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Abstract. This article discusses model reduction formulations for the computation of large structural models. The simplest 
method of model reduction is by using static condensation methods. However, this method might not capture the dynamic 
properties of the structures. A reduction model based on dynamic analysis is performed to reduce the size of structural 
computation. Assuming that the damping matrix is in proportion to the mass and stiffness matrix, the free vibration analysis 
is used as a starting point for the structural model analysis. The transformed matrices are obtained by partitioning the 
matrices in the equations of motion, considering the retained and condensed degrees of freedom. The retained degrees of 
freedom can be considered as master degrees of freedom, where the size of the system matrices is expected. By several 
manipulations, the reduced order model is achieved. The computation starts using Guyan's reduction method, and then the 
system matrices are updated iteratively. The convergence is defined by comparing the eigenvalues of the successive 
computations. Numerical examples of four and ten-story shear building models are conducted to show the applicability of 
the methods. The numerical results show that the reduced-order model obtained using this method can predict the actual 
model's behavior. 
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INTRODUCTION  

Many real problems in static and dynamic analysis involve many degrees of freedom (DOF). Finite element models 
in static or dynamic computations may involve very large DOF. For structures with large DOF, a computational effort 
will be very demanding, time-consuming, and require big computer storage. Therefore, model reduction is needed to 
reduce computational efforts. To achieve this purpose, several researchers have proposed static and dynamic 
condensation. By condensation methods, a reduced-order model is obtained. Reduced-order models have been used 
in many engineering applications such as structural health monitoring systems, model updating in finite element 
methods, modal analysis, test-analysis models correlation, vibration control, structural dynamic optimization, and 
dynamic response analysis [1-2]. 

Reduced-order models can be achieved by using static or dynamic condensations. The earlier reduced-order model 
utilized the static condensation technique of Guyan [3] and Irons [4]. In these methods, the inertia force is neglected 
in the formulation. Therefore, the accuracy of the methods in dynamic problems might be very low. Some researchers 
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improved the static condensation methods to include the inertia effect. Suarez and Singh [5] and Singh and Suarez [6] 
proposed an iterative dynamic condensation scheme for eigenproblems. Friswell et al. [7] extended the Improved 
Reduced System (IRS) of Callahan [8] to produce an iterative algorithm. 

The condensation technique seeks the reduced-order model from the actual or original structural model. The 
original system matrix is partitioned into submatrices containing retained and condensed degrees of freedom. The 
retained degrees of freedom can also be considered as the master degrees of freedom, while the condensed degrees of 
freedom are known as slave degrees of freedom.  

This paper considers the application of the dynamic condensation technique to build a reduced-order model of 
structural systems. Four-story and ten-story shear buildings are considered to show the accuracy of the reduced-order 
model to predict the slave degrees of freedom that are not modeled in the reduced-order model. The dynamic 
condensation technique used in this paper follows the dynamic condensation of Weng et al. [9][10], which starts the 
iteration using Guyan transformation matrix. It shows that the method can predict the structural response accurately 
subject to ground excitations. 

STATIC CONDENSATION TECHNIQUE 

Consider equations of motion of multi-degree of freedom systems:  
 

                                                                                                           (1)     
                               

In equation 1; M, C and K is respectively denotes matrices of mass, damping and stiffness. and U  are 
respective values for vectors of the force and displacement. The dot represents the derivative with respect to time. 
Equation (1) can be partitioned into submatrices as: 

 

                         (2) 

 
In equation (2), subscripts m and s represent master and slave degrees of freedom. The size of the master degree 

of freedom = nm and slave degree of freedom = ns so that the total degree of freedom n = nm + ns.  
In Guyan (1965) method, mass and damping are neglected so that we have a static equation:  
 

                                                                    (3) 

 
By considering the force in the slave degree of freedom ,  the displacements of the slave degree of 

freedom can be computed from the second submatrix equation as: 
 

   Us= -Kss
-1Kms

T Um= tG	Um                                                                    (4) 
 
Therefore, displacements of the structure according to the Guyan method can be obtained from: 
 

     U= "UmUs
# =TGUm= "ImtG

#Um                                                                   (5) 

 
By substituting equation (4) into the first row of equation (3), we can obtain: 
 

$Kmm-KmsKss
-1Kms

T %Um= KR	Um=Fm                                                            (6) 
 
In equation (6), we use the reduced stiffness matrix: 
 

                                                                                   (7) 
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Similarly, if we use the same transformation matrix for mass and damping, the reduced mass and damping matrices 
can be obtained as: 

                                                                                  (8) 

                                                                                    (9) 
 
In order to obtain the reduced system matrices in Guyan reduction method, equations 7, 8 and 9 are used. 

DYNAMIC CONDENSATION METHOD 

Consider a free vibration problem and make use of a similar partition as in equation (2); we have: 
 

                                                                                     (10) 

 
Following the procedure of Weng et al. [9][10], the second row of equation (10) results in: 
 

                                                               (11) 
 

By taking the transformation of the degree of freedom to the master degree of freedom as: 
 

                                                              (12a) 

or 
 

Us= Tt	Um                                                                                   (12b) 
 

Therefore, equation (11) can be written as: 
 

                                                       (13) 
 

                                                                         (14) 
 

We are going to seek the equivalent free vibration problem of the reduced order system as: 
 

                                                                                 (15) 
 
From equation (15), the acceleration of the master degree of freedom becomes: 
 

Üm= -MR
-1	KR	Um                                                                                     (16) 

 
 By substituting equation (16) into equation (13) we can obtain: 
 

                                                      (17) 
or 

                                                                     (18) 
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                                                                            (20) 
 

Consider now the stiffness of the reduced system as: 
 

                                                                               (21) 

 

By substituting the transformation matrix , we can obtain and 

finally: 
 

                                                   (22a) 
 

Substituting equations (19), (20), and (14) into equation (22a), we obtain: 
 

                                                                      (22b) 
 

where: 
                                                                     (23) 

 
We can use the same procedure for the reduced mass system. The reduced mass system can be written as: 
 

                                                                               (24) 

By using the same transformation matrix T,  we can obtain: 

 
                                                (25) 

 
Considering equation (19) we can obtain: 
 

                                  (26) 
 

where: 
                                               (27) 

 
By substituting equations (22) and (26) into equation (15) and considering equations (23), (27),  and (19), finally 

we can obtain: 
 

                                                                   (28) 
where 

                                                      (29)  
 

Substituting equation (27) into equation (29), we can obtain: 
 

                                        (30) 
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Equation (28) can be considered as the free vibration problem of the reduced-order system, but with the 
involvement of the transformation matrix Tt. To solve this eigenvalue problem, we do it iteratively so that the resulting 
eigenvalue fits the result of the reduced order system. From equation (28) we can compute the acceleration of the 
master degree of freedom as: 

                                                                   (31) 
 

Substituting equation (31) into equation (13) results in: 
 

                                  (32) 
 

Finally, we can obtain the transformation matrix as: 
 

                                             (33) 
 

This transformation matrix in equation (33) is used in equation (30) to solve the eigenvalue system in equation 
(28). However, as the transformation matrix is still coupled, we must do iteratively. Following Weng et al. (2017), the 
iterative procedure is done as follows: 

(a) The first iteration is the Guyan method: 
 

 

 

(b) The transformation matrix and the mass matrix Md are updated iteratively for k = 1, 2, 3, … as follows: 

 

 

(c) The iteration process is stopped until the error of eigenvalues  from the two 

successive iterations reach   

(d) The matrices of the reduced-order system can be achieved as: 
 

 

 
 

 
An Octave program was developed to automate and carry out the calculation. 

APPLICATIONS TO MODEL REDUCTION PROBLEMS 

Numerical Example - 1 
 
A four-story building modeled as a shear building, with = m2 = m3 = 542 tons, m4 = 514 tons, the story stiffness is 

uniform with k = 3.5´105 kN/m for all stories. The damping matrix of the structure is assumed to be in proportion to 
the stiffness matrix, where the damping ratio is taken to be 2%. 
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Suppose we are going to reduce the model into two degrees of freedom. The developed program then computes 
the transformation matrix and the reduced-order system's mass, damping, and stiffness matrices. The error tolerance 
in this simulation is 0.01, and the maximum iteration is set at 20. The resulting transformation matrix is: 

 

T= '

1 0
0 1

-2.8432 2.8588
-5.2693 4.3297

( 

 

 
FIGURE 1. Four-story building and reduced-order model 

 
The mass, damping, and stiffness matrices of the reduced-order system are: 
 
MR= ) 19195.08 -16132.07

-16132.07   14607.07 * ,CR= ) 25050.80   -15456.32
  -15456.32    10382.02 *, KR= ) 5589477.40  -3448703.06

-3448703.06   2316495.04 * 
 
The reduced-order system is subjected to a ground motion of El Centro 1940 earthquake to validate the results. 

The response of the slave degrees of freedom is obtained from the master degrees of freedom by utilizing the 
transformation matrix. The responses are then compared to the ones of the original system. Figure 2 shows the plot of 
the reduced-order and the original model responses. The displacement response of the slave degrees of freedom of the 
reduced-order model is computed by using the transformation matrix. 

The root-mean-square (RMS) of the response differences of the original and reduced-order models are then 
computed as shown in Table 1. 

 
TABLE 1. The RMS response differences of example 1 

 
Floor no RMS response differences 

1 1.6839e-04 
2 8.6744e-05 
3 1.0962e-04 
4 9.4746e-05 

 
Numerical Example - 2 

 
A ten-story shear building discussed in Hadi and Arfiadi [11] is taken for this example. The building properties 

are shown in Table 2. The damping of the structure is assumed to be in proportion to the stiffness of the structure. 
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(a) First floor displacement of example 1 

 

 
(b) Second floor displacement of example 1 

 

 
(c) Third floor displacement of example 1 

 

 
(d) Fourth floor displacement of example 1 

 
FIGURE 2. Comparison of the responses of example 1 due to El Centro 1940 earthquake 

 
 



Yoyong Arfiadi, Richard Frans, Ade Lisantono / Proceedings CAUSummit 2024 
 
231 

TABLE 2. Structural properties of building in example 2 
 

Floor/story no Mass (ton) Stiffness (kN/m) 
1 179 62.47e3 
2 170 52.26e3 
3 161 56.14e3 
4 152 53.02e3 
5 143 49.91e3 
6 134 46.79e3 
7 125 43.67e3 
8 116 40.55e3 
9 107 37.43e3 
10 98 49.91e3; 

 
The structural model is reduced to three degrees of freedom model. A similar program as in Example 1 was used 

where the tolerance for error in the eigenvalues differences is 0.01 and the maximum iteration is set to 20. The resulting 
transformation matrix of the slave degrees of freedom to the master degrees of freedom is: 

 

Tt	=	

⎣
⎢
⎢
⎢
⎢
⎢
⎡

9.9196   -10.240 5.1526
42.7681 -39.8629 15.2522

108.8516   -96.5668    33.2850
   208.1254  -179.6977 58.8111
325.7638 -276.8911 88.0783
434.0201 -365.6541 114.5114
500.6159  -420.0423  130.6143⎦

⎥
⎥
⎥
⎥
⎥
⎤

 

 
The resulting of the mass, damping, and stiffness matrices of the reduced-order system are: 
 

MR= 2
  64305456.37 -54394510.09 17170826.03

  -54394510.09  46019781.16  -14532600.64
17170826.03 -14532600.64 4593132.40

3 

 

CR= 2
 23759385.23  -19787516.44  6032580.27
-19787516.44    16490451.72  -5032418.564
6032580.27   -5032418.56  1538333.84

3 

 

KR= 2
 1845885691.65 -1537308020.41  468675998.41
-1537308020.41  1281156417.89    -390972633.40
468675998.41 -390972633.40 119514389.46

3 

 
The ground motion due to Kobe 1995 earthquake is applied to the original and reduced-order system to evaluate 

the method's accuracy. The first and the tenth-floor displacements are plotted in Figure 3. 
The displacement of the slave degrees of freedom of the reduced-order model is computed by using the 

transformation matrix. The maximum displacements of each floor from the original model and those computed from 
the reduced-order model are plotted in Figure 4. Table 3 shows the RMS differences for the displacements of the 
original and reduced-order systems and the differences for the maximum displacements in each floor. 

Similar simulations were carried out to the original and reduced-order model subject to El Centro 1940 ground 
acceleration. The displacements of the tenth floor of both models are given in Figure 5. The maximum responses are 
depicted in Figure 6, while the RMS and maximum response differences are shown in Table 4. 
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            (a) First floor displacement of example 2                  (b) Tenth floor displacement of example 2 
 

 
FIGURE 3. Comparison of the responses of example 2 due to Kobe 1995 earthquake 

 

 
FIGURE 4. Comparison of the maximum response for example 2 due to Kobe 1995 earthquake 

 
 

TABLE 3. Responses due to Kobe 1995 earthquake of example 2 
 

Floor/story no RMS 
differences 

Maximum displacement (m) Maximum responses 
differences (%) Original model Reduced order model 

1 3.9484e-04    0.087322 0.086896    -0.49 
2 1.3167e-03    0.181812 0.181399    -0.23 
3 1.1349e-03    0.261913 0.260892    -0.39 
4 1.7422e-04    0.332132 0.330319    -0.55 
5 1.3462e-03 0.386421 0.385420    -0.26 
6 3.9484e-04 0.423318 0.423759    0.10 
7 1.3167e-03    0.454683 0.462162 1.64 
8 1.1349e-03    0.496008 0.502330    1.27 
9 1.7422e-04    0.533224 0.532133    -0.20 
10 1.3462e-03 0.556166 0.548452 -1.39 
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FIGURE 5. Comparison of the responses for example 2 due to El Centro 1940 earthquake 

 

 
FIGURE 6. Comparison of the maximum response of example 2 due to El Centro 1940 earthquake  

 

TABLE 4. Responses due to El Centro 1940 earthquake of example 2 
 

Floor/story no RMS 
differences 

Maximum displacement (m) Maximum 
responses 

differences (%) Original model Reduced order 
model 

1 9.95e-04 0.041069 0.041158 0.22 
2 5.65e-04 0.088413 0.088452 0.04 
3 3.56e-04 0.128797 0.128696 -0.08 
4 6.97e-04 0.165636 0.165558 -0.05 
5 4.84e-04 0.197077 0.19717 0.05 
6 2.41e-04 0.222343 0.222467 0.06 
7 6.06e-04 0.252288 0.252132 -0.06 
8 5.09e-04 0.286312 0.286079 -0.08 
9 1.01e-04 0.312828 0.312774 -0.02 
10 6.05e-04 0.327414 0.327616 0.06 
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DISCUSSIONS 

The procedure for model reduction is verified by the two given numerical examples 1 and 2. The given first 
example is a four-story building modeled as a shear building so the building has four degrees of freedom. The model 
for reduced-order is computed by using the Octave program. The displacements of slave degrees of freedom are 
computed using the transformation matrix obtained from this method and compared to the ones of the original model. 

As it can be seen in Figure 2, the reduced-order model can approximate the original model. The time history 
responses due to El Centro 1940 ground acceleration from the reduced-order model match the original model. A 
similar conclusion is obtained from the computation of RMS differences of both models, as can be seen in Table 2, 
where the differences in the responses are very small.  

A ten-story building was taken as the second example for evaluation of the method further. The reduced-order 
model is converted to a three-degrees-of-freedom system. The transformation matrix and the reduced-order model's 
mass, damping, and stiffness matrix are computed using the same method. To validate this method, simulations of the 
responses to Kobe 1995 and El Centro 1940 ground excitations are conducted for both the original and reduced-order 
models. The time history responses from both models are plotted in Figure 3, subjected to  Kobe 1995 earthquake, 
and in Figure 5, subjected to  El Centro 1940 earthquake. Due to space limitations, only the first and tenth-floor 
displacements were shown in Figure 3, and only the tenth-floor displacement was plotted in Figure 5. From those 
figures, it can be seen that both models fit each other during the time history response. In addition, the maximum 
responses of both models are plotted in Figures 4 and 6, for Kobe 1995 and El Centro 1940 earthquakes, respectively. 
Figures 4 and 6 show that the maximum responses of both models fit well. For both ground excitations, the RMS 
differences and the differences of the maximum responses were computed and shown in Tables 3 and 4, respectively. 
Tables 3 and 4 show that, due to Kobe 1995 and El Centro 1940 earthquakes, the differences of the RMS time history 
responses are very small. Similar observations were found for maximum response differences subject to both 
earthquakes. 

CONCLUSION 

This paper considers the method of reduction of large structural models by using the technique of dynamic 
condensation. An iterative solution is presented considering the free vibration problems. An Octave program is then 
developed to solve the problem. Numerical examples of four- and ten-story buildings are conducted to show the 
effectiveness of the method. For both examples, the slave degrees of freedom were obtained using the computed 
transformation matrix. The system matrices, such as mass, damping and stiffness, were obtained accordingly. The 
responses of both models were then compared to evaluate the accuracy of the procedure. From both examples, it is 
obtained that the reduced-order model can well fit the original model.  
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