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Abstract
Implementing and optimizing biodiversity monitoring is crucial given the current, worldwide biodiver-
sity decline. Compared to other ecosystems, monitoring of biodiversity is lagging behind in groundwater 
ecosystems, both because of sparse taxonomic knowledge and methodological constraints. We here as-
sessed temporal variation in the occurrence and abundance of macroinvertebrates collected systemati-
cally from shallow groundwater aquifers of Switzerland to establish general principles on seasonality and 
repeatability of assessment outcomes. We found no seasonal abundance pattern for obligate groundwater 
amphipods and isopods, indicating temporal consistency. In contrast, other macroinvertebrates (predomi-
nantly stygophiles and stygoxenes) showed pronounced seasonality in their detection rate. However, we 
found variability in detection rates across groundwater amphipod species and especially across sampling 
sites. For groundwater communities, characterized by narrowly-distributed and rare species, our results 
highlight the need for tailored and extensive sampling strategies. When setting up monitoring programs 
on groundwater fauna, detection probability, temporal autocorrelation, and standardization of sampling 
effort should be carefully considered. Applying novel, systematic approaches, can offer promising meth-
odologies for understanding and conserving groundwater ecosystems.
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Introduction

Biodiversity decline is one of the most pressing environmental challenges of our time, 
with profound implications for ecosystem function and services, human well-being, 
and global sustainability (Rockström et al. 2009; Dirzo et al. 2014). In response to this 
crisis, numerous efforts have been initiated worldwide to halt and reverse the decline 
in biodiversity, and there is a need for standardized, robust biodiversity monitoring 
programs. Such programs are essential for accurately assessing the status and trends 
of biodiversity, for evaluating the effectiveness of conservation management, and to 
inform policy decisions (Yoccoz et al. 2001; Gonzalez et al. 2023b). To be effective, 
optimizing monitoring efforts and their implementation across diverse ecosystems and 
representatively covering organism groups remains crucial.

Signals in biodiversity data can only be meaningfully detected with adequate 
sampling design (Yoccoz et al. 2001; Gonzalez et al. 2023a). Particularly, the tem-
poral sampling scheme must be adapted to the specific characteristics of the system 
which is to be monitored, to distinguish a signal from inherent system variability 
(noise). This includes for example determining the optimal sampling frequency and 
the overall duration of the time series (Magurran et al. 2010), as well as considering 
heterogeneity in species detection (Yoccoz et al. 2001). The challenge is to find a 
balance between monitoring effort and the comprehensiveness of the data collected 
(Francomano et al. 2021). This task becomes even more complex in the absence of 
pre-existing knowledge about the temporal dynamics of a system, where the lack of 
baseline data can limit the identification of trends and signals in biodiversity indices 
(Mihoub et al. 2017).

One ecosystem with limited baseline knowledge on temporal dynamics is ground-
water. Despite being the largest freshwater reservoir on earth and a keystone ecosys-
tem (Ferguson et al. 2021; Saccò et al. 2024), it is one of the least studied ecosys-
tems, mainly due to difficulties in accessibility (Mammola et al. 2019; Mammola et 
al. 2021). Yet, it harbors a unique range of organisms that are adapted to the dark 
and energy deprived conditions (Culver and Pipan 2019). These obligate groundwater 
dwellers (stygobites) exhibit a high rate of endemism, and some of the species originate 
from ancient adaptive radiations (Trontelj et al. 2009; Borko et al. 2021). Despite 
their hidden nature, groundwater organisms are not completely sheltered from human 
influence. Anthropogenic pressures extend well beyond surface environments, increas-
ingly affecting also groundwater ecosystems (Couton et al. 2023b; Nanni et al. 2023; 
Vaccarelli et al. 2023).

Generally, groundwater and other subterranean environments are more buffered 
from fluctuating environmental conditions than aboveground systems. Yet, especial-
ly shallow groundwater habitats exhibit some temporal patterns, as they are closely 
linked to aboveground ecosystems through hydrologic flows (Culver and Pipan 2011). 
This, in turn, can drive temporal dynamics in groundwater communities. For exam-
ple, groundwater recharge and discharge can be linked to rainfall and snow melt, af-
fecting groundwater communities through altered nutrient inputs, temperature, and 
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groundwater flow regimes (Di Lorenzo et al. 2005; Opalički Slabe 2015; Hutchins et 
al. 2021; Saccò et al. 2021). While the aforementioned studies have detected some 
temporal patterns in groundwater faunal communities, others have not found such 
evidence (Pacioglu and Robertson 2017), or suggest that seasonality might primarily 
influence microbial assemblages (Korbel and Hose 2015).

Over the past decades, there has been a growing effort to develop sampling tools 
for monitoring groundwater fauna (Koch et al. 2024). Apart from traditional sam-
pling, new approaches such as environmental DNA (Couton et al. 2023b; van der 
Heyde et al. 2023) and citizen science approaches (Alther et al. 2021; Knüsel et al. 
2024b; Korbel and Hose 2024) have emerged. However, there is still a lack of tem-
poral data for many parts of the world (Koch et al. 2024) and simultaneously, pro-
tected areas fail to represent subterranean biodiversity (Fišer et al. 2022; Colado et 
al. 2023; Mammola et al. 2024). The tendency to overlook subterranean ecosystems 
and the scarcity of temporal baseline data hinder the development of comprehensive 
monitoring programs, as well as the implementation of effective conservation and 
management strategies (Sánchez-Fernández et al. 2021; Mammola et al. 2022; Nanni 
et al. 2023).

We here temporally assessed macroinvertebrate communities in shallow ground-
water aquifers of Switzerland. For this region, spatial distribution and diversity pat-
terns are relatively well known (Altermatt et al. 2014; Altermatt et al. 2019; Alther 
et al. 2021; Schneider et al. 2023; Knüsel et al. 2024b) through eDNA and classical 
organismal sampling (Studer et al. 2022; Couton et al. 2023a, 2023b). Yet, knowledge 
about temporal variability of detection is still limited and groundwater fauna is gener-
ally not yet included in any of the national biodiversity monitoring programs (BAFU 
2023). We here close knowledge gaps concerning temporal aspects of groundwater 
fauna sampling, specifically the effect of seasonality and further time-varying covariates 
on stygobite and non-stygobite occurrence, temporal autocorrelation of their pres-
ence–absence, and detection rate. Based on these aspects, we discuss considerations for 
the development of monitoring strategies.

Materials and methods

Sampling procedure

Data was collected as part of a large citizen science project across Switzerland (Knüsel 
et al. 2024b). Specifically, drinking water providers were asked to sample groundwater 
for macroinvertebrates. The sampling was conducted in spring catchment boxes, where 
groundwater is captured passively from horizontal drainage pipes (Fig. 1). At the pipe 
inlets into the respective spring catchment box, filternets (mesh size 0.8 mm) were at-
tached for one week and then all captured organisms were collected and stored in 80% 
ethanol. We used two datasets covering different temporal and spatial resolutions for 
this study.
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Monthly dataset

Firstly, we used data from 17 inlets spread across Switzerland (Fig. 2A) that were sampled 
approximately monthly over one year between May 2021 and April 2022. The filtering 
was conducted during one week per month. The collected macroinvertebrates were mor-
phologically identified to major taxa (Schneider et al. 2023) and then split into three 
groups. We used two groups covering the most commonly found, obligate groundwa-
ter macroinvertebrates (stygobites), namely groundwater amphipods (genera Niphargus 
and Crangonyx) and groundwater isopods (including genus Proasellus) (Schneider et al. 
2023). All other collected macroinvertebrates were combined as a third group (hereafter 
named ‘other macroinvertebrates’). It consists predominantly of organisms that are oc-
casionally (stygophiles) or accidentally (stygoxenes) entering groundwater ecosystems. 
For each sample, we calculated the filtering duration based on the given start and end 
date (using 7 days as default when the start date was not specified by the participant). If 
the outflow rate was available for each sample, we calculated the total volume of water 
filtered for the respective samples. In cases where only one measure of outflow rate was 
missing for a particular sampling date, but the previous and subsequent measurements 
were available, we used the mean between the two. We additionally extracted data on 
precipitation, as this affects groundwater recharge (Stoll et al. 2013) and thereby might 
have an effect on groundwater fauna wash out at spring catchment boxes (see also Di 
Lorenzo et al. 2018). Therefore we calculated each sampling sites’ local precipitation sum 
(mm, equivalent to liters per square meter) over two weeks prior to the end date of each 
filtering period from the RhiresD data provided by the Federal Office of Meteorology 
and Climatology MeteoSwiss (https://www.meteoschweiz.admin.ch/klima/klima-der-
schweiz/raeumliche-klimaanalysen.html). For longer-term seasonal precipitation trends, 
we calculated the same 2-week precipitation sums from a measuring station in Bern 

Figure 1. Methodology for sampling groundwater macroinvertebrates at spring catchment boxes 
(groundwater extracted for drinking water usage). Open spring catchment box from outside (A) and 
from inside with filter nets attached to the inlets of the drainage pipes (B both modified from Knüsel et 
al. 2024b). Schematic representation (C modified from Couton et al. 2023a) of the passive groundwater 
collection (1), inlet into spring catchment box with filter net installed (2), and injection of the water into 
the local drinking water supply system (3).

https://www.meteoschweiz.admin.ch/klima/klima-der-schweiz/raeumliche-klimaanalysen.html
https://www.meteoschweiz.admin.ch/klima/klima-der-schweiz/raeumliche-klimaanalysen.html
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(Federal Office of Meteorology and Climatology MeteoSwiss, https://data.geo.admin.
ch/ch.meteoschweiz.klima/nbcn-tageswerte/nbcn-daily_BER_previous.csv) and then 
compiled the mean and standard deviation per day of year across the years 1990–2020.

Figure 2. Sampling sites across Switzerland. Pie charts depict sampling inlets from the monthly dataset 
with presence of groundwater amphipods, groundwater isopods and other macroinvertebrates marked 
in dark blue, turquoise, and orange, respectively (A). Absences of the corresponding organism group are 
marked as empty sectors in the pie charts. Sampling sites from the weekly dataset are shown enlarged (B), 
filled circles mark inlets with groundwater amphipod detection and empty circles without (remaining 
macroinvertebrate groups were not considered). The point size represents number of samples. Geodata 
from swisstopo (permission JA100119).

https://data.geo.admin.ch/ch.meteoschweiz.klima/nbcn-tageswerte/nbcn-daily_BER_previous.csv
https://data.geo.admin.ch/ch.meteoschweiz.klima/nbcn-tageswerte/nbcn-daily_BER_previous.csv
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Weekly dataset

In the catchment area of the river Töss, 143 inlets were sampled 1–10 times each 
in subsequent weeks (mean 6.8 weekly samples per inlet) (Fig. 2B). The sampling 
was conducted in spring 2021 (Studer et al. 2022). All groundwater amphipods were 
sorted and identified to the species level by sequencing the Folmer fragment of the 
mtDNA COI gene (Folmer et al. 1994). A detailed protocol of the molecular identifi-
cation can be found in Studer et al. (2022) and Knüsel et al. (2024b). Organisms other 
than groundwater amphipods were not further identified in this dataset.

Statistical analyses

All analyses were performed in R (ver. 4.2.2; R Core Team 2022b). We used a Generalized 
Additive Modeling (GAM) approach to assess effects of seasonality, outflow, and precipi-
tation on the abundances of groundwater amphipods, groundwater isopods, and other 
macroinvertebrates in the monthly dataset. Both, outflow and precipitation were found 
to affect groundwater community assemblages over time in previous studies (Hutchins 
et al. 2021; Saccò et al. 2021). Hereafter, we refer to the pattern across the sampled year 
as “seasonality” for simplicity, yet we acknowledge that seasonal and event-based effects 
cannot be clearly distinguished from 12 monthly samples. For each organism group we 
included data from all inlets where the respective group was found at least once. Seasonal-
ity was modeled as day of year using cyclic cubic regression splines (to ensure matching 
ends for continuity, Wood 2023), while outflow [L/sec] and precipitation [mm] were 
modeled with thin plate regression splines (default, Wood 2023). We used splines vary-
ing by organism group for each of these covariates and the default 10 knots. Further, we 
added the inlet identifier as random effect, the organism group as a factor, and an offset to 
account for varying sampling effort. We ran two models using different log-transformed 
offsets, one using the sampling duration (in number of sampling days) and one using the 
total discharge volume (in megaliters). Models were fitted in the R package ‘mgcv’ (Wood 
2023) using restricted maximum likelihood (REML) and negative binomial response dis-
tribution (Suppl. material 1: R-code). Abundances were then predicted for sampling ef-
forts of one week (representing the commonly used filtering duration) and one megaliter, 
using varying levels of either seasonality, outflow, or precipitation while keeping the other 
parameters at their median value. Additionally to the GAM, we calculated temporal au-
tocorrelation and corresponding 95% confidence intervals based on presence–absence of 
the three organism groups in consecutive samples grouped per inlet using the function 
acf() from R package ‘stats’ (R Core Team 2022a). We used the type ‘correlation’ and set 
lag.max to 11 (maximum number of sampling occasions per inlet is 12).

Using the weekly dataset, we calculated detection rates of groundwater amphipods 
based on their capture history per inlet:

pi j
xi j
nj  (Eq. 1)
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where pi,j is the detection rate of species i at inlet j (given presence), xi,j is the number of 
samples in which the species i was detected at inlet j, and nj is the total number of sampling 
occasions at inlet j (see e.g., McArdle 1990; MacKenzie et al. 2002; MacKenzie 2018). We 
computed inlet-specific detection rates for four amphipod species, each of which was found 
at minimally 10 inlets (to ensure sufficiently large sample size for reliable estimates). Ad-
ditionally, we calculated inlet-specific detection rates for all groundwater amphipods com-
bined. We then calculated the mean detection and corresponding standard deviation across 
all inlets where the given species or combined amphipods were found at least once by:

pi
j 1

Ni pi j
Ni

 (Eq. 2)

where ‒pi is the mean detection of species i across inlets (given presence) and Ni the num-
ber of sampled inlets (given presence of species i). Higher sampling effort is expected to 
yield more precise detection rate estimates compared to lower sampling effort including 
few repeated samples per inlet. In a last step, we thus assessed how the detection rate 
estimates change under varying sampling effort and if they stabilize upon sufficient sam-
pling. Therefore, we calculated the detection rates repeatedly based on the formula above, 
but using a subset of inlets that were sampled a certain minimum number of times by:

pi k
j 1

N pi j nj k

Ni k

i k

 (Eq. 3)

where k is the threshold of sampling occasions per inlet, ranging from 1 (all inlets 
included) up to 10 (inlets with 10 sampling occasions included only) and Ni,k corre-
sponds to the number of sampled inlets that fulfill the given threshold criterion.

Results

Macroinvertebrates sampled monthly during one year (monthly dataset)

The sampled inlets showed pronounced differences in faunal composition with respect 
to the presence/absence of the two stygobite groups and other macroinvertebrates (Fig. 
2A). Also, there was a large variety of measured outflow rates and their temporal pat-
terns between inlets (Fig. 3A). Precipitation patterns were comparable across inlet lo-
cations, with a large peak in July and a smaller peak between December and February 
(Fig. 3B). Generally, precipitation in summer 2021 was higher than the long-term 
average for many areas, while in autumn 2021 it was lower than the long-term average 
(Fig. 3B, MeteoSchweiz 2022). The outflow rates of some inlets reflected the precipita-
tion peak(s) with certain lags, whereas other inlets had rather consistent outflow rates 
throughout the sampling period, irrespective of precipitation fluctuations.

We found no significant effect of seasonality on groundwater amphipod and isopod 
abundances in the GAM (Table 1, Fig. 4). In contrast, seasonality significantly affected 
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the other macroinvertebrates, with predicted abundances peaking in July (Fig. 4). This 
pattern was mostly driven by EPT (Ephemeroptera, Plecoptera, and Trichoptera) lar-
vae (Suppl. material 1: fig. S1). The outflow rate did not have a significant effect when 
abundances where modeled per day, but was significant when abundances were mod-
eled per megaliter (Table 1). In the latter case, abundances of all three organism groups 
per megaliter were predicted to be highest at low inlet outflow rates and to decrease 
with increasing outflow rates (Fig. 4). We did not identify any significant effect of 
precipitation on any of the organism groups’ abundances. However, there might be a 
confounding effect between precipitation and seasonality. In both models, the random 
inlet effect was highly significant. Still using the monthly dataset, the model with 

Figure 3. Environmental covariates along the sampling period (monthly dataset), plotted per inlet 
A outflow in L/s and B precipitation sum across two weeks prior to the sample collection. For compari-
son, long-term precipitation mean (black line) and standard deviation (grey shaded area) from Bern (1990 
to 2020) are plotted in the background.
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abundances per discharge volume had a higher deviance explained than the model 
with abundances per sampling duration (62.4% vs. 38.1%; Table 1).

Temporal occurrence varied between organism groups (Fig. 5A) and their capture his-
tories (detection–nondetection) indicated temporal autocorrelation patterns (Fig. 5B). 
For groundwater amphipods, temporal autocorrelation was significant up to the third 
lag (= three months). In contrast, the autocorrelation for groundwater isopods was 
significant up to the tenth lag (Fig. 5B), in line with either very high or very low detec-
tion rates across sampling occasions (Fig. 5A). The other macroinvertebrates showed a 
similar pattern as the groundwater amphipods, with significant and decreasing auto-
correlation up to the second lag.

Table 1. GAM results for the abundances of groundwater amphipods (amphi), groundwater isopods 
(isopod), and other macroinvertebrates (macro). Model 1 was run with discharge volume as an offset and 
model 2 with number of sampling days. The “parametric coefficients” component refers to the linear (or 
parametric) part of the model, which includes the coefficients for the categorical variable “organism group”.

Model 1 (per megaliter offset)
Component Term Estimate Std error z-value p-value
A. parametric coefficients (Intercept) 0.59 0.30 1.98 0.048

Group: amphi -1.09 0.20 -5.44 < 0.001
Group: isopod -1.85 1.34 -1.38 0.17

Component Term Edf Ref. df Chi.sq p-value
B. smooth terms s(precip:macro) 1.00 1.00 1.49 0.22

s(precip:amphi) 1.00 1.00 1.61 0.20
s(precip:isopod) 1.00 1.00 0.26 0.61
s(outflow:macro) 3.49 4.28 49.47 < 0.001
s(outflow:amphi) 2.63 3.24 50.48 < 0.001
s(outflow:isopod) 3.45 4.17 33.11 < 0.001

s(sesonality:macro) 2.21 8.00 10.35 0.0031
s(seasonality:amphi) 0.97 8.00 1.60 0.18
s(seasonality:isopod) 0.00 8.00 0.00 0.73

s(inlet) 12.48 15.00 116.90 < 0.001
Deviance explained 62.4%, n = 399

Model 2 (per day offset)
Component Term Estimate Std error z-value p-value
A. parametric coefficients (Intercept) -1.53 0.31 -4.98 < 0.001

Group: amphi -1.07 0.20 -5.42 < 0.001
Group: isopod -1.54 0.91 -1.69 0.092

Component Term Edf Ref. df Chi.sq p-value
B. smooth terms s(precip:macro) 1.00 1.00 2.47 0.12

s(precip:amphi) 1.00 1.00 2.89 0.089
s(precip:isopod) 1.00 1.00 0.41 0.52
s(outflow:macro) 1.00 1.00 1.01 0.31
s(outflow:amphi) 1.00 1.00 1.72 0.19
s(outflow:isopod) 3.09 3.79 3.38 0.41

s(sesonality:macro) 2.13 8.00 9.27 0.0054
s(seasonality:amphi) 1.10 8.00 2.00 0.15
s(seasonality:isopod) 0.00 8.00 0.00 0.83

s(inlet) 12.94 15.00 122.44 < 0.001
Deviance explained 38.1%, n = 399
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Amphipods sampled repeatedly over consecutive weeks (weekly dataset)

Groundwater amphipods were detected in 55% of the 143 sampled inlets in the Töss 
catchment. In total, nine species were identified, of which five were only detected in 
1–3 inlets each (Table 2). Detection rates varied substantially between species, both 
in terms of mean and variance across inlets (Fig. 6). Specifically, detection rates of 
Niphargus fontanus and N. tonywhitteni both indicated a very large heterogeneity across 
inlets. The same was found for groundwater amphipods combined; detection rates per 
inlet varied from 0.1 up to 1.0. In contrast, Crangonyx cf. subterraneus was found to 
have the lowest detection rate and the smallest variance across inlets.

With increasing sampling effort, we found detection rate estimates to become 
more conservative (Fig. 7, Suppl. material 1: fig. S2). Because of the procedure how 
detection rate was estimated, detection rates at higher sampling effort are inevita-
bly lower than estimations obtained at low sampling effort, but allegedly level off 
upon sufficient sampling. The detection rates of groundwater amphipods combined 
seemed to stabilize around a mean detection of 0.4, although standard deviations 
remained large (Suppl. material 1: fig. S3). The lowest mean detection of groundwa-
ter amphipods combined (i.e., 0.38, including inlets with at least 6 sampling occa-
sions) would translate to a minimum of 6.3 samples necessary to infer the absence of 
groundwater amphipods with 95% probability (based on Kéry 2002). However, this 
calculation is based on the mean detection rate and does not account for the substan-

Figure 4. Predicted abundances (mean and 95% CI) of groundwater amphipods (dark blue), groundwa-
ter isopods (turquoise), and other macroinvertebrates (orange), plotted along gradients of seasonality [day 
of year, labelled in months], groundwater outflow [liters per second], and precipitation sum over 14 days 
preceding the sample collection date [millimeters]. GAM predictions were computed based on abundances 
per discharge volume (megaliter, upper plots) and per sampling duration (week, lower plots). Significance 
levels based on Table 1 are indicated (ns for p > 0.05, * for p ≤ 0.05, ** for p ≤ 0.01, *** for p ≤ 0.001).
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tial variation in groundwater amphipod detection rates among different inlets. At the 
species level, we noticed considerable variation in whether detection rate estimates 
appeared to stabilize or not, given the sampling effort used in this study. Detection 

Table 2. Groundwater amphipod occurrence (in number of inlets and number of specimens) in the 
weekly dataset using the filternet method. Specimens that could not be identified to the species level are 
listed as Niphargus sp.

Species Number of inlets Number of specimens
Niphargus tonywhitteni 46 177
Niphargus auerbachi 39 77
Niphargus fontanus 24 153
Crangonyx cf. subterraneus 14 37
Niphargus puteanus 3 83
Niphargus arolaensis 2 10
Niphargus thienemanni 2 4
Niphargus sp. Elgg 1 1
Niphargus ruffoi 1 1
Niphargus sp. (undet.) 20 36
Groundwater amphipods (combined) 78 579

Figure 5. A capture histories across the sampling occasions for the three organism groups. Filled tiles mark 
presence and empty tiles mark absence of the corresponding group, while tiles marked in light grey depict 
occasions where no sample was taken. Sampling occasions (x-axis, approximated by month for comparabil-
ity to other plots) consist of monthly one-week filtering periods B temporal autocorrelation of presence–
absence of the organism groups. The lag is based on subsequent, monthly samples. The grey area (confined 
by red dashed line) marks 95% confidence band, autocorrelations larger than the band are significant.
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rates for N. fontanus and N. tonywhitteni stabilized around a detection of 0.37 and 
0.3, respectively, at threshold levels set to 6 samples or higher. However, when setting 
a too restrictive threshold and thus including very few inlets per species, detection 
rates seemed to destabilize again. The detection rate for N. auerbachi did not stabilize 
and instead decreased almost linearly with increasing samples per inlet. As the maxi-
mum number of sampling occasions was 10 per inlet, we could not identify detec-
tion rates smaller than 0.1. The mean detection rate of C. cf. subterraneus converged 
towards this lower detection limit (Fig. 7).

Discussion

We assessed temporal variability in the occurrence and abundance of macroinverte-
brates detected from shallow groundwater aquifer samples. While no seasonal pattern 
was found for obligate groundwater amphipods and isopods, we found a seasonal pat-
tern in the remaining macroinvertebrates (consisting predominantly of stygophiles and 

Figure 6. Detection rates of amphipods at groundwater extraction sites. Data is shown for four species 
and for all groundwater amphipods combined. Each point marks the detection rate of a given species at a 
certain inlet. The filling indicates how many samples were available from the respective inlet to calculate 
the detection rate, with darker filling indicating more samples. Inlets with at least four sampling occasions 
were plotted. Boxes give the median and interquartile range (IQR, hinges at 25% and 75% quantiles), 
with whiskers extending from the box hinges to ±1.5 * IQR.
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stygoxenes), suggesting differing seasonal effects of environmental conditions on the 
detectability of obligate and facultative groundwater organisms. Detection rates for 
individual groundwater amphipod species were highly variable, with a generally high 
heterogeneity among inlets. Some species had very low detection probabilities, imply-
ing that a substantial number of samples are required to distinguish true from false 
absence at a given inlet.

Temporal consistency in obligate groundwater macroinvertebrates

Organisms from the surface are exposed to strong environmental fluctuations and 
many of them thus show seasonal patterns in detectability. We identified a peak in 
macroinvertebrates’ abundances (predominantly shaped by EPT larvae) around July, 
which may partly reflect the seasonal life cycle of these insects (see also Burgherr et 
al. 2002; Lubini et al. 2012). Their occurrence might indicate a close hydrological 
connection between the groundwater and nearby surface waters (Stanford and Ward 
1988). In contrast, no seasonal effect was found for groundwater amphipod and iso-
pod abundances, suggesting temporally more consistent detectability in these organ-
isms, possibly reflecting the longer development time of stygobites (Hose et al. 2022). 

Figure 7. Detection rates of groundwater amphipods depending on number of samples collected per 
inlet. Detection was calculated as mean over all inlets where the given species or group occurred and then 
repeated reducing the data to inlets with a given threshold of minimal sampling occasions. Standard devia-
tions are reported in Suppl. material 1: fig. S3. Point sizes show how many inlets were included for calcu-
lating the mean. The area below a mean detection rate of 0.1 is shaded, because the maximum number of 
samples per inlet is 10, and thus smaller detection rates per species could not be captured.
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Precipitation did not have any significant effect on detectability of either of the studied 
organism groups, despite being identified as a key driver of community dynamics and 
energy flows in other groundwater systems (Saccò et al. 2020; Saccò et al. 2021; Saccò 
et al. 2022). However, a possible effect might be confounded by the inclusion of a 
seasonality covariate along with precipitation in the models, particularly as the main 
peak of EPT detection and (higher than the long-term average) precipitation coincide 
in July. Since our data is limited to only one year, some effects may be concealed. The 
non-significant precipitation result might also arise from varying time lags among aq-
uifers, at which precipitation affects groundwater ecosystems (determined by factors 
such as geology). Generally, the models explained a moderate proportion of the devi-
ance, suggesting that while the included covariates and smooth terms captured some 
of the variability in the organisms’ abundances, other factors not included may also 
play a role.

Groundwater amphipods: low detection rates and high variability among in-
lets and species

Out of nine groundwater amphipod species found in the Töss catchment, five spe-
cies occurred at only 1–3 inlets each, a pattern that is characteristic for groundwater 
communities (Hahn and Fuchs 2009; Trontelj et al. 2009; Knüsel et al. 2024b). The 
other four species occurred at 10 or more sites each, allowing the calculation of detec-
tion rates with sufficient spatial replicas. The mean detection rates of N. fontanus and 
N. tonywhitteni stabilized when the effort consisted of six or more sampling occasions 
per inlet, indicating that detection might be overestimated when less repeated samples 
are available per inlet. In contrast, the detection rate of N. auerbachi did not stabilize 
and the one of C. cf. subterraneus showed an asymptotic shape towards the lower de-
tection limit of 0.1. For both species, we expect true detection to be lower than 0.1. 
Results from Knüsel et al. (2024b) using an occupancy modeling approach based on 
a Swiss-wide dataset confirm the expected low detection probabilities of N. auerbachi 
and C. cf. subterraneus. Considering all groundwater amphipods combined, the low-
est mean detection rate would translate to a minimum of 6.3 samples necessary to 
infer their absence with 95% probability. In comparison, findings from southwestern 
Germany indicated that 2–17 samples are necessary to collect 95% of species in verti-
cal wells (boreholes) (Gutjahr et al. 2013). However, we found a high heterogeneity 
in detection rates between sampled inlets. Consequently, any inlet with an amphipod 
detection rate below the mean would require more than the computed 6.3 samples to 
infer the absence of groundwater amphipods. For example, an inlet with a detection 
rate of 0.1 would require 29 samples to infer the absence with 95% probability (Kéry 
2002). However, it is not completely resolved yet to what extent the heterogeneity in 
detection rates reflects underlying environmental factors and community characteris-
tics, or is an artefact of the sampling methodology (Knüsel et al. 2024b).

We acknowledge that we here only analyzed data from inlets where the respective 
species were present. Because the occurrence process was not modeled, neglecting false 
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absences where the species is present but not detected likely results in overestimat-
ing true detection rates (see e.g., Kéry and Royle 2016; MacKenzie 2018; Knüsel et 
al. 2024b). Further, one must be careful to apply conclusions on detection rates and 
sampling effort from this region to other regions, as amphipod occurrence and likely 
also detection rates might be different, for example in mountainous areas (Knüsel et 
al. 2024a). The occurrence data analyzed here encloses a specific region in Switzerland, 
that exhibits a rather high amphipod occurrence and richness (Studer et al. 2022) 
and might have served as refugium during the Last Glacial Maximum (Knüsel et al. 
2024a). If the necessary sampling effort based on detection rates is to be estimated, 
we advise to carefully consider the sampling area and species expected to occur, the 
heterogeneity in detection rates among sampling sites, and variability in environmental 
conditions among sites. Generally, when detection probabilities are low but spatially 
heterogeneous, monitoring programs should cover a relatively large time frame with 
sufficient spatial and temporal replicates and take into account possible heterogene-
ity in detection among species to ensure accurate assessments (Boulinier et al. 1998; 
MacKenzie et al. 2002).

Considerations on standardization and sampling design

Studies of groundwater communities in natural springs commonly standardize 
abundances by discharge volume (Di Lorenzo et al. 2005; Mori et al. 2015). Since 
the inlets sampled here were built by humans, the effects of outflow rate on organ-
ism abundances might not be directly comparable to that of natural springs. We here 
found a negative effect of outflow when abundances were standardized per discharge 
volume, which indicates a possible ‘dilution effect’ of the organism density. In other 
words, the density of organisms might be independent of an inlet’s discharge rate, 
and standardizing by volume could introduce a bias in the analysis. Hence, it may 
be sufficient to standardize sampling effort based on filtering duration, independ-
ent of the discharge volume of the given inlet, or to add the mean outflow rate as a 
random effect.

When occurrences are correlated across time, subsequent samples might be biased. 
Here, we detected temporal autocorrelation in groundwater amphipod occurrence up 
to three months apart, which is expected given the slow life history and limited mobil-
ity of stygobites (e.g., Hose et al. 2022). For standardized monitoring of groundwater 
amphipods collected at drinking water extraction facilities, given a limited number 
of sampling occasions per year, we recommend to place sampling occasions evenly 
throughout the year and to avoid clustering them in a short timeframe, as the latter 
could lead to correlated false absences. Generally, one could also consider extending 
the filtering periods from one up to multiple weeks, which would increase the chance 
of collecting groundwater organisms (e.g., Di Lorenzo et al. 2018). However, organ-
isms will start to decompose at some point, which could hinder the identification of 
those organisms that remained in the filter nets for longer periods. When deciding on 
the passive sampling periods, it is important to consider whether the goal is to assess 
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occurrence or abundance, as well as the desired level of taxonomic resolution and the 
identification method (as decomposition likely affects the accuracy of both, morpho-
logical and molecular identification).

Choosing the optimal sampling approach

Using citizen science data from drinking water providers has shown to be an effective 
approach to study groundwater macroinvertebrates (Alther et al. 2021; Knüsel et al. 
2024b). However, the generally low abundances and low detection probabilities despite 
high sampling efforts, in combination with large spatial variability in detection, pose 
challenges. The question remains how monitoring strategies could be scaled up to cover 
regional to national scales, in order to assess groundwater ecosystem health. One ap-
proach might be to combine multiple sampling strategies and to focus on bioindicator 
species (Koch et al. 2024 and references therein). Apart from citizen science, one novel 
methodology that is being applied to study groundwater communities is eDNA meta-
barcoding (Deiner et al. 2017; Couton et al. 2023b). It is fast, less work-intensive, and 
provides information on the whole groundwater community. While eDNA samples gen-
erally integrate biodiversity of larger spatial and temporal scales than traditional samples 
(Deiner et al. 2016; Carraro et al. 2020), Couton et al. (2023a) found eDNA to be (yet) 
less effective in detecting groundwater amphipods than directly filtering the organisms. 
Nevertheless, combining multiple approaches might give complementary insights into 
the state and dynamics of groundwater ecosystems and could thus be one way forward.

Conclusion

Our study highlights the temporal consistency of obligate groundwater macroinverte-
brate occurrence patterns, contrasting with the seasonal variability observed in other 
macroinvertebrates (predominantly stygophiles and stygoxenes). Based on the low de-
tection probabilities for many groundwater amphipod species, our findings emphasize 
the importance of tailored and extensive sampling strategies. For effective monitoring, 
standardizing sampling effort based on filtering duration rather than discharge volume 
and ensuring evenly spaced sampling occasions throughout the year is recommended. 
High variability in detection rates across groundwater amphipod species and sampling 
sites indicates the need for region-specific approaches.
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