Urban fertility in Russia in 1859-1913: on commencement of demographic transition

Boris N. Mironov

1 Saint Petersburg State University, Saint Petersburg, 199034, Russian Federation

Received 11 March 2022 ♦ Accepted 30 May 2022 ♦ Published 1 July 2022

Abstract

In the late Imperial period, a significant share of population of European Russia has demonstrated improved demographic indicators. The most important sign of demographic modernization is individual birth control. The available data suggest that transition from spontaneous fertility to the controlled one was first noted in St. Petersburg residents around the middle of the XIX century, disseminating among the entire urban population in the second half of the century, and extending to the rural population in the early twentieth century. Commencement of the demographic transition in Russia has been neglected by researchers for two reasons. First, demographic processes were studied country-wide, without any breakdown on urban and rural areas. With this approach, the urban population, accounting for only 10% in 1863 and 15% in 1914, blended with the general population; therefore, it was difficult to understand specifics of its reproduction. Second, age-specific and total fertility rates were not included in the analysis.

Keywords
demographic transition, late Imperial Russia, fertility, marriage, birth control

JEL codes: J0, J13

Demographic transition in Western Europe began at the turn of the XVIII–XIX centuries and ended mainly in the early XX century (Vishnevsky 2005: 165-166). In Russian historiography, chronology of demographic transition in Imperial Russia is a controversial issue. While most researchers attribute its completion in European Russia to the 1950s and 1960s in general, there is no common opinion about its beginning: some attribute its genesis to the late XIX - early XX century (Demograficheskaya modernizatsiya... 2006: 471-488; Zhiromskaya 2005: 269-278; Zhirov 2012: 280-286; Zverev 2014: 33-40; Fedoruk 2016: 311-313), while the others – to the 1920s-1930s (Isupov 2020: 143; Kanishchev 2016: 215, 218). Based on the All-Russia materials, the demographic transition was analyzed either for the entire population or rural population only, therefore we lack information about this
process in urban areas (Vishnevsky 1977, 1982, 2005; Population reproduction ... 1983). In papers on cities, the issue of demographic transition was framed, but not thoroughly studied (Mironov 1990: 9-10, 72-74). The first fundamental study on the history of fertility in Russia with a modern scientific apparatus, covers demographic transition among urban and rural population after 1897, and without any breakdown on rural and urban population in the earlier period (Coale et al. 1979). There is a significant gap in studies focused on changes in urban reproduction, since in Russia rural areas lagged far behind the urban ones in all respects, including demographic modernization. The article attempts to bridge the gap.

The author will analyze dynamics in total fertility rate among urban population in 50 governorates of European Russia (hereinafter referred to as European Russia) in 1861-1913. To tackle this issue, data on the size of urban population, its age structure, total and age-specific fertility are needed. Quality of sources provides for reliable data. Considering the approximateness of demographic data of the period under study (Köppen 1850: 4; Novoselsky 1916: 16, 17, 36), the obtained indicators should be considered as preliminary – they will more or less correctly identify only general trends in fertility.

Data on population in 50 provinces of European Russia in 1867-1913 were first systematized by S.A. Novoselsky in 1916 – for the entire (urban and rural) population. In 1927, they were revised by V.A. Zaitsev, and E.Z. Volkov in 1930. V.A. Zaitsev developed time series of the number of urban and rural populations in 50 provinces within the pre-war borders for 1871-1915, while E.Z. Volkov – for 1850-1930 within the USSR borders as of 1930. Both authors, assessing the weather dynamics, relied on current administrative statistics in the reference years with due regard to the natural population growth, making various adjustments. It is considered that Volkov’s data better reflect actual dynamics in population, however they are not suitable for our purposes, since the borders of Imperial Russia and the USSR did not coincide (Zaitsev 1927: 65; Volkov 1930: 264-269). As a result, the annual size of urban population in European Russia for 1859-1913 was determined by interpolation based on available administrative statistics for the reference years (1856, 1863, 1870, 1885, 1897, 1910 years).

Our knowledge about the age structure before 1897 is incomplete. All revisions contained information about age profile of the taxable persons, however the data were not introduced into scientific use. The author had information about age composition of the population of Nizhny Novgorod, Yaroslavl, Kiev and Simbirsk provinces according to the 9th revision (1850), and Grodno, Kaluga, Minsk, Simbirsk and Courland provinces according to the 10th revision (1857) for (Information about ages 1871: 198-208). Since the 1860s, population censuses with age data have been conducted in a number of provinces and cities (Gozulov 1941: 249-307), however, they remained undeveloped. Administrative statistics of the XIX – early XX century neglected age composition of the population. Local government statistics contain age-specific information about peasants in Zemstvo provinces (Svavitsky 1961), however they have not been developed, verified or validated. Fortunately, for the years 1850-1890, the Russian statisticians and mathematicians were able to reconstruct age structure of urban and rural Orthodox population in European Russia as a whole on the basis of the all-Russia metric data. For the first and the last time sufficiently reliable and complete data on age structure for the period of the Empire were obtained in 1897 by the Russian Imperial Census. A comparative analysis of all currently available data suggests that the population age structure hardly changed in 1862-1897. Small fluctuations in the male share could be explained by their high social mobility, which made registration difficult. With a certain degree of conditionality, it could be stated that the share of women of reproductive age remained stable (Table 1).
Data of the parish registers on fertility, marriage and mortality for 1796-1866 were summarized and published by the Synod with a breakdown on individual provinces and Russia as a whole, and then by the Central Statistical Committee until 1917. The consolidated materials until 1866 contain serious shortcomings, while they are considered more or less reliable for 50 provinces of European Russia for 1867-1916 (Kabuzan 1963: 82-84; Mironov 1977: 207-217).

Annual demographic indicators have been significantly fluctuating over the years (Fig. 1). Data variation suggests the following trend – decrease in crude birth rate both in urban and rural areas. The average five-year crude birth rates (number of births per 1000 population) clearly show this trend (Table 2).

From 1859-1863 to 1911-1913 in European Russia, crude birth rates in urban areas decreased by 13 ppm points, and – by 7 in rural areas, and by 6 among general population. The share of urban dwellers in population was insignificant, therefore overall and rural fertility rates did not differ much. As a rule, crude birth rates in urban areas were lower than in the countryside – by 9% on average for the entire period under study (Table 3).

This may be explained by a significant preponderance of male population over female population in urban areas, concentration in urban areas of a high number of workers and lower military ranks living without their families. In urban setting similar to administrative district units (uezds) in terms of gender, family and professional structure of population, fertility was higher than in rural areas (Military Statistical collection 1871:66; Mironov 2018: 508-509). Due to different gender and age composition of urban and rural population (both in individual provinces and cities, and in European Russia as a whole), crude birth rates cannot correctly assess the actual fertility, i.e. the one that does not depend upon gender
Fig. 1. Crude birth and general fertility rates among urban and rural population in European Russia in 1856-1913, %. Sources: (Military Statistical collection 1871: 53-67; Population movement... 1861-1916; Novoselsky 1916: 36-37; Report on … 1898-1916).

Table 2. Crude birth and general fertility rates among rural and urban population in European Russia in 1859-1913., ‰*

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1863</td>
<td>1865</td>
<td>1870</td>
<td>1875</td>
<td>1880</td>
<td>1885</td>
<td>1890</td>
<td>1895</td>
<td>1900</td>
<td>1905</td>
<td>1910</td>
<td>1913</td>
<td></td>
</tr>
<tr>
<td>Crude birth rate</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>51</td>
<td>50</td>
<td>50</td>
<td>51</td>
<td>50</td>
<td>52</td>
<td>52</td>
<td>51</td>
<td>51</td>
<td>49</td>
<td>47</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>46</td>
<td>51</td>
<td>46</td>
<td>40</td>
<td>37</td>
<td>42</td>
<td>37</td>
<td>36</td>
<td>39</td>
<td>40</td>
<td>39</td>
<td>33</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>50</td>
<td>51</td>
<td>50</td>
<td>51</td>
<td>49</td>
<td>51</td>
<td>50</td>
<td>49</td>
<td>49</td>
<td>48</td>
<td>46</td>
<td>44</td>
<td></td>
</tr>
<tr>
<td>General fertility rate</td>
<td></td>
</tr>
<tr>
<td>Rural</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>24</td>
<td>25</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>21</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Urban</td>
<td>25</td>
<td>28</td>
<td>25</td>
<td>22</td>
<td>20</td>
<td>23</td>
<td>20</td>
<td>20</td>
<td>21</td>
<td>22</td>
<td>21</td>
<td>18</td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>25</td>
<td>24</td>
<td>24</td>
<td>23</td>
<td>22</td>
<td>22</td>
<td>21</td>
<td></td>
</tr>
</tbody>
</table>

and age structure. This can be done by general fertility rate (the annual number of births per 1000 women of reproductive age from 15 to 50 years – hereinafter referred to as GFR) or total fertility rate (the average number of children that would be born to a woman over her reproductive lifetime – hereinafter referred to as the TFR).

To ensure comparability of these two indicators, we transform general fertility rate as follows: calculate the number of live births per woman of reproductive age per year, then multiply it by the length of reproductive lifetime of 35 years (per se it is proxy GFR – thereinafter referred to as GFR_{35}). In this form, GFR_{35} will hardly differ from total fertility rate. This is only natural: GFR_{35} and TFR show the average number of children that would be born to a woman over her reproductive lifetime if fertility rates for each age remain unchanged for the reference year regardless of mortality and changes in age composition. Small differences in the absolute value of the coefficients are explained by a more correct method of calculating TFR – it is calculated by summing the age-specific fertility rates for all age groups and multiplying the resulting amount by the length of the corresponding age group. However, GFR_{35} does not require data on age-specific fertility, missing in Russia in the XIX century. E.M. Andreev and S.V. Zakharov calculated total fertility rates for the entire population of European Russia for 1871-2000 (Demograficheskaya modernizatsiya... 2006: 157, 169), which nearly coincided with GFR_{35} (7.07) and TFR (7.20) for the entire population for the period 1896-1900 (Demograficheskaya modernizatsiya... 2006: 157).

In 1859-1897 the level of GFR_{35} among rural population of European Russia hardly changed – peasant women gave birth about 7 times in their lifetime. However, in towns-women GFR_{35} dropped from 6.34 to 5.29. Such a significant decrease in actual fertility may indicate commencement of its control (Table 4).

Reduced marriage, decreased child mortality, emigration and spread of contraception are considered to be factors for declining fertility in late Imperial period (Demograficheskaya modernizatsiya... 2006: 153; Novoselsky 1978: 127). Indeed, the marriage rate did decrease, however, first, the reduction was unstable and insignificant; second, in rural areas, despite decrease in marriage, total fertility rate remained unchanged (Table 5).

Decrease in marriage rates is usually accompanied by increased celibacy and later marriage. However, in post-reform Russia (period after abolishment of serfdom and prior to Revolution), the share of people who abstained from marriage hardly changed equaling to

1 The method of indirect estimation of the total fertility rate used in the article is one of many. All methods can be divided into the following three groups: 1) based on the structural ratios of population in childhood and maternal ages; 2) based on the idea of standardization, 3) using transformation of gross rates into net ones. For the level of demographic analysis adopted in the article, which does not claim (due to relative accuracy of the initial demographic data) to be super-accurate estimates, the chosen method of indirect estimation is acceptable and reliable, despite its simplicity [Singh et al. 2021: 296-314; Manual X 1983: 1-5].

Table 3. Age structure of female population in European Russia, 1897 %

<table>
<thead>
<tr>
<th>Population</th>
<th>under 1 year</th>
<th>1-9 years old</th>
<th>10-19</th>
<th>20-29</th>
<th>30-39</th>
<th>40-49</th>
<th>50+</th>
<th>Total</th>
<th>15-49</th>
</tr>
</thead>
<tbody>
<tr>
<td>Urban</td>
<td>2.8</td>
<td>18</td>
<td>20.7</td>
<td>18.5</td>
<td>14.3</td>
<td>10.3</td>
<td>15.5</td>
<td>100</td>
<td>54.2</td>
</tr>
<tr>
<td>Rural</td>
<td>3.7</td>
<td>24.1</td>
<td>21.5</td>
<td>15.7</td>
<td>12.1</td>
<td>9.2</td>
<td>13.8</td>
<td>100</td>
<td>47.2</td>
</tr>
</tbody>
</table>

Calculated by the author according to: (Empire-wide summary... Vol. 1: 36-55).
about 3-4% among rural population and about 11-12% among urban population (Tolts, 1977: 139-140). The average age at marriage increased by only 5 months from 1867 to 1910. At the same time, in contrast to rural areas, in urban settings the average age of men at marriage decreased (Table. 5), while the fertility rate decreased more than in territorial and administrative units (uyezds). All this indicates a weak influence of the dynamics in marriage on decline in fertility.

High infant mortality during the period under study had also contributed to higher fertility, since a baby’s death encouraged a new pregnancy and birth (Novoselsky 1978: 146, 149). However, the real decrease in infant mortality began at the end of the XIX century (Table. 7), while fertility rate had been declining since the 1860s.

Table 4. Total fertility (GFR35) among women aged 15-49 in European Russia in 1859-1863 and 1896-1900.

<table>
<thead>
<tr>
<th>Indicators</th>
<th>Urban areas</th>
<th>Rural areas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>1859-1863, GFR35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fertility</td>
<td>6.34</td>
<td>7.28</td>
<td>7.11</td>
</tr>
<tr>
<td>Ratio between urban and rural rates (urban area = 1)</td>
<td>1.00</td>
<td>1.15</td>
<td>1.12</td>
</tr>
<tr>
<td>1896-1900, GFR35</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total fertility</td>
<td>5.29</td>
<td>7.35</td>
<td>7.07</td>
</tr>
<tr>
<td>Ratio between total urban and rural rates (urban area = 1)</td>
<td>1.00</td>
<td>1.39</td>
<td>1.34</td>
</tr>
</tbody>
</table>

Sources: please, refer to footnote to Table 1.

Table 5. Marriage rates in European Russia in 1859-1913, %

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
<td>Total</td>
<td>Rural</td>
<td>Urban</td>
</tr>
<tr>
<td></td>
<td>10.5</td>
<td>9.7</td>
<td>10.4</td>
<td>10.3</td>
<td>9.3</td>
<td>10.2</td>
<td>10.5</td>
<td>9.6</td>
<td>10.4</td>
<td>10.4</td>
<td>10.2</td>
</tr>
</tbody>
</table>

Sources: please, refer to footnote to Table 1.

Table 6. Average age at marriage in European Russia in 1867 and 1910, (years)

<table>
<thead>
<tr>
<th>Gender</th>
<th>Year</th>
<th>Urban areas</th>
<th>Rural areas</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Men</td>
<td>1867</td>
<td>29.2</td>
<td>24.3</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>1910</td>
<td>27.4</td>
<td>24.8</td>
<td>25.2</td>
</tr>
<tr>
<td>Women</td>
<td>1867</td>
<td>23.6</td>
<td>21.3</td>
<td>21.5</td>
</tr>
<tr>
<td></td>
<td>1910</td>
<td>23.7</td>
<td>21.6</td>
<td>21.9</td>
</tr>
</tbody>
</table>

Emigration cannot be considered a serious reason for decline in fertility either, because the latter, started to decrease long before the beginning of the XX century, when emigration significantly expanded. Second, until the 1890s, emigration was fully compensated by immigration and re-emigration, and by 60% in 1891-1920. (Kabuzan 1998: 116; Mironov 2013: 78-79).

Contraception remains one of the listed factors for declining fertility. There is a widespread perception that birth control in Russia has been practiced extremely rarely and almost exclusively by the privileged segments of the population since the end of the XIX century. However, ancient Russian pieces of history of the XI–XVII centuries do contain evidence that women were using contraceptives. At confession, priests usually asked women: «Did you poison a baby inside you? Did you kill a baby inside you?» Men were called (according to the lists of questions compiled by monks to be asked during confession) to repent for evading the sinless methods of sexual intercourse used to prevent conception (the husband must make love to his wife, lying on top of her). Beside other questions, a list of questions a priest could ask at confession at the beginning of the XVIII century included as follows: «Shalt the husband let himself unto his wife, whilst the seeds shalt not spring?» (i.e., did the husband have sexual contact with his wife after eruption?) (Almazov 1894: 156-296; Korogodina 2006: 158-163). This indicates the use of coitus interruptus practice that was considered sinful at the time.

Lack of information about birth control is explained by the fact that according to spiritual laws, all contraceptives were considered a sin and were punished with a long penance in line with the Church statute, for example, from 5 to 15 years of penance for poisoning a fetus. Under secular law, doctors and pregnant women were both liable for a forced abortion. According to the 1845 Code of Punishments active until the beginning of the XX century, fetal expulsion was equated to infanticide and punished with 4 to 10 years of hard labour. Therefore, women were keeping a tight lid on using any methods of birth control until the 1920s. (Sinkevich 1929: 46).

A spiritual corrective measure aimed at punishing a person for a sinful act: excommunication from communion for a certain period of time, additional fasting, doing a number of prayers and bows.

In the second third of the XIX — early XX century high fertility became an urgent social problem; much more information on this issue became available, however, it looks like most of the current birth control methods have been used earlier, but the scale of their use remains unclear. According to correspondents of the Russian Geographical Society, there were «specialists» in this matter in each village. Miscarriage was forced mechanically (jumping and tight bandaging, intensive kneading of the abdomen and shaking of the whole body, lifting weights, etc.), with the use of medications (from herbs to phosphorus and mercury, per os); swallowing tin circles and taking corrosive sublimate. To prevent conception, women after having an affair would take a spoonful of water with gunpowder, wash their hands with

<table>
<thead>
<tr>
<th>Years</th>
<th>1867—</th>
<th>1872—</th>
<th>1877—</th>
<th>1882—</th>
<th>1887—</th>
<th>1892—</th>
<th>1897—</th>
<th>1902—</th>
<th>1907—</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality, ‰</td>
<td>267</td>
<td>273</td>
<td>270</td>
<td>271</td>
<td>269</td>
<td>275</td>
<td>260</td>
<td>253</td>
<td>244</td>
</tr>
</tbody>
</table>

Table 7. Infant mortality in European Russia in 1867-1911 per 1000 births, ‰
their urine (Afinogenov 1903: 57; Popov 1903: 327). Until the 1920s, extended breastfeeding “beyond the legally accepted duration of two Lenten fasts” i.e. over two years was a widely used practice (Gilyarovsky 1866: 50). This method to some extent could postpone a new pregnancy; according to the Russian doctors, about 80% of the breastfeeding women did not menstruate. There were other very imperfect practices (Pilsudsky 1910: 14-16). Since the 1880s, abortions performed by healers and uncertified midwives have come into practice in villages, especially suburban ones (Afinogenov 1903: 57, 99; Dyachkov 1999: 74). Urban dwellers started to practice induced abortion earlier (Chukhnin 1894: 533). By the beginning of the XX century the range of available contraceptives has increased: condoms, contraceptive caps, uterine rings, vaginal douching, suppositories, calendar methods. A survey of 2150 students at the Moscow University in 1904 showed that 57% used birth control methods (25% — *coitus interruptus*, 16% — condoms, 15% – others) (Chlenov 1907: 1072-1111). A popular birth control manual by K. I. Drexler underwent 7 editions in 1907-1914 (Drexler 1929).

In the 1860s there were numerous testimonies of contemporaries that mothers sought to limit births by any means, and the number of such testimonies were only increasing over time. A higher number of foundlings indicates a higher number of unwanted children. According to data on annual admission of foundlings to the largest foundling homes of the Empire – in St. Petersburg and Moscow – in 1791-1910, for 120 years the number of foundlings increased 5.8 times, while the Russian population – 2.9 times (Table 8):

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of foundlings</td>
<td>3342</td>
<td>13092</td>
<td>20169</td>
<td>24298</td>
<td>17785</td>
<td>19218</td>
</tr>
</tbody>
</table>

Source: (Ransel 1988: 303-308)

Decline in the number of foundlings in 1891-1910 was solely explained by restrictions on their admission, which immediately reduced their number.

So, in the second half of the XIX — early XX century hundreds of thousands of Russian women began to think about relieving the burden of motherhood, and they had an idea how to do it. Demographic statistics show that this knowledge was applied, however, prior to the beginning of the twentieth century it was mainly used in urban settings. This may be amazing, since about half of the urban dwellers were peasants closely associated with the village. This gap between rural and urban settings was explained by the fact that the moral censorship in rural communities remained very strict, and violators of traditional morality were subject to punishment. Citizens who were freer in their behaviour used contraception in the post-reform period achieving a significant success: in 1896-1900 the total rural fertility rate was 1.39 times higher than the urban one (for more details see: Mironov 2019: 256-300).

A widescale birth control is likely to have started in the capital at the turn of the XVI–XIX centuries, just like in France, since fertility in St. Petersburg in 1781-1860 was low (Table 9).
Let us summarize the results. In European Russia, in the Imperial period, there was a certain modernization of demographic behaviour among a significant share of the urban population, which, in particular, manifested in spread of individual birth control. Demographic transition in the Russian provinces predominantly populated with Orthodox Christians was initiated in urban settings in the second half of the XIX century – earlier than it is considered in historiography. St. Petersburg province – the most urbanized and one of the most cosmopolitan, and St. Petersburg – the most cosmopolitan city in Russia with intensive economic and cultural bonds with the West, especially with France, where the demographic transition had already begun at the end of the XVIII century were taking the lead.

Beginning of the demographic transition in Russia remained unnoticed by researchers for two reasons. First, demographic processes were studied countrywide, without any breakdown on urban and rural areas. With this approach, the urban population, which accounted for only 10% in 1863 and 15% in 1914, was blended with and lost in the general population making it difficult to understand specifics of its reproduction. Second, general and total fertility rates were not included in the analysis.

Acknowledgements

The author is expressing his gratitude to two anonymous reviewers for their valuable comments

References

Almazov A (1894) Taynaya ispostev’ v pravoslavnoy vostochnoy tserkvi [Secret confession in the Orthodox Eastern Church]. Odessa: typolithography. Headquarters of the Odessa Military District. (in Russian)

Bunyakovskiy VYa (1880) Zametka ob otnositel’noy chislennosti ravnovozrastnykh sostavov muzhskogo i zhenskogo naseleniya Rossi [A note on the relative number of the Russian male and female population of equal age composition]. SPb.: Imp. Academy of Sciences. (in Russian)

Chlenov MA (1907) Polovaya perepis’ moskovskogo studenchestva [Moscow studentship census with information about sexual life]. Russian doctor 31-32: 1072-111. (in Russian)

Drexler KI (1929) Predokhranitel’nyye sredstva v sovremennom brake ili kak predokhranit’ sebya ot beremennosti, ne pribegaya k abortu [Birth control methods in modern marriage or how to prevent pregnancy without forced abortion]. 11th ed. Minsk: Author. (in Russian)

Dyachkov VL (1999) Trud, khleb, lyubov’ i kosmos, ili o faktorakh formirovaniya krest’ianskoy sem’i vo vtoroy polovine XIX — nachale KhKh v. [Labour, bread, love and space, or about factors for developing a peasant family in the second half of the XIX — early XX century]. In: Socio-demographic history

Fedoruk NS (2016) Naseleniye Novgorodskoy gubernii v XIX — nachale XX v.: chislennost', demogra-

ficheskije protessy, sotsial'nyaya struktura [Population of the Novgorod province in the XIX — ear-

ly XX century: number, demographic processes, social structure]. Veliky Novgorod: Publishing and

Printing Center of Novgorod State University. (in Russian)

Gilyarovsky FV (1866) Issledovaniye o rozhdenii i smertnosti detey v Novgorodskoj gubernii [A study on

ru/ru/nodes/8728-gilyarovskiy-f-v-issledovaniya-o-rozhdenii-i-smertnosti-detey-v-novgorodskoy-

gubernii-spb-1866-zapiski-imp-rus-geogr-o-va-po-otd-nyu-statistiki-t-1 (in Russian)

Gozulov AI (1941) Mestnyye perepisi naseleniya do revolyutsii [Local population censuses before the

Isupov VA (2020) Istoriya Zapadnoy Sibiri v kontekste demograficheskoy modernizatsii (1900–1950-e

gody) [Western Siberia history in the context of demographic modernization (1900-1950s)]. His-

Kabuzan VM (1963) Narodonaseleniye Rossii v XVIII – pervoy polovine XIX v. (Po materialam re-

vizyi) [Russian population in the XVIII – first half of the XIX century. (Based on revizii materials)].

Moscow: Publishing House of the Academy of Sciences of the USSR. (in Russian)

Kabuzan VM (1998) Emigratsiya i reemigratsiya v Rossii v XVII – nachale XX veka [Emigration and

re–emigration in Russia in the XVII – early XX century]. Moscow: Nauka. (in Russian)

poloviny XIX — pervoy treti XX v.: sovremennyye metody issledovaniya [Demographic transition

in the Russian agrarian society in the second half of the XIX — first third of the XX century:

modern research methods]. Annual publication on agrarian history of Eastern Europe 1: 210-23.

Moscow. URL: https://elibrary.ru/download/elibrary_29791445_56160104.pdf (in Russian)

Köppen PI (1850) Neskol'ko slov po povodu vedomosti o narodonaselenii Rossii, sostavlennoy pri Statis-

ticheskom otdelenii Soveta MVD [A few words about the Russian population report developed by

the Statistical Department of the Council of the Ministry of Internal Affairs]. SPb.: Imp. Academy of

Sciences. URL: http://elib.shpl.ru/ru/nodes/46958-keppen-p-i-neskolko-slov-po-povodu-vedomosti-

o-narodonaselenii-rossii-sostavlennoy-pri-statisticheskom-otdelenii-soveta-ministerstva-vnutren-

nih-del-a-k-s-p-b-1850-g-48-str-v-8-ru-d-l-spbl-1850 (in Russian)

Korogodina MV (2006) Ispoved' v Rossii v XVI–XIX vv.: issledovaniye i teksty [Confession in Russia in

the XVI–XIX centuries: research and texts]. St. Petersburg: Dm. Bulanin. (in Russian)

Mironov BN (1977) Sotsial'naya mobil'nost' rossijskogo kupechestva v XVIII—nachale XIX veka [So-

cial mobility of Russian merchants in the XVIII—early XIX century]. In: RN Pullat (ed.) Problems

of historical demography in the USSR. Tallinn: Publishing House of the Academy of Sciences of the

USSR. Pp. 207-17. (in Russian)

Mironov BN (1990) Russkiy gorod v 1740-1860-e gody: demograficheskoye, sotsial'noye i ekonomi-

cheskoye razvitiye [Russian city in the 1740s-1860s: demographic, social and economic develop-

ment]. Leningrad: Nauka. (in Russian)

Mironov BN (2013) Russkaya revolyutsiya 1917 goda v kontekste teoriy revolyutsii [Russian Revolu-

tion of 1917 in the context of revolution theories]. Article 1. Social Sciences and modernity 2:

72-84. URL: https://elibrary.ru/download/elibrary_19013670_49768807.pdf (in Russian)

Mironov BN (2018) Rossiyskaya imperiya: ot traditsii k modernu [The Russian Empire: from tradition to

Mironov BN (2019) Rossiyskaya modernizatsiya i revolyutsiya [Russian modernization and revolu-

tion]. St. Petersburg: Dm. Bulanin. (in Russian)
Novoselsky SA (1916) Obzor glavneyshikh dannykh po demografii i sanitarnoy statistike Rossii. Kalendár’ dlya vrachey vsekh vedomstv za 1916 g. [Review of the most important data on the Russian demography and sanitary statistics. 1916 Calendar for doctors of all departments]: in 2 parts. Part 2. St. Petersburg. (in Russian)

Popov G (1903) Russkaya narodno-bytovaya meditsina: Po materialam etnograficheskogo byuro kn. VN Tenisheva [Russian traditional and household medicine: Based on materials of the Ethnographic Bureau by prince VN Tenishev]. SPb.: publ.hse. A.S. Suvorin. (in Russian)

Sinkevich GP (1929) Vologodskaya krest’yanka i eye rebenok [Vologda peasant woman and her child]. Moscow; Leningrad: State Medical Publishing House. (in Russian)

Svavitsky NA (1961) Zemskie podvornyye perepisi (obzor metodologii) [Zemstvo household censuses (review of methodology)]. Moscow: Gosstatisdat. (in Russian)

Vishnevsky AG (1977) Ranniye etapy stanovleniya sovremennogo tipa rozhdayemosti v Rossii [Early stages in the development of the modern type of fertility in Russia]. In: Marriage, fertility, mortality in Russia and in the USSR / AG Vishnevsky (ed.). Moscow: Statistics. Pp. 105-34. (in Russian)

Zhirov NA (2012) Demograficheskaya istoriya Orlovskoy gubernii v nachale XX v. [Demographic history of the Orel province at the beginning of the 20th century]: dis. ... for the degree of candidate of historical sciences. Tambov. (in Russian)

Other sources of information

Information about the author

Boris Nikolaevich Mironov, Doctor of Historical Sciences, Professor, Saint Petersburg State University. E-mail: b.mironov@spbu.ru