus) *limbatis* Stephens, 1832
Scymnus (Parapullus) *abilia* (Paykull, 1798)
Scymnus (Pullus) *auritus* Thunberg, 1795
Scymnus (Pullus) *ferrugatus* (Moll, 1785)
[Scymnus (Pullus) faxini Mulsant, 1850] C29
Scymnus (Pullus) *impeius* Mulsant, 1850
Scymnus (Pullus) *sulivlossus* (Goeze, 1777)
Scymnus (Scymnus) *naturalis* Thunberg, 1795
Scymnus (Scymnus) *apeti* Mulsant, 1846
Scymnus (Scymnus) doriae Capra, 1924 C30
Scymnus (Scymnus) femoralis (Gyllenhal, 1827)
Scymnus (Scymnus) frontalis (Fabricius, 1787)
Scymnus (Scymnus) interruptus (Goeze, 1777)
[Scymnus (Scymnus) marginalis (P. Rossi, 1794)] C31
Scymnus (Scymnus) nigrinus Kugelann, 1794
Scymnus (Scymnus) rubromaculatus (Goeze, 1777)
Scymnus (Scymnus) schmidtí Fürsch, 1958
Scymnus (Scymnus) suffranioides apetzoides (Capra & Fürsch, 1967)

Stethorini Dobrzhanisiky, 1924
Stethorus (Stethorus) pusillus (Herbst, 1797)

Commented species

C1) [Chilocorus similis (P. Rossi, 1790)]

Published data. 1,3) Aigle by Jaccard H. (Jaccard 1890); 1,3) Puschlav [Poschiavo] by Killias E., 1,3) Chur in der Au, 1848; by Kriechbaumer J. and 1,3) Chur, 1887, by Killias E. (Caffisch 1894); 1,3) Schwarzenberg (Stierlin 1898).

Comment. None of the numerous citations in the older literature are reliable, as none of them are supported by specimens in the examined collections. In the Paleartic region, C. similis is only known from Italy, but absent from the Pyrenees.

C2) Exochomus oblongus Weidenbach, 1859

Fig. 1A

Examined material. 1 ex., GR, Eng. [Engadin], V. d’Uina, VII.1972, leg. Tournier H., MHNG.

Comment. This very rare species which develops on pines or junipers (probably Pinus mugo Turra in Switzerland) and perhaps also on spruce (Picea spp.) and juniper (Juniperus spp.) in peat bogs, is only present in Germany (Bavarian region and Baden-Württemberg), in Austria and Italy (Tyrol), and very sporadically in Czech Republic, and Bosnia and Herzegovina. Only one specimen was found in Switzerland in the canton of Grisons at 1800 meters above the sea level, close to the Tyrol region. Considered as belonging to the Swiss fauna, the species has not been found in Switzerland for almost 80 years. Further research is needed to confirm if this species is still present in Switzerland. It is found on different species of deciduous and coniferous trees and plants, including pine trees (Pinus spp.), European blueberry (Vaccinium myrtillus L.), willows (Salix spp.), heathers (Calluna spp., Erica spp.), gorses (Ulex spp.), brooms (Cyrtis spp.), junipers (Juniperus spp.) and oaks (Quercus spp.) (Nicolas and Pique 2008; Nedvěd 2015; Classen et al. 2016; Klausnitzer 2019b), especially in the moorlands, where it feeds on coccids (and aphids (Coutanceau 2014)), especially Peliococcus calluneti (Lindinger, 1912), Phyllostoma myrtilli (Kaltenbach, 1874) and Rhizococcus devoniensis (Green, 1896) (Klausnitzer 2019b).

C4) [Cryptolaemus montrouzieri montrouzieri Mulsant, 1853]

Examined material. 11 ex., Suisse, Lucerne, Grossdietwil, IV.1993, leg. & det. Andermatt Biocontrol Suisse AG, MHNG.

Comment. This Australian species is now established in the Paleartic region after several introductions on the continent for biological control of mealybugs (Hemiptera, Pseudococcidae) (Franco et al. 1994; Roy and Migeon 2010; Klausnitzer 2020). It was first recorded in Europe in 1908 (Canepari 2007; Roy and Migeon 2010) and in 1918 in France (Coutanceau 2014) where it is now principally known from the Mediterranean coast (Midi and Corsica), even if a case of urban reproduction (specimens escaped from a green house) was also reported in the north of the country (Cloupeau et al. 2012; Coutanceau 2014). In Switzerland, 11 specimens were found in 1993 in the canton of Luzern by a company commercializing this species as a biological control agent. They are therefore certainly the result of introductions. Nevertheless, it seems that this species has not become established and therefore is not considered as belonging to the Swiss fauna. Cryptolaemus montrouzieri montrouzieri is sensitive to cold and it seems that it cannot overwinter in the field in Central Europe at the moment (Klausnitzer 2020). Nevertheless, the species is still commercialized for biological control in Switzerland and may therefore be found again in the future.
C5) **Rhyzobius forestieri** (Mulsant, 1853)

Examined material. 1 ex., Brissago TI, 3.VII.2022, leg. & coll. Chittaro Y.; 1 ♂, Mendrisio TI, 5.VII.2022, leg. & coll. Chittaro Y.

Comment. *Rhyzobius forestieri* is a species of Australian origin imported in Europe in the 1980s for the biological control of the Olive Scale *Saissetia oleae* (Oliver, 1791) (Hemiptera, Coccidae) (Katsyannos 1984). In Switzerland’s neighboring countries, it is acclimatized since 1987 in France (Cloupeau and Durand 2010) and in Italy (Canovai and Raspi 1999), but never seems to have been reported in Germany or in Austria. In 2022, two specimens were found in the canton of Ticino in Switzerland, in two localities several tens of kilometers apart, in good natural environments. Since to our knowledge the species has never been introduced in Switzerland, we suspect a natural colonization of Ticino from Italy.

C6) **Rhyzobius lophanthae** (Blaisdell, 1892)

Published data. Most of the data above in Sanchez et al. (2021).

Comment. The situation of this exotic species, now established in Switzerland, was extensively detailed in Sanchez et al. (2021). Since this publication, several new specimens have been found in the country, which seems to show that *R. lophanthae* continues its expansion in the country.

C7) **Bulaea lichatschovii** (Hummel, 1827)]

Published data. 1,8)[Schweiz] by Heer O. (Bremin-Wolf 1856); 1,8)Genf by Chevrier F. (Stierlin and Gautard 1867); 1,8)Visp by Rätzer (Rätzer 1888).

Comment. This species is present in Africa and in the eastern Palearctic region and has been occasionally introduced in Central Europe (Ali et al. 2014; Nedvěd 2015; Biranvand et al. 2017). All the examined specimens belong to problematic collections (see Monnerat et al. 2015) and therefore this species is not considered as belonging to the Swiss fauna. *Bulaea lichatschovii* feeds on plants (mostly pollen) of Chenopodiaceae.

C8) **Calvia quindecimguttata** (Fabricius, 1777)

Published data. 1)Genf and Vallorbes by Lasserre H., 1)Schaffhausen by Stierlin G. and 1)Wallis by Venetz I. (Stierlin and Gautard 1867); Mendrisio by Frey-Gessner E. (Stierlin 1883); 1)Alpes de Moërel [Morel] and 1)Glacier d’Aletsch by Martin C. (Fave 1890); 1)Schweiz and 1)Schaffhausen (Stierlin 1898); 1)Chiasso by Fontana P. (Fontana 1947); 1 ex., LU, Sempach, Vogelwarte, 21.–30. IX.1980, leg. Rezbayani-Reser L. (Rintelen and Herger 1997) (Switzerland: Kovář 2007; Nedvěd 2015).

Comment. Even though this species was frequently recorded from Switzerland in the old literature, only a small number of records can be reliably assigned to this species, confirming the presence of a few scattered populations within the country. Very rare and localized in Switzerland, this species was principally found in the south of the country, in the canton of Ticino, although one specimen was found in the canton of Luzern in 1980 using a light trap (the attraction by light was already noticed by Klausnitzer (2019, 2020)). *Calvia quindecimguttata* lives in deciduous forests in wetlands, marshes and pond banks, mainly on alders (*Alnus* spp.) and willows, where it feeds on aphids, psocopterans and immature stages of chrysomelids (probably *Agelastica alni* (Linnaeus) and willows, where it feeds on aphids, psocopterans and immature stages of chrysomelids (probably *Agelastica alni* (Linnaeus), 1758) or *Plagioisterna aenea* (Linnaeus, 1758)) (Nedvěd 2015; Klausnitzer 2019b, 2020). It is fairly widely distributed in Central Europe but is always considered as rare.

C9) **Ceratomegilla alpina redtenbacheri** (Capra, 1928)

Comment. *Ceratomegilla alpina* is represented by two subspecies in the Palearctic region: *C. a. alpina* is present in Austria, France (Alps), Italy (north), Liechtenstein and Switzerland, and *C. a. redtenbacheri* is present in Austria (Alps), Bosnia and Herzegovina (Kulijer 2015), Bulgaria, Germany (Bayern), Poland (Tatra), Romania, Slovakia (Tatra) and

alpineentomology.pensoft.net
Ukraine (Karpaty). If the nominal subspecies is very widely distributed in the Alps in Switzerland and sometimes quite abundant at altitude, the same is not true for the subspecies redenbacheri, which is only known from one specimen, captured in flight at 2200 m in the Val Müstair region, bordering the Tyrol, where the species is also known. Specific research is necessary to confirm the presence of a real native population or the validity of the subspecies distinction.

C10 \(\text{Ceratomegilla (Ceratomegilla) rufocincta rufocincta (Mulsant, 1850)}\)**

Published data. \(^{1}\)Switzerland (Kovář 2007).

Comment. \(Ceratomegilla rufocincta\) is represented by two subspecies in Europe: \(C. r. rufocincta\) and \(C. r. doderoi\).

No specimens referring to the nominal subspecies were found in the controlled collections in Switzerland, but the alpine subspecies \(doderoi\) occurs in our country at high elevation. Kovář (2007) announced the nominal subspecies from Italy (Alps) and Switzerland. Coutanceau (2014) does not consider any subspecies and announced \(C. rufocincta\) from the southern Alps in France, Italy and Switzerland. This taxon is not considered as belonging to the Swiss fauna.

C11 \(\text{Coccinella (Chelonitis) venusta adalioides (Capra, 1944)}\)

Published data. Morteratsch-Gletscher and am Paradies by Meyer-Dür R. L. (Stierlin 1862); Stürviser Alp in Bündten by Killias E. (Stierlin 1883); Davos by Nagel H. and Stürviser Alp by Stoffel A. (Cafilsch 1894); Oberengadin (Stierlin 1898); Alp la Schera, 28.VII.1919, by Handschin E., Alp la Schera, 3.VIII.1921, Stabelchod, 10.VIII.1921, by Handschin E. and Buffalora, 4.VIII.1953, by Aubert J. (Handschin 1963); Flumserberg, Zieger, VII.1965, by Hugentobler H. (Hugentobler 1966); Arosa by Müller-Rutz J., Bernina and Scans by Linder A. and Vals by Jörg B. (Linder 1967).

Comment. In the Palearctic region, this species is only represented by the nominal subspecies, distributed in Austria, Belarus, Finland, Italy, Norway, Russia, Sweden and Switzerland. In this last country, \(C. trifasciata trifasciata\) is rare and localized and seemed restricted to the east, where it was not found for more than 30 years. Nevertheless, it was found in 2022 in an alpine meadow located at 2640 m, in the region of Zermatt, located much further west. Little information is available concerning its ecology except for its presence at high altitude in Switzerland.

C12 \(\text{Coccinella (Coccinella) trifasciata trifasciata Linnaeus, 1758}\)

Published data. \(Ceratomegilla trifasciata\) is represented by two subspecies in Europe: \(C. r. rufocincta\) and \(C. r. doderoi\).

No specimens referring to the nominal subspecies were found in the controlled collections in Switzerland, but the alpine subspecies \(doderoi\) occurs in our country at high elevation. Kovář (2007) announced the nominal subspecies from Italy (Alps) and Switzerland. Coutanceau (2014) does not consider any subspecies and announced \(C. rufocincta\) from the southern Alps in France, Italy and Switzerland. This taxon is not considered as belonging to the Swiss fauna.
Comment. All examined specimens belong to problematic collections that should not be considered (see Monnerat et al. 2015). None of the numerous citations in the older literature are reliable, as none of them are based on dissected male specimens and may refer to other species. Therefore, this species is not considered as belonging to the Swiss fauna according to the scarce information available. Concerning the literature data from Handschin (1963), two specimens from Blaisch Bella (9.VII.1945) were found in the Handschin collection at the BNM but they were C. quinquemaculata. For the data from Val Plavna, no specimens with such information were found in the Handschin’s collection. This species has halophilic preferences and usually lives near the sea or in salt marshes, conditions that obviously do not exist in Switzerland. *Coccinella undecimmaculata undecimmaculata* is rare in Central Europe: Austria, Belgium, Czech Republic, Denmark, Georgia, Germany, Hungary, Luxembourg, Netherlands, Poland and Slovakia (Kovář 2007; Klausnitzer B. pers. comm.). The species is mainly aphidophagous, but can also feed on coccids, nectar and pollen (Nicolas and Pique 2008; Nicolas 2009; Canepari 2011; Nedvěd 2015). According to Nicolas and Pique (2008), it has been caught in Aisne in France on herbaceous plants found in wastelands and along roadsides, on black pines (*Pinus nigra* J. F. Arnold) but also on deciduous trees like *Salix cinerea* L. and *Quercus robur* L. It overwinters among stones and in buildings (Nedvěd 2015).

C14) *Oenopia impustulata* (Linnaeus, 1767)

Fig. 1H

Published data. 1) [Schweiz] by Heer O. (Bremi-Wolf 1856); 2) Genf by Tournaire H. and Schaffhausen by Stierlin G. (Stierlin and Gautard 1867).

Comment. *Oenopia impustulata* is a widespread species in Europe. In the neighbouring countries, it is known from France (from the Mediterranean region), from Paris (Bois de Boulogne) and from Indre-et-Loire (*Coutanceau 2014*). All specimens examined belong to the problematic collection of C. Maerky (see Monnerat et al. 2015) and are therefore not retained as valid records. *C. elaterii* does not belong to the Swiss fauna.

C15) *Chnoostris elaterii* (P. Rossi, 1794)

Examined material. 3,4,6,8) ex., Genève, Chancy, leg. & coll. Maerky C., MHNG; 3,4,6,8) ex., Genève, Peney, leg. Täschler H., coll. Maerky C., MHNG; 3,4,6,8) ex., Genf, leg. Täschler M., MHNG; 3,4,6,8) ex., Jura, Dôle, leg. & coll. Maerky C., MHNG.

Published data. 1,8) Switzerland (Kovář 2007; Nedvěd 2015).

Comment. This phytophagous species living on Curcurbitaceae and Solanaceae is known from Europe, North Africa and Western Asia. In France, it is only found in Corsica (*Coutanceau 2014*). All specimens examined belong to the problematic collection of C. Maerky (see Monnerat et al. 2015) and are therefore not retained as valid records.

C16) *Henosepilachna vigintioctopunctata* (Fabricius, 1775)

Published data. 1,8) [Schweiz] by Heer O. (Bremi-Wolf 1856); 1,8) Genf by Tournier H. and Schaffhausen by Stierlin G. (Stierlin and Gautard 1867).

Comment. *Henosepilachna vigintioctopunctata* is a species native to Asia which is not present in Central Europe. Despite several publications announcing it from Switzerland, no specimen was found in the collections examined.

C17) *Hyperaspis* (*Hyperaspis*) *concolor* (Suffrian, 1843)

Fig. 1J

Published data. Switzerland (Kovář 2007; Nedvěd 2015).

Comment. *Hyperaspis concolor* is a rare and localized species in Europe. In the neighbouring countries, it is known from France (from the Mediterranean region, from Paris (Bois de Boulogne) and from Indre-et-Loire (*Coutanceau 2014*)), from Austria, Germany and
Italy. While also quite rare in Switzerland, there are scattered records from various parts of the country, particularly in the south. This thermophilic species lives in xerothermic meadows, pastures and forest margins, on grass, herbs and deciduous trees (Nedvěd 2015; Klausnitzer 2020).

C18) [**Hyperaspis (Hyperaspis) erythrocephala (Fabricius, 1787)**]

Published data. [1,8][Switzerland, uncertain data (Nedvěd 2015).]

Comment. *Hyperaspis erythrocephala* is a rare and thermophilic species present in Central-Eastern Europe in Austria, Czech Republic, Hungary, Poland and Slovakia. Its presence is considered uncertain in Germany and Switzerland by Nedvěd (2015). We didn’t find any specimens belonging to this species in the examined collections and we therefore advise the removal of this species from the list of the Swiss fauna.

C19) **Hyperaspis (Hyperaspis) pezzi Fürsch, 1976**

Fig. 1K, L

Comment. *Hyperaspis pezzi* is a very rare and localized species, only known from southeastern France and Corsica (Coutanceau 2014), Croatia, Italy, Slovenia and Switzerland. In Switzerland, the species is restricted to the canton of Valais. Very little information is available on its ecology, but all Swiss specimens were collected in sunny, hot, dry areas, where pines (*Pinus sylvestris*) and oaks are dominant. Very close to *H. reppensis* (*Fig. 1O, P*), its identification requires the examination of the male genitalia.

C20) **Hyperaspis (Hyperaspis) pseudopustulata Mulsant, 1853**

Fig. 1M, N

Published data. Switzerland, uncertain data (Nedvěd 2015).

Comment. The presence of this species in Switzerland is supported by only one male captured in 1992 in a peat bog in the canton of Ticino in the south of the country. The identification of the specimen from Geneva (Allondon) has not been confirmed for the moment and a misidentification with *H. reppensis* remains possible without the observation of the male genitalia. *H. pseudopustulata* is widely distributed in Central Europe (Nedvěd 2015; Klausnitzer 2020) but is always rare, and its presence in Switzerland was considered as uncertain (Nedvěd 2015). In France, it is present in the northern half of the country, but probably also in the southern half (Coutanceau 2014). It is a thermophilic species living at water margins on semiaquatic plants (Nedvěd 2015; Klausnitzer 2020), but some authors hypothesize that it may also live in drier biotopes (Bogaert et al. 2012; Biranvand et al. 2020).

C21) **Hyperaspis (Hyperaspis) quadrrimaculata (Redtenbacher, 1843)**

Examined material. [1,4,6,8][ex., Veyrier, leg. Maerky C., MHNG.]

Published data. [1,8][Schweiz] (Bremi-Wolf 1856).

Comment. This species is only distributed in Eastern Europe: Albania, Austria, Bulgaria, Czech Republic, Hungary, Greece, Romania and Slovakia. The only specimen with “a Swiss label” belongs to the problematic collection of Charles Maerky, which should not be considered (Monnerat et al. 2015). Therefore, the data available are insufficient to retain this species as part of the Swiss fauna.

C22) **Novius cardinalis (Mulsant, 1850)**

Published data. 15 ex., Locarno, 6.VIII.1945, leg. Simonet J. and 10 ex., Locarno, IX.1951 (Linder 1968).

Comment. *Novius cardinalis* is an Australian species which has been introduced in many countries in the World (including Europe) for the biological control of *Icerya purchasi* Maskell, 1879 (*Hemiptera, Monophlebidae*), an important pest of citrus trees (Martin 2016). In France, it has been introduced several times and is now acclimatized in various parts of the country, especially in the southern region and in Corsica, in the Jura and in Paris (Coutanceau 2014). In Switzerland, it has occasionally been found between 1946 and 1993 in Ticino, in Locarno and on the Isola di Brissago, where there is a botanical garden. Numerous specimens have been found each time and it seems that these mentions in Switzerland are the result of multiple introductions. As the species has almost never been found two years in a row, it is assumed that it cannot overwinter here. Up till now, the species is therefore not considered naturalized in Switzerland.
C23) *Clitostethus arcuatus* (P. Rossi, 1794)

Fig. 1Q

Published data. Basel by Imhoff L. (Sterlin and Gau- tard 1867); Fully, Martigny and Ravoiere by Favre E. (Favre 1890); Switzerland (Kovář 2007; Nedvěd 2015).

Comment. *Clitostethus arcuatus* is a Mediterranean species which has expanded its range northward into Central Europe in recent decades, possibly due to the effects of global warming (Bathon and Pietrzik 1986; Pütz et al. 2000). While quite rare in Switzerland, there are scattered records from various parts of the country, always found as isolated individuals, although it was reported that it could be found in large numbers in Italy (Canepari 2011). It is one of the smallest European ladybird species and it moves very quickly in hot weather, so it can easily go unnoticed. Thermophilic, it lives on deciduous and coniferous trees, also in parks and gardens, where adults and larvae feed on Aleyrodidae (Homoptera), Aphididae (Hemiptera) and Tetranychidae (Acari) (Gourreau 1974; Canepari 2011; Nedvěd 2015; Klausnitzer 2019b, 2020). According to Pütz et al. (2000), Coutanceau (2014), Klausnitzer (2019) and Szawaryn and Marczak (2021), it is regularly found on or near ivy (*Hedera helix* L.), but also on hawthorn (*Craetaegus* spp.), blackthorn (*Prunus spinosa* L.), apple tree (*Malus* spp.), blackberry (*Rubus* spp.), skipping weed (*Impatiens* spp.), celandine (*Chelidonium* spp.), wood vine (*Clematis* spp.) and various cultivated plants. In winter, it can be found overwintering in the leaf litter (Nedvěd 2015).

C24) *Nephus* (Bipunctatus) bisignatus (Fürscho, 1984)

Fig. 1R–T

C27) Scymniscus anomus (Mulsant & Rey, 1852)

Comment. Scymniscus anomus is a Mediterranean species only known from the Mediterranean region (and Corsica) in France (Coutanceau 2014), Austria (Klausnitzer B. pers. comm.), Greece, Italy, Hungary, Slovakia and Spain. In Italy, it is considered as widespread but uncommon (Canepari 2011). In Switzerland, two males were caught in a wetland in the canton of Ticino (the second using a pitfall trap) and thus allow us to record this species as new for the country.

C28) Scymnus horioni (Fürsch, 1965)

Published data. 1,8)Switzerland, uncertain data (Nedvéd 2015).

Comment. This species, known in Europe from Albania, Austria, Bosnia and Herzegovina, Croatia, Czech Republic, Greece, Hungary, Italy and Slovakia, is not considered indigenous to Switzerland on the basis of the available data: only one publication announces it for Switzerland, without any specimen referring to this species in the examined collections. Moreover, Nedvéd (2015) already considered its presence in Switzerland to be uncertain.

C29) Scymnus (Pullus) fraxini Mulsant, 1850

Examined material. 3,4,6,8)1 ex., Suisse, Tessin, leg. Odier J., det. Fürsch H., coll. Maerky C., MHNG.

Comment. The only specimen labelled from Switzerland belongs to the problematic collection of C. Maerky (see Monnerat et al. 2015) which should not be considered. This species is principally distributed in the Mediterranean region and the near East, but has also been found in France in Alsace (Gourreau 1974) and in Indre-et-Loire (Cloupeau et al. 2012), and in Austria and Slovakia (Klausnitzer B. pers. comm.). Therefore, it could also be found in Switzerland. According to Coutanceau (2014), S. fraxini feeds on coccids.

C30) Scymnus (Scymnus) doriae Capra, 1924

Fig. 1W, X

Examined material. 1 ♂, 1 ♀, 1 ex., Helvetia, Ticino, Magadino, leg. & coll. Focarile A., MSNL; 1 ♂, Helvetia, Ticino, Chiasso, 8.VII.1938, leg. Fontana P., det. Canepari C., MSNL; 1 ♂, VS, Rarogne, VII.1974, leg. Toumeyff G., MHNG.

Comment. Scymnus doriae, originally described from Florence, is a rare species known from the Mediterranean Region and Corsica in France (Coutanceau 2014), Austria (Tyrol), Bulgaria, Hungary, Italy, Poland, Serbia and Montenegro, and in eastern Germany (Klausnitzer B. pers. comm.). Only a very small number of specimens from three localities confirm the occurrence of this species in Switzerland, where it appears to be rare. This species may be only distinguished from the very similar S. frontalis (and other species from this group) by the examination of the male genitalia. According to Klausnitzer (2020), S. doriae may be expanding its distribution northward in Europe.

C31) Scymnus (Scymnus) marginalis (P. Rossi, 1794)

Published data. 1,4,6)1 [Schweiz] by Stierlin G. (Bremin-Wolf 1856); 1,4,6)Genf by Chevrier F., 1,4,6)Schaffhausen by Stierlin G. and 1,4,6)Vevey by de Gautard V. (Stierlin and Gautard 1867); 1,4,6)Mendrisio by Frey-Gessner E. (Stierlin 1883); 1,4,6)Fully and Martigny by Favre E. (Favre 1890).

Comment. All Swiss literature records are very old and not verifiable, while the three specimens examined belong to the problematic collection of C. Maerky (see Monnerat et al. 2015). Therefore, this species should not be considered as native in Switzerland. Scymnus marginalis is a Mediterranean species living in dry biotopes and is known from the Mediterranean region and Corsica in France (Coutanceau 2014), Austria, Greece, Italy, Malta and Ukraine. Being present throughout Italy (also in the Aosta Valley (Canepari 1983)), the presence of this species in southern Switzerland remains possible.

Discussion

This commented list on the Swiss Coccinellidae is in keeping with other syntheses on various beetle families published in the past years (see for example Sanchez et al. 2020 or Chittaro et al. 2021). It thus improves the overall understanding of Swiss fauna. Thanks to the distribution maps based on the collected data (available on the info fauna cartographic server, www.cscf.ch and www.gbif.org), this work provides a thorough faunistic overview of the current understanding of the species of Coccinellidae in Switzerland.

Coccinellidae are represented by 81 species (82 taxa) in Switzerland, which represent about 80% of all known species in Central Europe (Nedvéd 2015). If the large colored ladybirds (for example Coccinella septempunctata) are well known and their presence in Switzerland attested by many records, the story is quite different for most of the Scymnini species. Indeed, the latter are much more discreet, difficult to find and more challenging to identify because their identification almost always requires the examination of the male genitalia. Therefore, reliable data concerning these species are scarce and our understanding of their distribution in Switzerland remains incomplete. Consequently, several species went unnoticed in Switzerland up until this
publication, even if some specimens were collected long ago and were available in museum collections. This is the case, for example, of Hyperaspis pseudopustulata, Scymniscus anomus, Scymnus doriae and Nephus bisignatus, all mentioned here for the first time for Switzerland. The systematic dissection of all specimens in collections and the examination of the male genitalia has made it possible to bring them to light in Switzerland. These species are often only known from a few isolated specimens, so most are in urgent need of additional documentation. Targeted sampling of certain species or species groups in the future, while systematically extracting the genitalia of those specimens if necessary, will likely add new discoveries to our fauna.

Although there is no red list of Coccinellidae in Switzerland, several species seem to show strong decline in Switzerland or are maybe already extinct (?). This is particularly the case for several species linked to wetlands, like Parexochomus nigromaculatus and Calvia quindeceguttata, that have not been found in Switzerland for more than 40 years. As for other insect groups linked to wetlands (OFEV 2017), ladybirds are probably threatened in Switzerland as well.

Ladybirds are polyphagous but are mainly predators of phytophagous insects (Weber and Lundgren 2009). Therefore, they have been used for decades for biological control in crops and, as a consequence, have been introduced in several European countries. However, several species have been able to acclimatize to the local climatic conditions and thus to establish in Europe, the most obvious example being the Asian ladybird (Harmonia axyridis), today cosmopolitan and present in all European countries (Roy et al. 2016). In Switzerland, the presence of the following species is the result of accidental or intentional introductions made in this country or in neighboring countries: Cryptothelaemus montroitzi, Novius cardinalis, Rhyzobius forestieri and R. lophanthae. These four species will probably not be a problem for native species: the first two do not appear to have formed populations in the wild in Switzerland and the two Rhyzobius, even if they are now established, are unlikely to disrupt natural ecosystems, given their small size and their diets exclusively coccidophagous. The situation of the large and polyphagous species H. axyridis is quite different, as it has already been shown (van Lenteren et al. 2008; Honěk et al. 2019). In northwestern Switzerland, long-term monitoring of ladybirds showed that H. axyridis quickly became the dominant species on broadleaved trees and shrubs just a few years after its arrival in 2004. Following this invasion, the native species Adalia bipunctata clearly declined and this once dominant species has almost disappeared from the region (Kenis et al. 2020). This trend, demonstrated for a small region in northern Switzerland, seems to be confirmed on a national scale. According to the available Swiss data set, A. bipunctata, once a very common species, was no longer found in many localities throughout the country. The same situation was also shown in Germany (Klausnitzer 2017).

From a conservation point of view, it can be said that Switzerland harbors several rare and highly specialized species or subspecies that only occur at high altitudes in the Alps. This is the case for Ceratomegilla rufocincta dodereli, C. alpina alpina, C. alpina redtenbacheri, Coccinella trifasciata trifasciata or C. venusta adaioides, which are regularly found above 2000 m. Other species are very rare in Europe, like Exochomus oblongus or Hyperaspis paezii, and Switzerland plays an important role in the conservation of these species.

In the future, other species could be found in Switzerland, especially cosmopolitan species introduced in Europe for biological control, or southern species that would benefit from global warming to extend their distribution to the north.

Acknowledgments

We would like to acknowledge Claude Besuchet (1930–2020) who managed to get a large number of Swiss specimens identified or verified by European specialists during the course of his work on the Catalogue of Swiss Coleoptera, which was unfortunately left unfinished.

Special thanks are due to Oldřich Nedvěd (CZ-České Budějovice) and Johan Bogaert (B-Mechelen) for their helpful advice on some of the above-mentioned species. Finally, we are grateful to Steve Breitenmoser (AGRO), Bernhard Klausnitzer (D-Dresden), Jessica Litman (MHNN) and Oldřich Nedvěd for their meaningful comments on the manuscript and to Michel Sartori (MZL) for providing us with the photographic equipment.

We are also thankful to all the Swiss museum curators, who have welcomed us so often and so kindly within their institutions over the past few years, as well as all the active coleopterists whose expertise enriched our understanding of the distribution of these species in Switzerland.

References

Biranvand A, Hesami S, Gheibi M, Fekrat L, Nedvěd O (2020) Additional notes to the morphology of Hyperaspis pseudopustulata Mul-

alpineentomology.pensoft.net

