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Abstract
The application of in silico approaches for predicting metabolic pathways and toxicity profiles has significantly advanced drug discov-
ery and chemical risk evaluation. By harnessing developments in cheminformatics, machine learning, and expert-driven platforms, 
these computational techniques enable the early assessment of how candidate molecules may be metabolized and their possible toxic 
effects, often prior to laboratory synthesis or experimental testing. In this study, knowledge-based algorithms were utilized to predict 
the metabolism and toxicity of a previously identified dual-acting pyrrole-based compound using in silico methods. The licensed 
Lhasa software suite (Lhasa Limited, Leeds, UK), specifically the Meteor and Derek modules, was employed for these analyses. Tox-
icity assessment indicated that compound 7b has a plausible potential to cause skin irritation or corrosion in mammalian systems. 
However, it was computationally predicted to be inactive in bacterial mutagenicity assays (Ames test) and did not trigger any alerts 
across 58 other evaluated toxicity endpoints. The analysis also identified the closest metabolic analogues of compound 7b, revealing 
that the compound is most likely to undergo hydrolysis of its acyclic carboxylic ester, followed by hydroxylation of the tryptophan 
ring. These in silico findings provide valuable insights, but further validation through in vitro and in vivo studies should be carried out.
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Introduction

The integration of in silico methods into the prediction of 
metabolism and toxicity has transformed the landscape of 
drug discovery and chemical safety assessment (Iliev et al. 
2023). These computational approaches leverage advances 
in cheminformatics, machine learning, and expert systems 
to forecast how small molecules are metabolized and to 
anticipate their potential toxicological effects before they 
are synthesized or tested experimentally. By simulating 
metabolic pathways and predicting adverse outcomes, in 
silico tools play a crucial role in guiding early-stage com-
pound selection, optimizing lead structures, and reducing 

the reliance on costly and time-consuming in vitro and in 
vivo studies (Kazmi et al. 2019; Agahi et al. 2020).

Drug metabolism profoundly influences the pharma-
cokinetic and pharmacodynamic profiles of compounds, 
affecting their absorption, distribution, efficacy, and safe-
ty. Enzymatic biotransformations can result in the activa-
tion or inactivation of therapeutic agents, as well as the 
formation of reactive or toxic metabolites. In silico me-
tabolism prediction tools, such as those based on knowl-
edge-driven rules or machine learning algorithms, can 
identify likely sites and routes of metabolism, predict the 
involvement of specific enzymes (e.g., cytochrome P450 
isoforms), and propose plausible metabolite structures. 
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These predictions help researchers anticipate metabolic 
liabilities, design compounds with improved metabolic 
stability, and prioritize experimental validation for the 
most promising candidates (Alqahtani 2017). Lhasa’s Me-
teor software module is widely utilized in pharmaceuti-
cal research to predict potential metabolites and identify 
metabolic “soft spots” early in drug development, there-
by supporting the design of compounds with enhanced 
metabolic stability. In silico studies can aid in the identi-
fication and analysis of metabolites during experimental 
research, helping to streamline workflows and minimize 
manual effort (Boyce et al. 2022).

In parallel, in silico toxicity prediction has become an 
essential component of chemical risk assessment and drug 
development. Computational toxicity profiling utilizes a 
variety of data sources and modeling techniques to es-
timate the likelihood of adverse effects, including acute 
toxicity, organ-specific toxicity, genotoxicity, and carcino-
genicity. By analyzing structural features associated with 
known toxicities and integrating mechanistic informa-
tion, these tools can flag potential “hot spots” for toxicity 
within a molecule, inform structure-activity relationship 
studies, and support regulatory submissions. Importantly, 
in silico toxicity models contribute to the principles of the 
3Rs (Replacement, Reduction, and Refinement) by min-
imizing the need for animal testing and focusing exper-
imental efforts on compounds with favorable safety pro-
files (Noga et al. 2024).

The synergy between in silico metabolism and toxicity 
prediction enables a more holistic evaluation of chemical 
entities at the earliest stages of research and development. 
Therefore, this study focuses on the metabolism evaluation 
of a hit structure identified by our research group using an 
in silico knowledge-based approach. The toxicity was also 
evaluated by applying numerous toxicity endpoints.

Materials and methods
Software and configuration

Toxicity predictions were performed using Derek Nexus 
(Knowledge Base: v6.4.1; Nexus: v2.7.2; Lhasa Limited, 
Leeds, UK), a knowledge-based expert system for mecha-
nistic toxicity assessment. The software’s rule-based frame-
work incorporates structural alerts derived from empirical 
toxicological data, peer-reviewed literature, and regulato-
ry guidelines. Metabolic predictions were performed us-
ing Meteor Nexus (Lhasa Limited, Leeds, UK), a knowl-
edge-based expert system for Phase I/II biotransformation 
analysis. The software integrates empirical data, peer-re-
viewed literature, and proprietary metabolic rules to predict 
potential metabolites and their accumulation pathways.

Compound input and setup

The pyrrole-based hit compound (structure detailed in 
Table 1) was input into Derek Nexus using its canonical 

SMILES string, generated and validated via ChemAxon’s 
MarvinSketch (v22.15). To ensure reproducibility, the 
compound’s stereochemistry and tautomeric forms were 
explicitly defined prior to analysis.

Endpoint selection

All toxicity endpoints available in the Derek Prediction 
Set Up menu were evaluated, including carcinogenicity 
(e.g., IARC Group classifications); genotoxicity (muta-
genicity, clastogenicity); organ toxicity (hepatotoxicity, 
nephrotoxicity, neurotoxicity); reproductive/develop-
mental toxicity; sensitization (skin, respiratory); and mis-
cellaneous endpoints – phototoxicity and phospholipi-
dosis. Predictions were generated for bacteria (primarily 
for Ames test relevance) and mammals (rat, human) to 
assess species-specific toxicological profiles. The predic-
tion confidence levels were categorized as probable: strong 
structural or mechanistic evidence (≥70% likelihood); 
plausible: moderate evidence (30–69% likelihood); Equiv-
ocal: Insufficient or conflicting evidence (<30%); negative 
predictions (no alerts) were assigned when the compound 
lacked structural motifs associated with toxicity in Der-
ek’s knowledge base (e.g., no phototoxic arylpropanone or 
polycyclic aromatic fragments).

Metabolic parameters

Metabolic pathways were visualized hierarchically as met-
abolic trees, annotating parent compounds and their de-
rivatives with reaction types (e.g., hydroxylation, ester hy-
drolysis). Mechanistic rationales, such as CYP3A4 affinity 
for aromatic oxidation, and literature citations supporting 
predicted biotransformations were curated. Competing 
reactions, such as glucuronidation versus sulfation, were 
flagged for further analysis.

Results and discussion

Our previous studies identified a novel hit compound fea-
turing a pyrrole core. This compound demonstrated dual 
inhibitory activity against MAO-B and AChE, along with 
promising antioxidant properties (Table 1) (Mateev et al. 
2024). In the present study, we investigated the metabol-
ic profile of this hit structure using an in silico, knowl-
edge-based approach. Additionally, its toxicity was as-
sessed by evaluating multiple toxicity endpoints with the 
licensed Lhasa software.

The structure was selected based on our extensive 
studies aimed at discovering novel multi-target MAO-B/
AChE inhibitors with a pyrrole-based scaffold. The li-
gand presented in Table 1 was identified as a potential 
dual-acting inhibitor, also demonstrating favorable rad-
ical-scavenging properties. Additionally, its blood-brain 
barrier permeability coefficient was found to be within 
a moderate range. Therefore, it was applied for further 
in silico evaluations.
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Table 1. Pyrrole-based compound with dual MAO-B/AChE inhibitory activity used in this study.

Code 7b
Formula C32H29BrN4O4

Exact Mass 612.1372
Average Molecular Mass 613.5
Smiles BrC=1C=CC(=CC=1)C5=CC(C(OCC)=O)=C(C)N5C(CC2=CNC3=CC=CC=C23)C(N/N=C/

C4=CC=CC=C4O)=O
MAO-B 21% (1 µM) (Mateev et al. 2024a)
AChE 31% (10 µM) (Mateev et al. 2024a)
DPPH 61.27% (250 µM) (Mateev et al. 2024b)
ABTS 90.49% (250 µM) (Mateev et al. 2024b)

In silico toxicity assessment

The initial calculations were aimed at determining the 
chemical toxicity after in-depth evaluations with the Der-
ek Nexus module of Lhasa. The module provides data 
about the potential safety concerns of the tested struc-
tures. These assessments are vital in pharmaceutical de-
velopment and regulatory submissions, as they identify 
chemical features – known as toxicophores – that are 
linked to harmful biological effects (Anwar et al. 2021). 
Several studies have demonstrated a strong correlation be-
tween experimental results and predictions made by Der-
ek Nexus, supporting the reliability and established status 
of the module (Judson et al. 2013). Derek Nexus utilizes 
data from both the Ames bacterial reverse mutation assay 
and transgenic rodent mutation models to inform its tox-
icity predictions.

Derek Nexus assesses chemical compounds across 
more than 50 toxicological endpoints, providing a like-
lihood rating for each prediction that ranges from high 
certainty to more tentative assessments. Negative results 
are classified from “inactive” to “improbable.” For exam-
ple, if a compound shares structural features with known 
mutagens, it may be designated as a “probable mutagen” 
and assigned a specific confidence level. The platform also 
offers mechanistic explanations for its predictions, such as 
detailing cytochrome P450-mediated metabolic pathways 
in cases of hepatotoxicity or referencing established assays 
for endpoints like skin sensitization. Notably, the analysis 
indicated that compound 7b did not show toxicity across 
any of the 57 evaluated endpoints, with the full list of end-
points summarized in Table 2.

Moreover, compound 7b was evaluated using the Car-
cinogenic Potency Categorization Approach (CPCA) for 
N-nitrosamines. This approach is a structure-activity re-
lationship (SAR)-based framework that categorizes N-ni-
trosamine impurities into potency categories, each associ-
ated with an acceptable intake limit. The categorization is 

based on the presence of specific structural features with-
in the molecule that are known to influence carcinogenic 
potential. The CPCA is particularly relevant for N-nitro-
samines containing a carbon atom on both sides of the 
N-nitroso group and is widely used to predict carcinogen-
ic risk when experimental data are unavailable or limited.

During the assessment of compound 7b, special at-
tention was given to the identification of dialkyl N-nitro-
samine substructures, as these are recognized as highly 
potent carcinogens due to their metabolic activation path-
ways. Structural analysis of 7b demonstrated that it does 
not contain any dialkyl N-nitrosamine motifs, which are 
typically associated with a higher risk of carcinogenici-
ty. The absence of these hazardous structural features in 
compound 7b suggests a lower predicted risk for nitrosa-
mine-related carcinogenicity.

Several structural alerts were identified during the in 
silico toxicity assessment of compound 7b using the Der-
ek Nexus platform, with most of these alerts related to 
the skin sensitization endpoint. Derek Nexus is a knowl-
edge-based expert system that predicts toxicity by iden-
tifying chemical substructures, known as toxicophores, 
which are associated with specific toxicological outcomes. 
Fig. 1 illustrates the specific alert generated for the sub-
stituted phenol ring in compound 7b, highlighting the 
correspondence between this structural feature and the 
system’s prediction.

The primary alert triggered for compound 7b is as-
sociated with the presence of a substituted phenol ring. 
Phenolic structures are recognized as potential skin sen-
sitizers, and their presence in a molecule often prompts 
further evaluation. Derek Nexus incorporates this knowl-
edge into its alert system, flagging compounds that con-
tain such substructures due to their potential to induce 
skin sensitization reactions. This is based on evidence that 
phenol derivatives can undergo metabolic activation or 
direct interaction with skin proteins, ultimately leading to 
immune responses characteristic of sensitization.
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Table 2. Toxicity endpoints not firing any alerts at the selected reasoning level.

5alpha-Reductase inhibition Methaemoglobinaemia
Adrenal gland toxicity Mitochondrial dysfunction
Anaphylaxis Mutagenicity in vivo
Androgen receptor modulation Nephrotoxicity
Bladder disorders Neurotoxicity
Bladder urothelial hyperplasia Non-specific genotoxicity in vitro
Blood in urine Non-specific genotoxicity in vivo
Bone marrow toxicity Occupational asthma
Bradycardia Ocular toxicity
Carcinogenicity Oestrogen receptor modulation
Cardiotoxicity Oestrogenicity
Cerebral oedema Peroxisome proliferation
Chloracne Phospholipidosis
Cholinesterase inhibition Photo-induced chromosome damage in vitro
Chromosome damage in vitro Photo-induced non-specific genotoxicity in vitro
Chromosome damage in vivo Photo-induced non-specific genotoxicity in vivo
Cumulative effect on white cell count and immunology Photoallergenicity
Cyanide-type effects Photocarcinogenicity
Developmental toxicity Photomutagenicity in vitro
Glucocorticoid receptor agonism Phototoxicity
Hepatotoxicity Pulmonary toxicity
HERG channel inhibition in vitro Respiratory sensitization
High acute toxicity Skin sensitization HPC
Irritation (of the eye) Splenotoxicity
Irritation (of the gastrointestinal tract) Teratogenicity
Irritation (of the respiratory tract) Testicular toxicity
Kidney disorders Thyroid toxicity
Kidney function-related toxicity Uncoupler of oxidative phosphorylation
Lachrymation Urolithiasis

Alert Description Image Match with query compound 

 
 

 Figure 1. Description of the alert image and its occurrence in 7b (highlighted in grey).

While phenol itself has generally not shown skin sen-
sitization in animal studies, several of its substituted de-
rivatives have demonstrated sensitizing potential. For 
instance, compounds such as 2,5-dimethylphenol, 3,4-di-
methylphenol, pentachlorophenol, and 2,4,5-trichloro-
phenol have been identified as skin sensitizers in the local 
lymph node assay (LLNA) (Ashby et al. 1995). Similar-
ly, other substituted phenols, including 4-styrylphenol 
(also known as 4-hydroxystilbene) and chloroxylenol 

(4-chloro-2,3-dimethylphenol), have produced positive 
results in the guinea pig maximization test (GPMT) (Cro-
nin and Basketter 1994). However, it is important to rec-
ognize that not all substituted phenols act as sensitizers; 
some, such as 4-tert-butylphenol, 2-methylphenol, and 
3,4,5-trimethylphenol, have yielded negative results in 
both the GPMT and LLNA, indicating variability in sensi-
tization potential among phenol derivatives, as discussed 
by Yamano et al. (2007).
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Hydrazine and phenylhydrazine are classified as sig-
nificant contact allergens (category A) based on an anal-
ysis of the available human and animal data, and positive 
human patch test results were reported for hydrazine and 
selected derivatives (Foulds and Koh 1991). Conversely, 
some human patch test studies have reported negative re-
sults (Rothe 1988). Hydrazides such as carbonohydrazide 
showed positive activity in the GPMT, although the struc-
tural analogue adipohydrazide was negative in the LLNA. 
The alert description image and its match with the evalu-
ated structure, 7b, are given in Fig. 2.

In the context of skin sensitization, research by Chilton 
et al. (2018) has validated the use of confidence metrics for 
non-sensitizer predictions, drawing on data from estab-
lished assays such as the Local Lymph Node Assay (LLNA) 
and the Human Repeat Insult Patch Test (HRIPT). These 
studies confirm the reliability of Derek Nexus in predict-
ing sensitization potential based on a chemical structure.

The structural configuration of the query molecule does 
not correspond to any known structural alerts or reference 
compounds linked to bacterial in vitro mutagenicity in the 
Derek knowledge base. Additionally, the compound lacks 
any unclassified or ambiguous features, further supporting 
the computational prediction that it will be inactive in the 
bacterial reverse mutation (Ames) assay.

Overall, analysis using Derek indicated that the title 
compound 7b is predicted to have plausible potential for 
skin irritation or corrosion in mammalian models. How-
ever, the compound was predicted to be inactive with 
respect to in vitro mutagenicity in bacterial assays and 
showed no activity in 58 other evaluated toxicity end-
points. Therefore, it could be used for future hit-to-lead 
and lead optimization processes.

In silico metabolic profiling

Meteor Nexus is a commercially available metabolite predic-
tion software that is part of a larger suite of tools developed 
by Lhasa Ltd. Meteor generates metabolites using a knowl-
edge-based expert system, which identifies structural pat-
terns within the parent compound and correlates these pat-

terns to encoded biotransformations. The Meteor software 
employs a knowledge-based approach, using curated scien-
tific data and reasoning algorithms to predict possible met-
abolic transformations (Phase I and II) for a given chemical 
structure. This approach is distinct from data-driven or pure-
ly statistical models, as it relies on encoded expert knowledge 
and mechanistic rules to generate its predictions (Boyce et 
al. 2022). Moreover, recent validation studies published in 
journals such as Xenobiotica and the Journal of Medicinal 
Chemistry support the integration of Derek Nexus with met-
abolic prediction platforms like Meteor Nexus. These studies 
highlight the advantages of combining mechanistic toxicity 
predictions with metabolic fate analysis, demonstrating that 
such an approach can improve early risk assessment in drug 
discovery by providing a more comprehensive evaluation of 
both parent compounds and their metabolites. The results 
provided by Meteor are generalized in Fig. 3.

The most probable metabolic pathway for compound 
7b is hydrolysis of the acyclic carboxylic ester located 
at the 4th position of the pyrrole core motif (Fig. 4). Es-
ter hydrolysis is a common metabolic reaction, typically 
catalyzed by carboxylesterase enzymes in various tissues, 
especially in the liver. This process involves the cleavage of 
the ester bond, resulting in the formation of a carboxylic 
acid and an alcohol as the primary metabolites. These hy-
drolysis products are generally more polar than the parent 
ester, which increases their hydrophilicity and promotes 
their excretion via the kidneys (Laizure et al. 2013).

For compound 7b, hydrolysis at the 4th position would 
introduce a polar carboxylic group, likely increasing wa-
ter solubility and reducing membrane permeability. This 
transformation may impact the pharmacokinetic profile 
of 7b by decreasing its bioavailability while facilitating its 
elimination. Thus, the presence of the acyclic carboxylic es-
ter at this position represents a key metabolic liability that 
should be taken into account during further development 
and optimization of the compound. Table 3 presents the 
chemical structures identified as the closest metabolic an-
alogues to compound 7b. The reference compounds were 
selected based on their structural similarity to 7b, particu-
larly with respect to core motifs and key functional groups 

Alert Description Image Match with query compound 

  
 Figure 2. Description of the alert image and its occurrence in 7b (highlighted in grey).
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Figure 3. Predicted biotransformation pathway of 7b.

Figure 4. Hydrolysis of the ester group in 7b.

relevant to metabolic transformation. The comparative 
analysis of these analogues enables a more informed pre-
diction of the metabolic pathways that the pyrrole-based 
compound 7b may undergo.

Furthermore, the predictions generated by the Meteor 
software indicated a high likelihood for the initial hydro-
lysis of the acyclic carboxylic ester moiety in compound 
7b, followed by subsequent hydroxylation of the indole 
ring (Fig. 5). The reliability of these predicted metabol-
ic transformations is supported by the knowledge-based 
algorithms employed by Meteor, which utilize curated 
mechanistic rules and expert-derived data to forecast 
plausible biotransformation pathways.

The initial hydrolytic cleavage of the ester group is a 
well-recognized Phase I metabolic reaction, typically 
mediated by carboxylesterase enzymes, resulting in the 

formation of a more polar carboxylic acid derivative. Fol-
lowing this transformation, the indole ring is predicted to 
undergo hydroxylation, a common oxidative process cat-
alyzed by cytochrome P450 enzymes. Such hydroxylation 
reactions generally increase the hydrophilicity of the mol-
ecule, further facilitating its excretion.

The sequential nature of these metabolic events – be-
ginning with ester hydrolysis and proceeding to aromatic 
hydroxylation – reflects typical metabolic routes for com-
pounds containing both ester and indole functionalities. 
This metabolic profile provides valuable insight into the 
likely biotransformation fate of compound 7b and high-
lights potential sites for structural modification to im-
prove metabolic stability or modulate pharmacokinetic 
properties. Table 4 presents the chemical structures iden-
tified as the closest metabolic analogues to compound 7b.
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Table 3. Nearest metabolic analogues of compound 7b undergoing hydrolysis of the acyclic carboxylic ester.

19% Positive Ma et al. 2005

17% Positive Roberts et al. 2012

16% Positive Roberts et al. 2012

Table 4. Representative compounds undergoing ester hydrolysis and subsequent tryptophan ring hydroxylation analogous to 7b.

66% Positive Barbuch et al. 2006

65% Positive Barbuch et al. 2006

62% Negative Sun and Yost 2008

Figure 5. Hydrolysis of the ester group followed by hydroxylation of the tryptophan ring in 7b.
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By examining the documented metabolic profiles of 
these structurally related compounds, it is possible to an-
ticipate potential metabolites, assess metabolic liabilities, 
and guide the rational design of derivatives with enhanced 
metabolic stability. This approach provides a valuable 
framework for understanding the likely biotransforma-
tion routes of 7b and supports the overall strategy for op-
timizing its pharmacokinetic properties.

Conclusion

The in silico analysis using Derek Nexus suggested that com-
pound 7b exhibits plausible potential for skin irritation or 
corrosion in mammalian models. However, it was compu-
tationally predicted to lack activity in bacterial mutagenicity 
assays (Ames test) and showed no alerts across 58 additional 
toxicity endpoints. The structural configuration of 7b lacks 
alignment with established mutagenic alerts or reference 
compounds within the Derek knowledge base. Further-
more, the absence of ambiguous or misclassified structural 
features supports its predicted inactivity in bacterial reverse 
mutation assays. By analyzing the metabolic profile of 7b, 
this study identified potential metabolites, metabolic liabil-
ities, and opportunities to rationally design derivatives with 
improved metabolic stability. The integrated in silico frame-
work presented here provides a robust strategy for predict-
ing biotransformation pathways and optimizing the phar-
macokinetic properties of pyrrole-based lead compounds.
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