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Abstract
The skin offers a route of administration with numerous advantages. However, one of the major limitations of this route is the limited 
number of drugs that possess the ideal physicochemical properties to passively diffuse through the skin barrier. Today, microneedle 
(MN) technology proved to be superior in the field of drug delivery. MN arrays are devices that consist of micron-sized projections 
which pierce the stratum corneum (SC), the main barrier for drug delivery across the skin. MN technology has the potential to 
provide a localised drug delivery with minimal toxicity and expand the range of drugs for transdermal and intradermal delivery. In 
this comprehensive review, MN technology was thoroughly discussed. Meeting regulatory standards and large-scale production is 
essential to advance MN technology into a cost-effectiveness commercial scale.
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Introduction
The function and structure of the skin

The skin is the largest and most accessible organ of the hu-
man body that provides protection from the external en-
vironment and maintains homeostasis (Ghasemiyeh and 
Mohammadi-Samani 2020). It consists of three main lay-
ers; epidermis, dermis, and hypodermis (Fig. 1), (Mojum-
dar and Sparr 2021). The epidermis is about 50–150 µm 
thick where keratinocytes are the chief component cells 
(Hadgraft and Guy 1989). The epidermis does not con-
tain blood microcirculation and consequently, the trans-
port of substances from the epidermal/dermal layer to the 
hypodermis circulation is supported by diffusion process 
(Benson and Watkinson 2012). The epidermis has two 
sub-layers; the viable epidermis and the stratum corneum 
(SC). A 70% of the viable epidermis is water and hence, 
considered as a hydrophilic layer. In contrast, the SC is 

hydrophobic in nature with only 13% water content. The 
SC is the outmost layer of the epidermis which is 10–20 
µm thick (Mendelsohn et al. 2006). The SC is known as the 
rate-limiting membrane of the skin and the main barrier 
against the topical drug delivery (Scheuplein et al. 1971).

The dermis is hydrophilic in nature and is supplied 
with nerves and blood vessels. This layer is 600 to 3000 μm 
thick that is made up from connective tissue which gives 
the mechanical strength of the skin (Mendelsohn et al. 
2006). Compounds that reach the dermis layer can find 
portal into the systemic circulation and this provides a 
concentration gradient that maintains the diffusion pro-
cess. The dermis is demonstrated as a gel-like matrix of 
fibrous proteins network such as collagen and contains 
skin appendages such as hair, sebaceous and sweat glands. 
Cells such as; fibroblasts, melanocytes, macrophages, and 
mast cells are located in this skin layer (Hadgraft and Guy 
1989; Benson and Watkinson 2012). The hypodermis or 
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the subcutaneous layer consists of adipocytes and is in-
nervated and supplied with blood vessels. The primary 
functions of this layer are protection and heat insulation 
(Benson and Watkinson 2012).

Abbreviations

SC	 Stratum Corneum;
MW	 Molecular weight;
Da	 Dalton;
MN	 Microneedle;
TDD	 Transdermal drug delivery;
CAGR	 Compound Annual Growth Rate;
BSA	 Bovine serum albumin;
NSAIDs	 Non-steroidal anti-inflammatory drugs;
PTH	 Parathyroid hormone;
CMC	 Carboxy methyl cellulose;
PVP	 Polyvinyl pyrrolidone;
PLGA	 Poly(lactic-co-glycolic acid);
PMMA	 Poly(methyl methacrylate);
PVA	 Poly(vinyl alcohol).

Drug delivery across the skin

Skin stands as a route of drug administration for both 
local and systemic drug effects (Benson et al. 2019). The 
knowledge and understanding of skin permeation have 
led to the development of topical and transdermal deliv-
ery (Benson et al. 2019; Aldawood et al. 2021). Drug ad-
ministration through the skin offers plenty of advantages 
including; sustained drug delivery, maintained constant 
plasma levels, low metabolism activity compared to oth-
er routes, less inter-subject variability (Iwata et al. 2020; 
Phatale et al. 2022), escaping first pass hepatic metabo-
lism, less frequent dosing regimens (Lee et al. 2017; Wa-
ghule et al. 2019; Ghasemiyeh and Mohammadi-Samani 
2020), ability to discontinue regimen by removal of the 
system (Iwata et al. 2020), accessibility and relatively large 
surface area available for drug absorption, and being a 
non-invasive and convenient means of delivering thera-
peutics (Hamdan et al. 2018; Baveloni et al. 2021; Tiwari 

et al. 2022). Hence, this route provides a good alternative 
to oral and parenteral administration as it overcomes con-
siderable limitations encountered by these routes (Benson 
et al. 2019; Aldawood et al. 2021). The aforementioned 
advantages possibly can increase patient adherence and 
ultimately improve their quality of life (Iwata et al. 2020). 
However, the main restraint of drug delivery by this route 
is the skin’s barrier properties. Generally, factors that de-
termine skin permeability include; drug solubility, ther-
modynamic activity, partition coefficient (Benson et al. 
2019), drug matrix-skin interaction, and temperature 
(Benson et al. 2019; Aldawood et al. 2021). Candidate 
molecules should have intermediate lipophilicity (Log 
P 1–3), be potent (Pandya et al. 2015), have molecular 
weight (MW) less than 500 Daltons (Da) (Mamta et al. 
2010), and good aqueous solubility characterised by a low 
melting point (Williams 2003). It is difficult for hydro-
philic substances to penetrate the hydrophobic SC layer. 
Whereas hydrophobic substances may be confined to it, 
as the following subsequent layer is hydrophilic (Supe 
and Takudage 2021). So far, limited number of therapeu-
tics possess the optimum physicochemical properties to 
passively pass the skin’s outermost layer, the SC, and con-
sequently, limiting both topical and transdermal market 
(Nastiti et al. 2017; Roberts et al. 2017). Many technologies 
have evolved to enhance the delivery into the skin, thereby 
extending the number of therapeutics that can be effec-
tively delivered via the skin (Benson et al. 2019). These 
technologies involve the utilisation of chemical penetra-
tion enhancers, micro and nano delivery systems (Nastiti 
et al. 2017; Roberts et al. 2017), ultrasound, iontophore-
sis, electroporation, and microneedle (MN) technology 
(Phatale et al. 2022). Among these approaches, MN arrays 
stand out as a simple and a relatively low-cost approach to 
deliver therapeutics (Hamdan et al. 2022).

Transdermal drug delivery

Transdermal drug delivery (TDD) deals with the drug ad-
ministration through the skin to achieve systemic effect 
and is considered as a non-invasive alternative to paren-
teral route (Soni et al. 2022). The transdermal absorption 
is a stepwise process which involves (Dhote et al. 2012); 
(i) penetration: the access of a substance into a certain 
skin layer, (ii) permeation: the penetration of a substance 
from one layer of the skin into another, where both lay-
ers are functionally and structurally dissimilar, and (iii) 
absorption: the uptake of a substance into the systemic 
circulation. Primarily, the drug passes through the SC, 
then reaches into the epidermis and dermis microcircu-
lation. The medication succeeds to enter the systemic cir-
culation when it manages to reach the dermis (Waghule 
et al. 2019; Soni et al. 2022). TDD has several advantages 
such as; avoidance of first-pass effect, self-administration, 
prolonged drug delivery, less frequency of dosing, en-
hancement of patient compliance (Ghasemiyeh and Mo-
hammadi-Samani 2020; Iwata et al. 2020). This route of 
administration is useful for patients who are unconscious 

Figure 1. The structure of the skin. The epidermis, dermis, and 
hypodermis. This Figure is generated using ChemDraw profes-
sional 16.0.
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or vomiting. However, TDD is not suitable for high-dose 
and high molecular weight drugs, skin sensitisation and 
irritation at the site of application is a possibility.

Background on microneedles and mech-
anism of action

The investments in MN market were approximately $24 
billion in 2013 (Azmana et al. 2020). By 2030, the mar-
ket size of MN drug delivery system will reach to a $1.2 
billion and Compound Annual Growth Rate (CAGR) re-
cord approaching 6.6% (Aldawood et al. 2021). MN has 
been extensively investigated in academia and industry to 
take this technology from laboratory settings in to clinic 
(Quinn et al. 2014). MN arrays are categorized as one of 
the direct physical methods and an alternative to conven-
tional hypodermic needle (Benson et al. 2019). MN arrays 
are a micron-scale devices attached to a patch-like sup-
port (Wei-Ze et al. 2010; Benson et al. 2019; Hamdan et 
al. 2022) that pierce the SC barrier and generate conduits, 
subsequently, enhance the drug flux and its permeation 
through the skin (Prausnitz and Langer 2008; Donnelly et 
al. 2010a; Benson et al. 2019). Perforations created by MN 
arrays can physically disrupt the intercellular lipids and 
penetrate the corneocytes in the SC and increase the total 
surface area of the aqueous pores in the skin (Mikolajewska 
et al. 2010; Pattani et al. 2012). Pores created by MN pro-
jections have been shown to cure within two hours with-
out occlusion, the later can extend closure time up to 24 
hours (Gupta et al. 2011). MN arrays have been designed 
in several needle geometry and densities (25–2000 µm in 
height, 50–250 µm in base width, 1–25 µm in tip diam-
eter, up to 2000 MN cm-2) (Singh et al. 2013; Alkilani et 
al. 2015) without reaching nerve endings or blood vessels, 
thereby providing a painless administration (Gill et al. 
2008) and avoiding needle-stick injuries (Indermun et al. 
2014). Several researches have been thoroughly conduct-
ed to obtain an optimum MN arrays design (Davis et al. 
2004; Verbaan et al. 2008). MN array have been designed 
in a ‘poke and patch’ or loaded forms (Benson et al. 2019) 
using various materials and microfabrication techniques 
(Prausnitz 2004; Lee et al. 2008; Donnelly et al. 2009a, 
2010a; Singh et al. 2010; Garland et al. 2011; Migalska et 
al. 2011). It was found that the rate and extent of transder-
mal delivery were influenced by the configuration and ap-
plication mode of the MN batch (Verbaan et al. 2008; Yan 
et al. 2010). It was reported that an increase in MN arrays 
height has led to an increase in the depth of MN arrays 
penetration into the skin (Donnelly et al. 2010b). Howev-
er, the application of MN arrays with height 900 µm was 
perceived by volunteers to be relatively painful (Garland 
et al. 2012a). Further, higher MN arrays density resulted 
in a higher number of conduits formed within the skin. 
Yet, high MN density would affect bed of nail effect (Lee et 
al. 2008; Yan et al. 2010). Various combinations of MN ar-
rays systems and other techniques have been studied for a 
number of drugs. All combined approaches enhanced the 
TDD of the tested compounds. MN arrays systems were 

coupled with iontophoresis (Katikaneni et al. 2009), ‘in-
skin’ electroporation (Yan et al. 2010), phospholipid vesi-
cle systems (Badran et al. 2009), sonophoresis (Chen et al. 
2010), Skin occlusion (Gupta et al. 2011). A unique triple 
strategy based on MN arrays, iontophoresis and nanoves-
icle was also reported (Chen et al. 2009).

Advantages of microneedles

MN arrays proved to enhance skin permeability, and 
hence, drug penetration into the skin (Hamdan et al. 2018; 
Tekko et al. 2020). The rate limiting step to the drug deliv-
ery through the skin is mostly attributed to the diffusion 
of the drug solute to the underlying dermal capillary bed. 
Thus, the drug release kinetics is likely to be controlled by 
the delivery system, rather than the SC (Donnelly et al. 
2011). MN systems are capable of delivering macromole-
cules and biotherapeutics which are considered not good 
candidates for transdermal delivery. Worthy to mention, 
the administration of such therapeutics is limited to the 
parenteral route, and are susceptible to degradation when 
administered orally (Quinn et al. 2014). MN arrays are 
minimally-invasive devices, and have delivery capabili-
ties similar to hypodermic injection (Donnelly et al. 2011; 
Seok at al. 2016; Aldawood et al. 2021). MN arrays are 
short and thin to reach the underlying dermal nerves or 
capillaries, thereby, their insertion into the skin is gener-
ally perceived as being painless and causes no bleeding 
(Donnelly et al. 2010b, 2011; Mikolajewska et al. 2010). 
Risk to develop MN-associated skin infections is negli-
gible (Donnelly et al. 2011; Johnson and Procopio 2019). 
MN arrays generate transient microscopic pores in the 
SC, with minimal or even without signs of erythema or 
local adverse skin reactions (Bal et al. 2008; Van Damme 
et al. 2009). Heavy occlusion to the MN-pre-treated area 
extends barrier disruption and improves the permeation 
of the drug into the skin (Haq et al. 2009). MN arrays are 
considered patient-friendly devices, easy to apply with no 
need for hospitalisation (Pattani et al. 2012; Larrañeta et 
al. 2016b). On the other hand, hypodermic needles cause 
skin trauma and bleeding. Needle-stick injuries are pos-
sible with parenteral injections, hence, safe and correct 
disposal are essential but rather challenging to accomplish 
in developing countries (Donnelly et al. 2009b, 2012b; 
Pattani et al. 2012). Generally, the advantages offered by 
MN arrays reflect the versatility of MN approach as a de-
livery system (Quinn et al. 2014)

Disadvantages of microneedles

Although MN have a lot of advantages, yet there are some 
drawbacks. The MN application may necessitate a good 
mechanical strength, extended application time, multiple 
patches (Jeong et al. 2017). The pharmacokinetic parame-
ters are more likely challenging to acquire, and hence, ad-
verse side effects may appear as a result of inaccurate dos-
ing (Rzhevskiy et al. 2018). The shapes and conformation 
of needle structures may affect their efficacy and ability 
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to poke the skin (Kawahara and Tojo 2007; Ramadon et 
al. 2021). One of the major long-term safety issues of MN 
devices is the polymer deposition inside the body when 
using dissolving MN arrays, however, a ‘one-off ’ delivery 
platform such in the case of vaccination would overcome 
this problem (Bal et al. 2008). The chances to develop im-
munological skin reactions such as; skin irritation, red-
ness, pain, swelling (Kawahara and Tojo 2007; Ramadon 
et al. 2021).upon the application of MN arrays would be 
considered as a health concern issue (Bal et al. 2008).

Types of microneedles

The major MN types used for drug delivery purposes are 
solid non-coated/coated, hollow, dissolvable/swellable 
polymeric MN arrays devices (Aldawood et al. 2021).

Solid, non-coated microneedles
Solid, non-coated MN employ ‘poke and patch’ approach 
that involves two-steps which is not a preference for pa-
tients. First, the skin is pre-treated with MN that pierce 
the epidermis creating transient microchannels and then 
are removed. This temporarily enhances the skin per-
meability, and hence, facilitates diffusion of therapeutics 
from its matrix. The second step involves the application 
of a drug in a patch or topical formulation platform at the 
same site of MN application (Gupta et al. 2011; Quinn et 
al. 2014). Solid MN can be developed from various ma-
terials such as metals and silicon (Nagarkar et al. 2020). 
Multiple drugs delivered by this type of MN arrays have 
been assessed such as; bovine serum albumin (BSA), insu-
lin, 5-aminolevulinic acid, 5- aminolevulinic acid methyl 
ester and a number of non-steroidal anti-inflammatory 
drugs (NSAIDs) (McAllister et al. 2003; Prausnitz 2004; 
Banga 2009; Mikolajewska et al. 2010; Donnelly et al. 
2012b; Stahl et al. 2012). Some drawbacks arise for this 
type of MN arrays in terms of biocompatibility and skin 
issues, as these MN arrays may be subjected to brakeage 
inside the skin.

Coated microneedles
Coated MNs poke the SC and the drug payload is released 
into the skin (Li et al. 2017). Accurate coating is some-
what challenging, and the coated area is very limited that 
can only deliver a bolus minute amount of drug (<1 mg) 
(Donnelly et al. 2010a; Singh et al. 2010; Garland et al. 
2011). Coated MN arrays have attracted particular inter-
est for potent molecules and vaccines delivery (Dang et al. 
2017; Du et al. 2018). Different compounds such as; DNA, 
fluorescein sodium, desmopressin, salmon calcitonin and 
parathyroid hormone (PTH) were delivered using coated 
MN arrays (Cormier et al. 2004; Pearton et al. 2012; Tas et 
al. 2012; Quinn et al. 2014).

Hollow microneedles
Hollow MN employ ‘poke and flow’ approach and has 
similar mechanism of action to the traditional hypoder-
mic injections (Martanto et al. 2006). When A pressure 

is applied to the MN the liquid formulation starts flow-
ing through a central hole (Prausnitz 2004; Donnelly et 
al. 2011; Indermun et al. 2014; Waghule et al. 2019). Hol-
low MN may be subjected to technical difficulties such as 
blockage due to compressed dermal tissue during their 
application as they possess a single port (Donnelly et al. 
2010a; Singh et al. 2010; Garland et al. 2011; Dang et al. 
2017). A hollow MN has the ability to deliver high MW 
compounds and vaccines with a controlled drug release 
rate (Sanjay et al. 2016). The delivery of drugs such as sul-
forhodamine solution and insulin were explored using 
hollow MNs (McAllister et al. 2003; Martanto et al. 2006).

Dissolvable microneedles
Dissolvable MN employ a ‘poke and release’ delivery strat-
egy (Rodgers et al. 2019; Guillot et al. 2020). These MN ar-
rays are polymer-based systems with the drug dissolved or 
suspended into the MN formulation (Donnelly et al. 2011; 
Hamdan et al. 2018; Benson et al. 2019). These MN array 
formulations consist of water soluble and/or biodegradable 
polymers that dissolve and/or degrade in contact with the 
skin interstitial fluid to release the drug payload. Several 
advantages were attributed to this type of MN (Dang et al. 
2017; González-Vázquez et al. 2017). The polymers are of 
low cost and leave no biohazardous or sharp waste within 
the skin. These MN arrays are self-disabling which assure 
their safe disposal and avoid their reuse (Park et al. 2005; 
Prausnitz and Langer 2008). Many researchers have used 
a wide variety of polymeric materials for their fabrication 
(Tekko et al. 2020; Hamdan et al. 2018). Some have used 
aqueous blends of carboxymethylcellulose and amylopec-
tin, (Lee et al. 2008). others have fabricated dissolving MN 
arrays from hydrophilic polymers of various molecular 
weights. Hydrophilic polymers of low molecular weights 
dissolve in minutes providing a one-step bolus drug de-
livery, offering a minimized application time into the skin. 
(McCrudden et al. 2014). However, drug loading in such 
systems can significantly affect their mechanical strength 
(Migalska et al. 2011; Pattani et al. 2012), and hence, drug 
loading of therapeutically relevant concentrations of low 
potent drugs could be challenging, (Tuan-Mahmood et al. 
2013). Dissolving MN arrays proved successful enhanc-
ing the delivery of a range of drugs including small mole-
cules such as caffeine and lidocaine and macromolecules 
such as insulin, human growth hormone (Lee et al. 2011; 
Migalska et al. 2011; Dangol et al. 2017; Lee et al. 2017; 
Zhao et al. 2018), and a variety of vaccine antigens and 
diagnostics materials (Rodgers et al. 2018; Jin et al. 2019; 
Leone et al. 2019).

Swellable microneedles
Swellable MN arrays are hydrogels typically developed 
from a crosslinked polymers where the needle matrix con-
tains no drug (Donnelly et al. 2012b; Tekko et al. 2020). 
When poked into the skin, these MN arrays imbibe skin 
interstitial fluid, swell, and form an open-channels that 
connect a patch-type drug reservoir to the underlying 
dermal microcirculation (Donnelly et al. 2014b, d; Seong 
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et al. 2017). Swellable MN arrays are capable of delivering 
small and macromolecules, such as metronidazole and in-
sulin respectively (Donnelly et al. 2012b, 2014a; Chang et 
al. 2017). In such hydrogel system, the rate and capacity of 
polymer swelling, and subsequently, the drug release rate, 
can be tailored by varying the polymer crosslink density. 
As the drug concentration in interstitial fluid usually re-
flects plasma drug concentration, MN arrays are applied 
in drug diagnostic monitoring (Donnelly et al. 2014a; 
Chang et al. 2017). Compared to dissolving MN arrays 
in which polymer deposition is a cumbersome, hydrogels 
are removed completely intact and cannot be re-inserted 
(Donnelly et al. 2012b). The later reflects appreciable me-
chanical strength of the swollen hydrogel and eliminates 
material safety concerns. Hydrogels are known to possess 
inherent antimicrobial properties which reflect their safe 
use (Donnelly et al. 2012b; Hong et al. 2013; McCrudden 
et al. 2014).

Delivery strategies assisted by mi-
croneedles

The delivery of several compounds assisted by MN arrays 
has been attained via four main strategies:

•	 ‘poke-with-patch’ approach: the MN arrays are ap-
plied to the skin surface to create microchannels, 
then detached to apply drug formulation such as 
drug-laden patch, gel or solution (Martanto et 
al. 2004).

•	 ‘coat-and-poke’ approach: the formulation of the 
drug is coated onto the projections of MN arrays, 
then MN arrays are inserted into the skin (Matriano 
et al. 2002).

•	 ‘poke and-flow’ approach: hollow MN arrays pierce 
the skin and the liquid drug payload is injected into 
the skin (Davis et al. 2005).

•	 ‘poke-and-release’ approach: the drug molecules 
and the polymeric material are combined in to a 
matrix, the resulting MN arrays matrix are subse-
quently inserted into skin (Park et al. 2006).

Materials used in microneedles 
fabrication

A variety of materials are used to fabricate MN arrays. 
Generally, selected materials should be available, in-
ert, non-brittle, biocompatible, have a good mechanical 
strength and of low cost.

Silicon
Silicon has a good mechanical strength and is a flexible 
material which facilitates the manufacture of MN arrays 
into different shapes and sizes. Solid-uncoated, solid-coat-
ed, and hollow MN arrays were reported to be fabricated 
from silicon (Larraneta et al. 2016a). However, fabrication 
of MN from such material is intricate, time consuming 
and expensive (Badilescu and Packirisamy 2016; Donnelly 
et al. 2018). The fracture of silicon-based MN arrays in the 
skin may compromise its safety profile (O’Mahony 2014).

Metals
Metals such as stainless steel, titanium, palladium, nick-
el (Norman et al. 2013), platinum, and gold (Invernale 
et al. 2014) possess a good mechanical strength (Rad 
et al. 2021), which helps their penetration into the skin 
(Shirkhanzadeh 2005). Metal-based MN arrays have been 
mainly used in the fabrication of solid coated/non-coated 
(Shirkhanzadeh 2005; Dharadhar et al. 2019) and hollow 
MN (Norman et al. 2013). Nevertheless, metal MN arrays 
may cause skin issues such as skin sensitisation (Donnelly 
et al. 2012a).

Glass
Hollow MN arrays are most commonly fabricated from 
glass (Gupta et al. 2011; Van der Maaden et al. 2014), 
which has a good mechanical strength to pierce the skin 
(Martanto et al. 2006). Main drawback of silica glass type 
is its brittleness and possible fracture. If the broken nee-
dle tip fragments reside inside the skin, this may lead to 
inflammation and granulomas (Finley and Knabb 1982). 
Nevertheless, borosilicate glass type possesses a good bio-
compatibility (Gupta et al. 2011).

Figure 2. Schematic representation of MN types and delivery 
approaches. A. Solid non-coated; B. Solid coated; C. Dissolving; 
D. Hollow and E. Swellable MNs.
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Ceramics

Ceramic such as; alumina and calcium sulfate dihydrate 
have been used in the fabrication of solid and hollow MN 
arrays (Waghule et al. 2019). Scaled-up production of ce-
ramic MN arrays at low cost was possible and successful 
(Indermun et al. 2014), however, ceramic MN arrays are 
fragile (Bystrova and Luttge 2011). Alumina is considered 
biocompatible but brittle material (Bystrova and Luttge 
2011). In contrast, calcium sulphate is biocompatible and 
has a better mechanical strength compared to alumina 
(Dharadhar et al. 2019).

Polymers
Various polymers have been utilised in the fabrication of 
dissolving/swellable MN arrays (Dharadhar et al. 2019). 
These polymers include; methylcellulose, hyaluronic acid, 
carboxymethycellulose (CMC), alginates, poly (methyl-
vinylether/maleic anhydride), polyvinyl alcohol, poly-
vinylpyrrolidone (PVP), poly(lactic-co-glycolic acid) 
[PLGA]), poly(methyl methacrylate) (PMMA), (Donnelly 
et al. 2014c; Larraneta et al. 2016a; Waghule et al. 2019). 
These materials are biocompatible and of low cost (Jeggy 
2004), yet their mechanical strength is lower compared to 
silicon and metals (Monteiro-Riviere 2010).

Sugars
Sugars like maltose, mannitol, galactose (McGrath et al. 2014) 
were used in the production of MN arrays. Sugar-based MN 
arrays can penetrate the skin, however, their instability and 
the need for high processing temperatures have been consid-
ered as a major drawback (Donnelly et al. 2009b).

Microneedles manufacturing methods

MN array system, by design and necessity, should be sharp 
enough to puncture the skin with low insertion force i.e. 
below its break force (Davis et al. 2004; Park et al. 2005; 
Gill et al. 2008). The performance of MN arrays can be 
optimised by controlling needle dimensions, design, type 
of material, and fabrication technique (Aldawood et al. 
2021). Several methods have been developed for MN fab-
rication including laser ablation, lithography, micro-mold-
ing. injection molding, additive manufacturing (Prausnitz 
2017; Rodgers et al. 2018; Ye et al. 2018; Juster et al. 2019; 
Parupelli and Desai 2019; Aldawood et al. 2021).

Laser ablation
Laser ablation manufacturing method saves time and in-
volves the use of an optical light beam to generate MN 
arrays (Nejad et al. 2018). Numerous types of laser light 
were evaluated for the production of MN arrays such as; 
CO2 (Nejad et al. 2018) and femtosecond laser machine 
(Zheng et al. 2007). The laser beam consumes less than 
100 nanoseconds to approach the corresponding materi-
al sheet for shaping (Aldawood et al. 2021). This method 
produces heat at the touching contact that may alter the 

structure and the mechanical properties of the material 
being treated. The laser ablation method is expensive and 
not feasible for large scale production.

Lithography
The lithography method involves transfer of a defined 
geometries of a matter template onto outer surface of a 
substrate material (Aldawood et al. 2021). Lithography 
technique can form products using different substrate 
materials such as: glass, plastics, metal, and ceramics 
(Tran and Nguyen 2017). The finished product general-
ly possesses a very well-defined geometries and smooth 
surfaces (Aldawood et al. 2021). Drawbacks associated 
with such method include the requirement for designated 
facilities and the prolonged time of manufacture (Nejad 
et al. 2018).

Micro-molding
Micro-molding method uses laser milling technique to 
form MN master moulds of varying configurations using 
silicon sheets (Donnelly et al. 2011). The generated silicon 
moulds are then casted with various polymer solutions 
such as; Polyvinyl alcohol (PVA), alginic acid, Carbopol 
971 and Gantrez AN-139 (Donnelly et al. 2012a). This 
method proves to be superior because of its ability for 
mass production and being cost effective (Aldawood et al. 
2021). The MN arrays produced from various polymers 
using this technique may vary in penetration depth into 
the skin, drug loading capacity, and mechanical properties 
(Kim et al. 2018).

Injection molding
The injection moulding process involves the use of a mas-
ter template which is mounted on a movable top plate 
of the injection moulding machine. Silicon rubber base 
and curing agent are combined and introduced into the 
injection moulding machine via a hopper, and injected 
into the metal moulds that define the shape of the mould-
ed part. The latter is cured and ejected out using ejector 
pins (Hamdan et al. 2022). This method is considered 
reproducible and allows for mass production at low cost. 
However, the injection moulding equipment is expensive 
(Aldawood et al. 2021).

Additive manufacturing
Recently, additive manufacturing (3D printing) has 
gained attention which involves printing or building the 
MN arrays from a desired material by layering (Parupelli 
and Desai 2019). This technique allows for a versatile MN 
arrays design in a very limited time for processing (John-
son and Procopio 2019).

Mechanical characterization of mi-
croneedles

The fundamental knowledge of the mechanics of needle 
insertion into the skin is very essential to optimise the 
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performance of MN devices. Needles that have sharp tips 
are capable to poke the skin with the minimum force for 
insertion. However, the later would reduce the strength 
close to the needle tip and bending of needles tips may 
take place, especially for needle prototype with very thin 
tips (< 20°) (Zhang et al. 2009). It was documented that 
the higher the thickness of the needle wall, the higher 
is the fracture force, therefore, needle prototypes with 
small tip diameter and high wall thickness are preferable 
for insertion (Prausnitz 2004; Zhang et al. 2009). Needle 
density of a baseplate of a certain area can also affect the 
penetration force. The high needle density would result 
in the bed of nails effect. Generally, there are two kinds 
of failure styles related to the insertion of the needles 
into the skin; fracture or buckling (Zhang et al. 2009). 
Failure takes place when the load leads to either fracture 
or buckling. Consequently, MN mechanical characteri-
zation during their design is of paramount importance 
(Khann et al. 2010). The main mechanical tests which 
include; axial force, transverse force, and insertion force 
are usually conducted for MN arrays and are listed in 
(Table 1).

Clinical trials on microneedles

Many clinical trials were completed on MN-based deliv-
ery for multiple conditions. One study that demonstrat-
ed the use of MN devices to deliver insulin had reached 
to phase III trial (Norman et al. 2013). It was revealed 
that the delivery of insulin using a single, hollow MN 
array was perceived with less pain and faster onset of 
action. Another phase III clinical study had tested zol-
mitriptan-containing MN system which is indicated for 
the treatment of migraine (Spierings et al. 2018). It was 
shown that the drug delivered through the MN device 
provided significant pain relief and lessened symptoms 
associated with migraine compared to placebo (Spierings 
et al. 2018). There are ongoing clinical trials and recruit-
ing for patients to prove the feasibility of MN system to 
deliver various drug substances used for multiple clinical 
conditions.

Microneedles and Covid-19 pandemic

To prevent the COVID-19 pandemic, global mass vac-
cination is a necessity. The vaccine strength, transport 
chain, needle phobia, and needle waste are major chal-
lenges for global outreach (Hassan et al. 2022). The de-
livery of vaccines via the skin using MN arrays is a good 
alternative to conventional invasive hypodermic needle 

and syringe-associated needlestick injuries (Benson et al. 
2019). The use of MN arrays for COVID-19 vaccination 
is painless, secures higher vaccine coverage, offers high-
er product thermal stability and shelf-life, and allows for 
self-administration. Many researches support the use of 
dissolvable MN-mediated COVID-19 vaccination system 
(Hassan et al. 2022). On the other hand, MN-based oro-
pharyngeal swabs were introduced for COVID-19 testing 
and monitoring (Chen et al. 2020). The latter allow reduc-
tion of false COVID-19 tests and perform testing with 
high accuracy.

Microneedles in the market, challenges 
and future outlook

Despite the extent and diversity of research in the field 
of MN technology, there are few marketed MN products 
(Table 2) (Butola 2022). MicronJet and Soluvia (Arora 
et al. 2008; Benson et al. 2019) are MN devices which 
demonstrated superior immune responses to influenza 
vaccine compared to IM injection. Commercially, there 
exist no biodegradable polymer-based MN device (Li et 
al. 2017), nor protein- loaded MN device (Al-Japairai et 
al. 2020). The regulatory bodies may ask for MN finished 
product sterilization or their manufacture under aseptic 
conditions to assure the safety of the final product (Bal et 
al. 2008). MN devices classification whether it is trans-
dermal or intradermal delivery, transdermal patch plat-
form or injection is still unclear (Donnelly et al. 2012b). 
Regulatory bodies are concerned with the guidelines and 
instructions of MN devices in terms of scale-up instruc-
tions (Quinn et al. 2014), packaging, disposal, directions 
to use, and safety issues (Larrañeta et al. 2016b). The 
optimisation of MN array products with respect to engi-
neering, design, and usability will facilitate their approval 
within the regulatory bodies. The perception for easy-to-
use product and the contemplation of long term safety 
profile for MN devices will certainly extend the degree 
of acceptance of these devices in the market (Quinn et 
al. 2014). Moving forward with MN technology in terms 
of their manufacture and commercialisation require con-
sensus on a harmonised specifications for MN system ( 
Quinn et al. 2014; Larrañeta et al. 2016b). Although these 
hurdles exist, MN-based skin delivery shows a promising 
future toward the management of chronic diseases and 
global vaccination programs particularly in pandemics 
(Benson et al. 2019).

Table 1. MN mechanical tests: Description of the mechanical 
tests (Aldawood et al. 2021).

Mechanical test Description
Axial force The force is applied vertically onto the needle tip
Transverse force The force is applied onto the MN base in parallel way
Insertion test The MN array is applied into a skin or a simulated membrane 

Table 2. Marketed MN-based products (Butola 2022).

MN product Uses
Dermaroller Cosmetic uses, acne treatment
Nanojet Intradermal delivery of drugs, diagnosis
Soluvia Intradermal delivery of drugs and vaccines
Micronjet The delivery of drugs, protein, and vaccines
Macroflux The delivery of peptides and vaccines
Dermapen The treatment of acne, hair loss, stretch marks
Microcore The delivery of small and large molecules
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Conclusions
Drug formulation and the delivery logistics are at the core 
for the success of any drug product. The skin is an attractive 
route of administration for both local and systemic drug 
delivery. It has unique features and offers several advan-
tages yet, rela  tively impermeable. MN delivery strategy 
overcomes the SC barrier, and hence, can extend the range 
of increasingly sophisticated therapeutics to be efficiently 
delivered across the skin. MN technology has a signifi-
cant and far-reaching impact benefiting both patients and 
healthcare providers. This paper summarized the various 

types of MN arrays i.e. solid, coated, hollow, dissolvable 
and swellable MNs. MN arrays are fabricated using a wide 
range of materials such as, silicone, glass, metals, sugars, 
and polymers. Various manufacturing methods including 
micro-molding, lithography and 3D printing found appli-
cability in MN fabrication. Many researches have been con-
ducted on MNs in terms of characterization, safety, and ef-
ficacy. Meeting regulatory standards of product safety and 
efficacy and large-scale production is essential to advance 
the technology to a commercial scale. Once optimised, 
MN technology has the potential to provide a sophisticated 
adaptable platform for the treatment of various diseases.
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